eng
University of Sistan and Baluchestan
Iranian Journal of Fuzzy Systems
1735-0654
1735-0654
2013-03-02
10
1
0
10.22111/ijfs.2013.2723
2723
Cover vol. 10, no. 1, February 2013
http://ijfs.usb.ac.ir/article_2723_3ee3c7840b0dd11f70a6f651d5237cbc.pdf
eng
University of Sistan and Baluchestan
Iranian Journal of Fuzzy Systems
1735-0654
1735-0654
2013-02-04
10
1
1
28
10.22111/ijfs.2013.153
153
مقاله پژوهشی
A CONSTRAINED SOLID TSP IN FUZZY ENVIRONMENT:
TWO HEURISTIC APPROACHES
Chiranjit Changdar
chiranjit changdar@yahoo.co.in
1
Manas Kumar Maiti
manasmaiti@yahoo.co.in
2
Manoranjan Maiti
mmaiti2005@yahoo.co.in
3
Department of Computer Science, Raja N.L. Khan Women's
College, Midnapore, Paschim- Medinipur, West Bengal, India-721102
Department of Mathematics, Mahishadal Raj College, Mahishadal,
Purba- Medinipur, West Bengal, India-721628
Department of Mathematics, Vidyasagar University, Midnapore,
Paschim- Medinipur, West Bengal, India-721102
A solid travelling salesman problem (STSP) is a travelling salesman problem (TSP) where the salesman visits all the cities only once in his tour using dierent conveyances to travel from one city to another. Costs and environmental eect factors for travelling between the cities using dierent conveyances are dierent. Goal of the problem is to nd a complete tour with minimum cost that damages the environment least. An ant colony optimization (ACO) algorithm is developed to solve the problem. Performance of the algorithm for the problem is compared with another soft computing algorithm, Genetic Algorithm(GA). Problems are solved with crisp as well as fuzzy costs. For fuzzy cost and environmental eect factors, cost function as well as environment constraints become fuzzy. As optimization of a fuzzy objective function is not well de ned, fuzzy possibility approach is used to get optimal decision. To test the eciency of the algorithm, the problem is solved considering only one conveyance facility ignoring the environmental eect constraint, i.e., a classical two dimensional TSP (taking standard data sets from TSPLIB for solving the problem). Dierent numerical examples are used for illustration.
http://ijfs.usb.ac.ir/article_153_100415578c754927aaf8d608b87dfdd1.pdf
Solid travelling salesman problem
Fuzzy possibility
Ant colony optimization
Genetic Algorithm
eng
University of Sistan and Baluchestan
Iranian Journal of Fuzzy Systems
1735-0654
1735-0654
2013-02-04
10
1
29
60
10.22111/ijfs.2013.154
154
مقاله پژوهشی
A COGNITIVE STYLE AND AGGREGATION OPERATOR
MODEL: A LINGUISTIC APPROACH FOR CLASSIFICATION
AND SELECTION OF THE AGGREGATION OPERATORS
Kevin Kam Fung Yuen
kevinkf.yuen@gmail.com
1
Department of Computer science and Software Engineering,
Xi'an Jiaotong-Liverpool University, 111 Ren Ai Road, Suzhou Industrial Park, Suzhou,
Jiangsu Province, 215123, P. R. China
Aggregation operators (AOs) have been studied by many schol- ars. As many AOs are proposed, there is still lacking approach to classify the categories of AO, and to select the appropriate AO within the AO candidates. In this research, each AO can be regarded as a cognitive style or individual dierence. A Cognitive Style and Aggregation Operator (CSAO) model is pro- posed to analyze the mapping relationship between the aggregation operators and the cognitive styles represented by the decision attitudes. Four algorithms are proposed for CSAO: CSAO-1, CSAO-2 and two selection strategies on the basis of CSAO-1 and CSAO-2. The numerical examples illustrate how the choice of the aggregation operators on the basis of the decision attitudes can be determined by the selection strategies of CSAO-1 and CSAO-2. The CSAO model can be applied to decision making systems with the selection problems of the appropriate aggregation operators with consideration of the cognitive styles of the decision makers.
http://ijfs.usb.ac.ir/article_154_6135966bcbefde837de8dc2560d927ba.pdf
Cognitive styles
Aggregation operators
Information fusion
Decision
attitudes
Decision making
eng
University of Sistan and Baluchestan
Iranian Journal of Fuzzy Systems
1735-0654
1735-0654
2013-02-04
10
1
61
74
10.22111/ijfs.2013.155
155
مقاله پژوهشی
FUZZY GOAL PROGRAMMING TECHNIQUE TO SOLVE
MULTIOBJECTIVE TRANSPORTATION PROBLEMS WITH
SOME NON-LINEAR MEMBERSHIP FUNCTIONS
Maryam Zangiabadi
zangiabadi-m@sci.sku.ac.ir
1
Hamid Reza Maleki
maleki@sutech.ac.ir
2
Department of Applied Mathematics, Faculty of Mathematical
Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran
Department of Basic Sciences, Shiraz University of Technology,
Shiraz, Iran
The linear multiobjective transportation problem is a special type of vector minimum problem in which constraints are all equality type and the objectives are conicting in nature. This paper presents an application of fuzzy goal programming to the linear multiobjective transportation problem. In this paper, we use a special type of nonlinear (hyperbolic and exponential) membership functions to solve multiobjective transportation problem. It gives an optimal compromise solution. The obtained result has been compared with the solution obtained by using a linear membership function. To illustrate the methodology some numerical examples are presented.
http://ijfs.usb.ac.ir/article_155_3287502ac100353886714e75cecddc84.pdf
Multiobjective decision making
Goal programming
Transportation
problem
Membership function
Fuzzy programming
eng
University of Sistan and Baluchestan
Iranian Journal of Fuzzy Systems
1735-0654
1735-0654
2013-02-05
10
1
75
88
10.22111/ijfs.2013.164
164
مقاله پژوهشی
MINIMIZATION OF DETERMINISTIC FINITE AUTOMATA
WITH VAGUE (FINAL) STATES AND INTUITIONISTIC
FUZZY (FINAL) STATES
Alka Choubey
alka.choubey@jiit.ac.in, alka.choubey@gmail.com
1
K. M. Ravi
rv.km19@gmail.com, rv km@yahoo.com
2
Mathematics Department, Jaypee Institute of Information Technol-
ogy, A-10, Sector-62, Noida-201307 (U. P.), India
Department of Mathematics, JSS Academy of Technical Education, C-
20/1, Sector-62, Noida-201301 (U. P), India
In this paper, relations among the membership values of gener- alized fuzzy languages such as intuitionistic fuzzy language, interval-valued fuzzy language and vague language are studied. It will aid in studying the properties of one language when the properties of another are known. Further, existence of a minimized nite automaton with vague ( final) states for any vague regular language recognized by a nite automaton with vague ( final) states is shown in this paper. Finally, an ecient algorithm is given for minimizing the nite automaton with vague ( final) states. Similarly, it can be shown for intuitionistic fuzzy regular language. These may contribute to a better understanding of the role of nite automaton with vague ( final) states or the nite automaton with intuitionistic fuzzy ( final) states while studying lexical analysis, decision making etc.
http://ijfs.usb.ac.ir/article_164_8f88d3102db5acd9349513069a44355a.pdf
Intuitionistic fuzzy regular language
Interval-valued fuzzy regular
language
Vague regular language
Finite automaton with vague (final) states
Finite automaton
with intuitionistic fuzzy (nal) states
Myhill-Nerode theorem
eng
University of Sistan and Baluchestan
Iranian Journal of Fuzzy Systems
1735-0654
1735-0654
2013-02-05
10
1
89
106
10.22111/ijfs.2013.166
166
مقاله پژوهشی
On the Diagram of One Type Modal Operators on Intuitionistic fuzzy
sets: Last expanding with $Z_{alpha ,beta }^{omega ,theta
g. cuvalcioglu
gcuvalcioglu@mersin.edu.tr
1
department of mathematics, university of mersin, ciftlikkoy, 33016,
mersin turkey
Intuitionistic Fuzzy Modal Operator was defined by Atanassov in cite{at3}in 1999. In 2001, cite{at4}, he introduced the generalization of thesemodal operators. After this study, in 2004, Dencheva cite{dencheva} definedsecond extension of these operators. In 2006, the third extension of thesewas defined in cite{at6} by Atanassov. In 2007,cite{gc1}, the authorintroduced a new operator over Intuitionistic Fuzzy Sets which is ageneralization of Atanassov's and Dencheva's operators. At the same year,Atanassov defined an operator which is an extension of all the operatorsdefined until 2007. The diagram of One Type Modal Operators onIntuitionistic Fuzzy Sets was introduced first in 2007 by Atanassovcite{at10}. In 2008, Atanassov defined the most general operator and in2010 the author expanded the diagram of One Type Modal Operators onIntuitionistic Fuzzy Sets with the operator $Z_{alpha ,beta }^{omega }$.Some relationships among these operators were studied by several researchers%cite{at5}-cite{at8} cite{gc1}, cite{gc3}, cite{dencheva}- cite%{narayanan}.The aim of this paper is to expand the diagram of one type modal operatorsover intuitionistic fuzzy sets . For this purpose, we defined a new modaloparator $Z_{alpha ,beta }^{omega ,theta }$ over intuitionistic fuzzysets. It is shown that this oparator is the generalization of the operators$Z_{alpha ,beta }^{omega },E_{alpha ,beta },boxplus _{alpha ,beta},boxtimes _{alpha ,beta }.$
http://ijfs.usb.ac.ir/article_166_54fe632cc30a351a943cae82a4dd7742.pdf
Modal operator
$Z_{alpha
beta }^{omega
theta }$ operator
Modal operator diagram
eng
University of Sistan and Baluchestan
Iranian Journal of Fuzzy Systems
1735-0654
1735-0654
2013-02-06
10
1
107
122
10.22111/ijfs.2013.169
169
مقاله پژوهشی
FUZZY INTEGRO-DIFFERENTIAL EQUATIONS: DISCRETE
SOLUTION AND ERROR ESTIMATION
Masoumeh Zeinali
zeynali@tabrizu.ac.ir
1
Sedaghat Shahmorad
shahmorad@tabrizu.ac.ir
2
Kamal Mirnia
mirnia-kam@tabrizu.ac.ir
3
Faculty of mathematical sciences, University of Tabriz, Tabriz,
Iran
Faculty of mathematical sciences, University of Tabriz, Tabriz,
Iran
Faculty of mathematical sciences, University of Tabriz, Tabriz, Iran
This paper investigates existence and uniqueness results for the first order fuzzy integro-differential equations. Then numerical results and error bound based on the left rectangular quadrature rule, trapezoidal rule and a hybrid of them are obtained. Finally an example is given to illustrate the performance of the methods.
http://ijfs.usb.ac.ir/article_169_4d7ef7b69c85251841a56ba41099c819.pdf
Fuzzy integro-differential equation
Discrete solution
Fuzzy quadrature
rule
eng
University of Sistan and Baluchestan
Iranian Journal of Fuzzy Systems
1735-0654
1735-0654
2013-02-06
10
1
123
134
10.22111/ijfs.2013.170
170
مقاله پژوهشی
SET-NORM EXHAUSTIVE SET MULTIFUNCTIONS
Anca Croitoru
croitoru@uaic.ro
1
Alina Gavrilut
gavrilut@uaic.ro
2
Faculty of Mathematics, "A.I. Cuza" University, Bd. Carol I, no 11,
Iasi-700506, Romania
Faculty of Mathematics, "A.I. Cuza" University, Bd. Carol I, no
11, Iasi-700506, Romania
In this paper we present some properties of set-norm exhaustive set multifunctions and also of atoms and pseudo-atoms of set multifunctions taking values in the family of non-empty subsets of a commutative semigroup with unity.
http://ijfs.usb.ac.ir/article_170_2bb1c36480ee857421fd93fd71dde045.pdf
Set-norm
Exhaustive
Continuous
Null-null-additive
Atom
Pseudo-
atom
eng
University of Sistan and Baluchestan
Iranian Journal of Fuzzy Systems
1735-0654
1735-0654
2013-02-06
10
1
135
142
10.22111/ijfs.2013.173
173
مقاله پژوهشی
APPROXIMATE FIXED POINT IN FUZZY NORMED SPACES
FOR NONLINEAR MAPS
S. A. M. Mohseniailhosseini
amah@vru.ac.ir
1
H. Mazaheri
hmazaheri@yazduni.ac.ir
2
M. A. Dehghan
dehghan@vru.ac.ir
3
Faculty of Mathematics, Vali-e-Asr University of Raf-
senjan, Rafsenjan, Iran
Faculty of Mathematics, Yazd University, Yazd, Iran
Faculty of Mathematics, Vali-e-Asr University of Rafsenjan, Raf-
senjan, Iran
We de ne approximate xed point in fuzzy norm spaces and prove the existence theorems, we also consider approximate pair constructive map- ping and show its relation with approximate fuzzy xed point.
http://ijfs.usb.ac.ir/article_173_1b3c8fc3ea44800472a6b09a730cd34d.pdf
Fuzzy norm space
$F^z-$approximate
fixed point
Diameter $F^z$-approximate fixed point
eng
University of Sistan and Baluchestan
Iranian Journal of Fuzzy Systems
1735-0654
1735-0654
2013-02-06
10
1
143
152
10.22111/ijfs.2013.174
174
مقاله پژوهشی
WEAK AND STRONG DUALITY THEOREMS FOR FUZZY
CONIC OPTIMIZATION PROBLEMS
B. Farhadinia
bfarhadinia@yahoo.com.au
1
A. V. Kamyad
kamyad@math.um.ac.ir
2
Department of Mathematics, Quchan Institute of Engineering and
Technology, Iran,
Department of Mathematics, Ferdowsi University of Mashhad, Iran,
The objective of this paper is to deal with the fuzzy conic program- ming problems. The aim here is to derive weak and strong duality theorems for a general fuzzy conic programming. Toward this end, The convexity-like concept of fuzzy mappings is introduced and then a speci c ordering cone is established based on the parameterized representation of fuzzy numbers. Un- der this setting, duality theorems are extended from crisp conic optimization problems to fuzzy ones.
http://ijfs.usb.ac.ir/article_174_7ccb2ebf7e64971e3e0a4c7c1dd909f7.pdf
Fuzzy conic optimization problem
Fuzzy number
Weak and strong
duality theorems
eng
University of Sistan and Baluchestan
Iranian Journal of Fuzzy Systems
1735-0654
1735-0654
2013-03-02
10
1
155
163
10.22111/ijfs.2013.2724
2724
Persian-translation vol. 10, no. 1, February 2013
http://ijfs.usb.ac.ir/article_2724_70b945a70f7f7d14a5f622dc8b8f9e14.pdf