ORIGINAL_ARTICLE
Cover vol. 10, no. 3, June 2013
http://ijfs.usb.ac.ir/article_2704_51aafc18f0567f552ac9f68f7bf9771d.pdf
2013-06-29T11:23:20
2018-02-25T11:23:20
0
10.22111/ijfs.2013.2704
ORIGINAL_ARTICLE
ON FUZZY NEIGHBORHOOD BASED CLUSTERING
ALGORITHM WITH LOW COMPLEXITY
The main purpose of this paper is to achieve improvement in thespeed of Fuzzy Joint Points (FJP) algorithm. Since FJP approach is a basisfor fuzzy neighborhood based clustering algorithms such as Noise-Robust FJP(NRFJP) and Fuzzy Neighborhood DBSCAN (FN-DBSCAN), improving FJPalgorithm would an important achievement in terms of these FJP-based meth-ods. Although FJP has many advantages such as robustness, auto detectionof the optimal number of clusters by using cluster validity, independency fromscale, etc., it is a little bit slow. In order to eliminate this disadvantage, by im-proving the FJP algorithm, we propose a novel Modied FJP algorithm, whichtheoretically runs approximately n= log2 n times faster and which is less com-plex than the FJP algorithm. We evaluated the performance of the ModiedFJP algorithm both analytically and experimentally.
http://ijfs.usb.ac.ir/article_806_29d29dbb033397c08126e891f30d1646.pdf
2013-06-30T11:23:20
2018-02-25T11:23:20
1
20
10.22111/ijfs.2013.806
Clustering
Fuzzy neighborhood relation
Complexity
Modied FJP
Gozde
Ulutagay
gozde.ulutagay@izmir.edu.tr
true
1
Department of Industrial Engineering, Izmir University, Gursel
Aksel Blv 14, Uckuyular, Izmir, Turkey
Department of Industrial Engineering, Izmir University, Gursel
Aksel Blv 14, Uckuyular, Izmir, Turkey
Department of Industrial Engineering, Izmir University, Gursel
Aksel Blv 14, Uckuyular, Izmir, Turkey
LEAD_AUTHOR
Efendi
Nasibov
efendi nasibov@yahoo.com
true
2
Department of Computer Science, Dokuz Eylul University, Izmir,
35160, Turkey, Institute of Cybernetics, Azerbaijan National Academy of Sciences,
Azerbaijan
Department of Computer Science, Dokuz Eylul University, Izmir,
35160, Turkey, Institute of Cybernetics, Azerbaijan National Academy of Sciences,
Azerbaijan
Department of Computer Science, Dokuz Eylul University, Izmir,
35160, Turkey, Institute of Cybernetics, Azerbaijan National Academy of Sciences,
Azerbaijan
AUTHOR
[1] R. Agrawal, J. Gehrke, D. Gunopulos and P. Raghavan, Automatic subspace clustering of
1
high dimensional data for data mining applications, Proceedings of the 1998 ACM-SIGMOD
2
Int. Conference on Management of Data, Seattle, Washington, June 1998.
3
[2] M. Ankerst, M. M. Breunig, H. P, Kriegel and J. Sander, OPTICS: ordering points to identify
4
the clustering structure, In: Proceedings of ACM SIGMOD International Conference on
5
Management of Data, Philadelphia, PA, (1999), 49{60.
6
[3] A. M. Bensaid, L. O. Hall, J. C. Bezdek, L. P. Clarke, M. L. Silbiger, J. A. Arrington and R.
7
F. Murtagh, Validity-guided (re)clustering with applications to image segmentation, IEEE
8
Transactions on Fuzzy Systems, 4 (1996), 112{123.
9
[4] J. C. Bezdek, Fuzzy mathematics in pattern classification, PhD Thesis, Cornell Univ, NY,
10
[5] M. H. Chehreghani, H. Abolhassani and M. H. Chehreghani, Improving density-based methods
11
for hierarchical clustering of web pages, Data & Knowledge Engineering, 67 (2008), 30{50.
12
[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to algorithms, The
13
MIT Press, 2001.
14
[7] A. P. Dempster, N. M. Laird and D. B. Rubin, Maximum likelihood from incomplete data
15
via the EM algorithm, Journal of Royal Statistical Society, Series B, 39 (1977), 1{38.
16
[8] J. C. Dunn, A fuzzy relative of the ISODATA process and its use in detecting compact wellseparated
17
clusters, Journal of Cybernetics, 3(3) (1973), 32{57.
18
[9] M. Ester, H. P. Kriegel, J. Sander and X. Xu, A density-based algorithm for discovering clusters
19
in large spatial databases with noise, In Proc. 2nd International Conference on Knowledge
20
Discovery and Data Mining, (1996), 226{231.
21
[10] D. Fisher, Knowledge acquisition via conceptual clustering, Machine Learning, 2 (1987),
22
[11] S. Guha, R. Rastogi and K. Shim, CURE: an efficient clustering algorithms for large
23
databases, In: Proceeding ACM SIGMOD International Conference on Management of Data,
24
Seattle, WA, (1998), 73{84.
25
[12] J. Han and M. Kamber, Data mining concepts and techniques, Morgan Kaufmann Publishers,
26
San Francisco, CA, 2001.
27
[13] A. Hinneburg and A. K. Daniel, An efficient approach to clustering in large multimedia
28
databases with noise, Proceedings of the 4th Int. Conference on Knowledge Discovery and
29
Data Mining (KDD98), New York, (1998), 58{65.
30
[14] P. Hore, L. O. Hall, D. B. Goldgof, Y. GU, A. A. Maudsley and A. Darkazanli, A scalable
31
framework for segmenting magnetic resonance images, Journal of Signal Processing Systems,
32
54 (2009), 183{203.
33
[15] E. Januzaj, H. P. Kriegel and M. Pfei
34
e, DBDC: density based distributed clustering, 5th
35
International Conference on Extending Database Technology (EDBT), Heraklion, Greece,
36
(2004a), 88{105.
37
[16] E. Januzaj, H. P. Kriegel and M. Pfei
38
e, Scalable density based distributed clustering, 15th
39
International Conference on Machine Learning (ECML) and the 8th European Conference on
40
Principles and Practice of Knowledge Discovery in Databases (PKDD), Pisa, Italy, 2004b.
41
[17] G. Karypis, E. H. Han and V. Kumar, CHAMELEON: a hierarchical clustering algorithm
42
using dynamic modeling, IEEE Computer, 32(8) (1999), 68{75.
43
[18] L. Kaufman and P. J. Rousseuw, Finding groups in data: an introduction to cluster analysis,
44
John Wiley&Sons, Inc, 1990.
45
[19] E. Mehdizadeh, S. Sadi-Nezhad and R. Tavakkoli-Moghaddam, Optimization of fuzzy clustering
46
criteria by a hybrid PSO and fuzzy c-means clustering algorithm, Iranian Journal of
47
Fuzzy Systems, 5(3) (2008), 1{14.
48
[20] E. N. Nasibov and G. Ulutagay, A new approach to clustering problem using the fuzzy joint
49
points method, Automatic Control and Computer Sciences, 39(6) (2005), 8{17.
50
[21] E. N. Nasibov and G. Ulutagay, On the fuzzy joint points method for fuzzy clustering problem,
51
Automatic Control and Computer Sciences, 40(5) (2006), 33{44.
52
[22] E. N. Nasibov and G. Ulutagay, A new unsupervised approach for fuzzy clustering, Fuzzy
53
Sets and Systems, 158(19) (2007), 2118{2133.
54
[23] E. N. Nasibov and G. Ulutagay, Robustness of density-based clustering methods with various
55
neighborhood relations, Fuzzy Sets and Systems, 160(24) (2009), 3601{3615.
56
[24] T. R. Ng and J. Han, Efficient and effective clustering methods for spatial data mining,
57
Proceedings of the 20th Very Large Databases Conference (VLDB94), Santiago, Chile, (1994),
58
[25] J. K. Parker, L. O. Hall and A. Kandel, Scalable fuzzy neighborhood DBSCAN, IEEE Interna-
59
tional Conference on Fuzzy Systems, Barcelona, Spain, doi: 10.1109/FUZZY.2010.5584527,
60
(2010), 1{8.
61
[26] W. Pedrycz and F. Gomide, An introduction to fuzzy sets, MIT Press, MA, 1998.
62
[27] W. Pedrycz, Distributed and collaborative fuzzy modeling, Iranian Journal of Fuzzy Systems,
63
4(1) (2007), 1{19.
64
[28] J. Sander, M. Ester, H. P. Kriegel and X. Xu,Density-based clustering in spatial databases:
65
the algorithm GDBSCAN and its applications, Data Mining and Knowledge Discovery, 2
66
(1998), 169{194.
67
[29] G. Sheikholeslami, S. Chatterjee and A. Zhang, WaveCluster: a multi-resolution clustering
68
approach for very large spatial databases, Proceedings of the 24th Very Large Databases
69
Conference (VLDB 98), New York, 1998.
70
[30] G. Ulutagay and E. Nasibov, Fuzzy and crisp clustering methods based on the neighborhood
71
concept: a comprehensive review, Journal of Intelligent and Fuzzy Systems, 23 (2012), 271{
72
[31] W. Wang, Y. Jiong and R. Muntz, STING: a statistical information grid approach to spatial
73
data mining, Proceedings of the 23rd Very Large Databases Conference (VLDB 1997), Athens,
74
Greece, 1997.
75
[32] X. Xiaowei, E. Martin, H. P. Kriegel and J. Sander, A distribution-based clustering algorithm
76
for mining in large spatial databases, Proceedings of the 14th Int. Conference on Data
77
Engineering (ICDE98), Orlando, Florida, (1998), 324{331.
78
[33] A. Z. Xu, J. Chen and J. Wu, Clustering algorithm for intuitionistic fuzzy sets, Information
79
Sciences, 178 (2008), 3775{3790.
80
[34] R. R. Yager and D. P. Filev, Approximate clustering via the mountain method, IEEE Trans-
81
actions on Systems, Man and Cybernetics, 24(8) (1994) , 1279{1284.
82
[35] X. L. Yang, Q. Song and Y. L. Wu, A robust deterministic algorithm for data clustering,
83
Data & Knowledge Engineering, 62 (2007), 84{100.
84
[36] T. Zhang, R. Ramakrishnan and M. Livny, BIRCH: an efficient data clustering method for
85
very large databases, Proceedings of the 1996 ACM SIGMOD Int. Conference on Management
86
of Data, Montreal, Canada, (1996), 103{113.
87
ORIGINAL_ARTICLE
OPTIMAL CONTROL OF FUZZY LINEAR CONTROLLED
SYSTEM WITH FUZZY INITIAL CONDITIONS
In this article we found the solution of fuzzy linear controlled systemwith fuzzy initial conditions by using -cuts and presentation of numbersin a more compact form by moving to the eld of complex numbers. Next, afuzzy optimal control problem for a fuzzy system is considered to optimize theexpected value of a fuzzy objective function. Based on Pontryagin MaximumPrinciple, a constructive equation for the problem is presented. In the lastsection, three examples are used to show that the method in eective to solvefuzzy and fuzzy optimal linear controlled systems.
http://ijfs.usb.ac.ir/article_807_c58b5ba2cb1e2768a9c8c8fc759eb228.pdf
2013-06-30T11:23:20
2018-02-25T11:23:20
21
35
10.22111/ijfs.2013.807
Fuzzy linear controlled system
Optimal fuzzy controlled system
PMP
Marzieh
Najariyan
marzieh.najariyan@gmail.com
true
1
Department of Applied Mathematics, Ferdowsi University of
Mashhad, Mashhad, Iran
Department of Applied Mathematics, Ferdowsi University of
Mashhad, Mashhad, Iran
Department of Applied Mathematics, Ferdowsi University of
Mashhad, Mashhad, Iran
LEAD_AUTHOR
Mohamad Hadi
Farahi
farahi@math.um.ac.ir
true
2
Department of Applied Mathematics, Ferdowsi University of
Mashhad, Mashhad, Iran and The center of Excellence on Modelling and Control
Systems (CEMCS)
Department of Applied Mathematics, Ferdowsi University of
Mashhad, Mashhad, Iran and The center of Excellence on Modelling and Control
Systems (CEMCS)
Department of Applied Mathematics, Ferdowsi University of
Mashhad, Mashhad, Iran and The center of Excellence on Modelling and Control
Systems (CEMCS)
AUTHOR
1. T. Allahviranloo and M. A. Kermani, Numerical methods for fuzzy linear partial dierential
1
equations under new denition for derivative, Iranian Journal of Fuzzy Systems, 7 (2010),
2
2. B. Bede, I. J. Rudas and A. L. Bencsik, First order linear fuzzy dierential equation sunder
3
generalized dierentiability, Information Science, 177 (2007), 1648-1662.
4
3. R. C. Dorf and R. H. Bishop, Modern control systems, Person Education, Inc. Upper Saddle
5
River, New Jersey, 07458 (2011).
6
4. P. Diamond and P. E. Kloeden, Metric space of Fuzzy sets, Theory And Applications, World
7
scientic publishing, 1994.
8
5. O. S. Fard and A. V. Kamyad, Modied k-step method for solving fuzzy initial value problems,
9
Iranian Journal of Fuzzy Systems, 8 (2011), 49-63.
10
6. D. Filev and P. Angelove, Fuzzy optimal control, Fuzzy Sets and Systems, 47 (1992), 151-56.
11
7. D. N. Georgiou, J. J. Nieto and R. Rodriguez-Lopez, Initial value problems for higher-order
12
fuzzy dierential equations, Nonlinear Analysis, 63 (2005), 587-600.
13
8. A. Khastan, J. J. Nieto and R. Rodriguez-Lopez, Variation of constant formula for rst order
14
fuzzy dierential equations, Fuzzy Sets and Systems, 177 (2011), 20-33.
15
9. A. Khastan and J. J. Nieto, A boundary value problem for second order fuzzy dierential
16
equations, Nonlinear Analysis, 72 (2010), 3583-3593.
17
10. J. J. Nieto, R. Rodriguez-Lopez and M. Villanueva-Pesqueira, Exact solution to the periodic
18
boundary value problem for a rst-order linear fuzzy dierential equation with impulses, Fuzzy
19
Optimization Decision Making, 10 (2011), 323-339.
20
11. J. J. Nieto, A. Khastan and K. Ivaz, Numerical solution of fuzzy dierential equations under
21
generalized dierentiability, Nonlinear Analysis: Hybrid Systems, 3 (2009), 700-707.
22
12. J. H. Park, J. S. Park and Y. C. Kwun, Controllability for the semilinear fuzzy integrodier-
23
ential equations with nonlocal conditions, Lecture Notes in Articial Intelligence, LNAI 4223
24
(2006), 221-230.
25
13. D. W. Pearson, A property of linear fuzzy dierential equations, Appl. Math. Lett., 10 (1997),
26
14. E. R. Pinch, Optimal control and the calculuse of variations, Oxford University Press Inc.,
27
New Yourk, 1995.
28
15. Z. Qin, Time-homogeneous fuzzy optimal control problems, http://www.orsc.edu.cn/process/
29
080415.pdf.
30
16. S. Ramezanzadeh and A. Heydari, Optimal control with fuzzy chance constraint, Iranian
31
Journal of fuzzy systems, 8 (2011), 35-43.
32
17. S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems, 24 (1987), 319-330.
33
18. J. Xu, Z. Liao and J. J. Nieto, A class of dierential dynamical systems with fuzzy matrices,
34
Math. Anal. Appl., 368 (2010), 54-68.
35
19. J. Xu, Z. Liao and Z. Hu, A class of linear dierential dynamical systems with fuzzy initial
36
condition, Fuzzy Sets and Systems, 158 (2007), 2339-2358.
37
20. Y. Zhu, A fuzzy optimal control model, Journal of uncertain systems, 3 (2009), 270-279.
38
21. Y. Zhu, Fuzzy optimal control with application to portfolio selection, http://www.orsc.edu.cn/
39
process/080117.pdf.
40
ORIGINAL_ARTICLE
$\mathcal{I}_2$-convergence of double sequences of\\ fuzzy numbers
In this paper, we introduce and study the concepts of $\mathcal{I}_2$-convergence, $\mathcal{I}_2^{*}$-convergence for double sequences of fuzzy real numbers, where $\mathcal{I}_2$ denotes the ideal of subsets of $\mathbb N \times \mathbb N$. Also, we study some properties and relations of them.
http://ijfs.usb.ac.ir/article_809_803b6897c706fdbec4081baf755af3ca.pdf
2013-06-30T11:23:20
2018-02-25T11:23:20
37
50
10.22111/ijfs.2013.809
Ideal
Double sequences
$mathcal{I}$-Convergence
Fuzzy number sequences
Erdinc.
Dundar
erdincdundar79@gmail.com
true
1
Department of Mathematics, Afyon Kocatepe University, 03200
Afyonkarahisarn,Turkey
Department of Mathematics, Afyon Kocatepe University, 03200
Afyonkarahisarn,Turkey
Department of Mathematics, Afyon Kocatepe University, 03200
Afyonkarahisarn,Turkey
LEAD_AUTHOR
Ozer
Talo
ozertalo@hotmail.com
true
2
Department of Mathematics, Celal Bayar University, 45040 Manisa,
Turkey
Department of Mathematics, Celal Bayar University, 45040 Manisa,
Turkey
Department of Mathematics, Celal Bayar University, 45040 Manisa,
Turkey
AUTHOR
bibitem{Ba-Fb}
1
B. Altay and F. Bad{s}ar, emph{Some new spaces of double sequences}, J. Math. Anal. Appl., textbf{309(1)} (2005), 70--90.
2
bibitem{altýn}
3
H. Alt{i}nok, Y. Alt{i}n and M. Id{s}{i}k, emph{Statistical convergence and strong p-Ces'{a}ro summability of order $beta$ in sequences of fuzzy numbers}, Iranian Journal of Fuzzy
4
Systems, textbf{9(2)} (2012), 63--73.
5
bibitem{bede}B. Bede and S. G. Gal, textit{Almost periodic fuzzy-number-valued functions},
6
Fuzzy Sets and Systems, textbf{147} (2004), 385--403.
7
bibitem{cc-ba}
8
d{C}. CÇakan and B. Altay, emph{Statistically boundedness and statistical core
9
of double sequences}, J. Math. Anal. Appl., textbf{317} (2006), 690--697.
10
bibitem{das 1}
11
P. Das, P. Kostyrko, W. Wilczy'{n}ski and P. Malik, emph{I and
12
$I^{*}$-convergence of double sequences}, Math. Slovaca, textbf{58(5)} (2008), 605--620.
13
bibitem{das 2}
14
P. Das and P. Malik, emph{On extremal I-limit points of double
15
sequences}, Tatra Mt. Math. Publ., textbf{40} (2008), 91--102.
16
bibitem{edba FU}
17
E. D"{u}ndar and B. Altay emph{$mathcal{I}_2$-uniform convergence of double
18
sequences of functions}, (under communication).
19
bibitem{fang}J. X. Fang and H. Huang, textit{On the level convergence of a
20
sequence of fuzzy numbers}, Fuzzy Sets and Systems, textbf{147} (2004), 417-415.
21
bibitem{fast}
22
H. Fast, emph {Sur la convergence statistique}, Colloq. Math.,
23
textbf{2} (1951), 241--244.
24
bibitem{fr-st}
25
J. A. Fridy, emph{On statistical convergence}, Analysis,
26
textbf{5} (1985), 301--313.
27
bibitem{fr- c.o}
28
J. A. Fridy and C. Orhan, emph{Statistical limit superior and inferior}, Proc. Amer. Math. Soc., textbf{125} (1997), 3625--3631.
29
bibitem{fr-st-lim}
30
J. A. Fridy, emph{Statistical limit points}, Proc. Amer. Math. Soc.,
31
textbf{118} (1993), 1187--1192.
32
bibitem{kos1}
33
P. Kostyrko, T. u{S}al'{a}t and W. Wilczy'{n}ski, emph{I-convergence},
34
Real Anal. Exchange, textbf{26(2)} (2000), 669-686.
35
bibitem{kos2}
36
P. Kostyrko, M. Mav{c}aj, T. u{S}al'{a}t and M. Sleziak, emph{I-convergence
37
and extremal I-limit points}, Math. Slovaca, textbf{55} (2005), 443--464.
38
bibitem{kumar 1}
39
V. Kumar, emph{On I and $I^{*}$-convergence of double sequences},
40
Math. Commun., textbf {12} (2007), 171--181.
41
bibitem{kumar F}
42
V. Kumar and K. Kumar, emph{On the ideal convergence of sequences of fuzzy numbers}, Information Sciences, textbf{178} (2008), 4670--4678.
43
bibitem{Matloka}
44
M. Matloka, emph{Sequences of fuzzy numbers}, Busefal, textbf{28} (1986), 28--37.
45
bibitem{murse-st}
46
Mursaleen and O. H. H. Edely, emph{Statistical convergence of double
47
sequences}, J. Math. Anal. Appl., textbf{288} (2003), 223--231.
48
bibitem{Nanda}
49
S. Nanda, emph{On sequences of fuzzy numbers}, Fuzzy Sets and Systems, textbf{33} (1989), 123--126.
50
bibitem{nabiev}
51
A. Nabiev, S. Pehlivan and M. G"{u}rdal, emph{On I-Cauchy sequence},
52
Taiwanese J. Math., textbf {11(2)} (2007), 569--576.
53
bibitem{nuray}
54
F. Nuray and W. H. Ruckle, emph{Generalized statistical convergence and convergence free spaces}, J. Math. Anal. Appl., textbf{245} (2000), 513--527.
55
bibitem{nuray 2}
56
F. Nuray, emph{Lacunary statistical convergence of sequences of fuzzy numbers},
57
Fuzzy Sets and Systems, textbf{99} (1998), 353--355.
58
bibitem{nuray 3}
59
F. Nuray and E. Savad{s}, emph{Statistical convergence of sequences of fuzzy numbers}, Math. Slovaca, textbf{45(3)} (1995), 269--273.
60
bibitem{prinsgheim}
61
A. Pringsheim, emph{Zur theorie der zweifach unendlichen Zahlenfolgen},
62
Math. Ann., textbf{53} (1900), 289--321.
63
bibitem{rath}
64
D. Rath and B. C. Tripaty, emph{On statistically convergence and
65
statistically Cauchy sequences}, Indian J. Pure Appl. Math., textbf{25(4)} (1994), 381--386.
66
bibitem{saadati}
67
R. Saadati, emph{On the I-fuzzy topological spaces}, Chaos, Solitons and Fractals,
68
textbf{37} (2008), 1419--1426.
69
bibitem{salat st}
70
T. u{S}al'{a}t, emph {On statistically convergent sequences of
71
real numbers}, Math. Slovaca, textbf{30} (1980), 139--150.
72
bibitem{Salat}
73
T. u{S}al'{a}t, B. C. Tripaty and M. Ziman, emph{On I-convergence
74
field}, Ital. J. Pure Appl. Math., textbf {17} (2005), 45--54.
75
bibitem{Savas1}
76
E. Savad{s}, emph{On statistical convergent sequences of fuzzy numbers},
77
Information Sciences, textbf{137} (2001), 277--282.
78
bibitem{Savas2}
79
E. Savad{s} and Mursaleen, emph{On statistically convergent
80
double sequences of fuzzy numbers}, Information Sciences, textbf{162} (2004), 183--192.
81
bibitem{Savas3}
82
E. Savad{s}, emph{A note on double sequences of fuzzy numbers}, Turk. Jour. Math., textbf{20(20)} (1996), 175--178.
83
bibitem{Savas4}
84
E. Savad{s}, emph{$(A)_{Delta}$-double sequence spaces of fuzzy numbers via orlicz function}, Iranian Journal of Fuzzy
85
Systems, textbf{8(2)} (2011), 91--103.
86
bibitem{scho}
87
I. J. Schoenberg, emph {The integrability of certain functions and
88
related summability methods}, Amer. Math. Monthly, textbf {66}
89
(1959), 361--375.
90
bibitem{otfb}
91
"{O}. Talo and F. Bad{s}ar, emph{Determination of the
92
duals of classical sets of sequences of fuzzy numbers and related
93
matrix transformations}, Comput. Math. Appl., textbf{58} (2009),
94
bibitem{tri 1}
95
B. Tripathy and B. C. Tripathy, emph{On I-convergent double
96
sequences}, Soochow J. Math., textbf {31} (2005), 549--560.
97
bibitem{tri 2}
98
B. C. Tripathy, emph{Statistically convergent double sequences}, Tamkang J. Math., textbf{34(3)} (2003), 231--237.
99
bibitem{tri 3}
100
B. C. Tripathy and B. Sarma, emph{Double sequence spaces of fuzzy numbers defined by Orlicz function}, Acta Math. Sci., textbf{31B(1)} (2011), 134--140.
101
bibitem{z}
102
L. A. Zadeh, textit{Fuzzy sets}, Information and Control, textbf{8}(1965), 338--353.
103
ORIGINAL_ARTICLE
ON APPROXIMATE CAUCHY EQUATION IN FELBIN'S TYPE
FUZZY NORMED LINEAR SPACES
n this paper we study the Hyers-Ulam-Rassias stability of Cauchyequation in Felbin's type fuzzy normed linear spaces. As a resultwe give an example of a fuzzy normed linear space such that thefuzzy version of the stability problem remains true, while it failsto be correct in classical analysis. This shows how the category offuzzy normed linear spaces differs from the classical normed linearspaces in general.
http://ijfs.usb.ac.ir/article_862_96b9bdd60ae0f69019dd773c9ce92817.pdf
2013-06-01T11:23:20
2018-02-25T11:23:20
51
63
10.22111/ijfs.2013.862
Fuzzy real number
Fuzzy normed space
Hyers-Ulam-Rassias
stability
I.
Sadeqi
esadeqi@sut.ac.ir
true
1
Department of Mathematics, Sahand university of technology, Tabriz-
Iran
Department of Mathematics, Sahand university of technology, Tabriz-
Iran
Department of Mathematics, Sahand university of technology, Tabriz-
Iran
LEAD_AUTHOR
F.
Moradlou
moradlou@sut.ac.ir
true
2
Department of Mathematics, Sahand university of technology, Tabriz-
Iran
Department of Mathematics, Sahand university of technology, Tabriz-
Iran
Department of Mathematics, Sahand university of technology, Tabriz-
Iran
AUTHOR
M.
Salehi
mit-paydar@yahoo.com
true
3
Department of Mathematics, Sahand university of technology, Tabriz-
Iran
Department of Mathematics, Sahand university of technology, Tabriz-
Iran
Department of Mathematics, Sahand university of technology, Tabriz-
Iran
AUTHOR
[1] T. Bag and S. K. Samanta, A comparative study of fuzzy norms on a linear space, Fuzzy
1
Sets and Systems, 159(6) (2008), 670{684.
2
[2] T. Bag and S. K. Samanta, Fixed point theorems in Felbin type fuzzy normed linear spaces,
3
The Journal of Fuzzy Mathematics, to appear.
4
[3] C. Borelli and G. L. Forti, On a general Hyers{Ulam stability result, Internat. J. Math. Math.
5
Sci., 18 (1995), 229{236.
6
[4] S. Czerwik, The stability of the quadratic functional equation, in: Th. M. Rassias, J. Tabor,
7
eds., Stability of Mappings of Hyers{Ulam Type, Hadronic Press, Florida, (1994), 81{91.
8
[5] V. A. Faiziev, T. M. Rassias and P. K. Sahoo, The space of ( ;
9
)- additive mappings on
10
semigroup, Trans. Amer. Math. Soc., 354(11) (2002), 4455{4472.
11
[6] C. Felbin, Finite dimensional fuzzy normed linear spaces, Fuzzy Sets and Systems, 48 (1992),
12
[7] T. Gantner, R. Steinlage and R. Warren, Compactness in fuzzy topological spaces, J. Math.
13
Anal. Appl., 62 (1978) 547562.
14
[8] P. Gavruta, A generalization of the Hyers{Ulam{Rassias stability of approximately additive
15
mappings, J. Math. Anal. Appl., 184 (1994), 431{436.
16
[9] U. Hoehle, Fuzzy real numbers as Dedekind cuts with respect to a multiple-valued logic, Fuzzy
17
Sets and Systems, 24 (1987) 263-278.
18
[10] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A.,
19
27 (1941), 222{224.
20
[11] K. Jun, H. Kim and J. M. Rassias, Extended Hyers{Ulam stability for Cauchy{Jensen map-
21
pings, J. Dierence Equ. Appl., 13 (2007), 1139{1153.
22
[12] K. Jun and Y. Lee, On the Hyers{Ulam{Rassias stability of a Pexiderized quadratic inequal-
23
ity, Math. Inequal. Appl., 4 (2001), 93{118.
24
[13] S. M. Jung, Hyers{Ulam{Rassias stability of functional equations in nonlinear analysis,
25
Springer Science, New York, 2011.
26
[14] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984),
27
[15] O. Kaleva, The completion of fuzzy metric spaces, J. Math. Anal. Appl., 109 (1985), 194-198.
28
[16] O. Kaleva, A comment on the completion of fuzzy metric spaces, Fuzzy Sets and Systems,
29
159(16) (2008), 2190-2192.
30
[17] P. Kannappan, Functional equations and inequalities with applications, Springer Science,
31
New York, 2009.
32
[18] R. Lowen, Fuzzy set theory, Ch. 5 : Fuzzy Real Numbers, Kluwer, Dordrecht, 1996.
33
[19] A. Maturo, On some structures of fuzzy numbers, Iranian Journal of Fuzzy Systems, 6 (2009),
34
[20] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy version of Hyers-Ulam-Rassias theorem,
35
Fuzzy Sets and Systems, 159(6) (2008), 720-729.
36
[21] F. Moradlou, H. Vaezi and C. Park, Fixed points and stability of an additive functional
37
equation of n-Apollonius type in C-algebras, Abstract and Applied Analysis, 2008, Article
38
ID 672618, 13 pages, 2008. doi:10.1155/2008/672618.
39
[22] F. Moradlou, A. Najati and H. Vaezi, Stability of homomorphisms and derivations on C-
40
ternary rings associated to an Euler{Lagrange type additive mapping, Result. Math., 55
41
(2009), 469-486.
42
[23] M. S. Moslehian, On the orthogonal stability of the Pexiderized quadratic equation, J. Dier-
43
ence Equ. Appl., 11 (2005), 999{1004.
44
[24] C. Park, Modied Trif 's functional equations in Banach modules over a C-algebra and
45
approximate algebra homomorphisms, J. Math. Anal. Appl., 278 (2003), 93{108.
46
[25] C. Park, On an approximate automorphism on a C-algebra, Proc. Amer. Math. Soc., 132
47
(2004), 1739{1745.
48
[26] C. Park and T. M. Rassias, Hyers{Ulam stability of a generalized Apollonius type quadratic
49
mapping, J. Math. Anal. Appl., 322 (2006), 371{381.
50
[27] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J.
51
Funct. Anal., 46 (1982), 126{130.
52
[28] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull.
53
Sci. Math., 108 (1984), 445{446.
54
[29] J. M. Rassias, Solution of a problem of Ulam, J. Approx. Theory, 57 (1989), 268{273.
55
[30] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math.
56
Soc., 72 (1978), 297{300.
57
[31] T. M. Rassias, Problem 16; 2, Report of the 27th International Symp. on Functional Equa-
58
tions, Aequationes Math., 39 (1990), 292{293.
59
[32] T. M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J.
60
Math. Anal. Appl., 246 (2000), 352{378.
61
[33] T. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal.
62
Appl., 251 (2000), 264{284.
63
[34] T. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl.
64
Math., 62 (2000), 23{130.
65
[35] S. E. Rodabaugh, Fuzzy addition in the L-fuzzy real line, Fuzzy Sets and Systems, 8 (1982)
66
[36] I. Sadeqi and M. Salehi, Fuzzy compacts operators and topological degree theory , Fuzzy Sets
67
and Systems, 160(9) (2009), 1277-1285.
68
[37] F. Skof, Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano, 53
69
(1983), 113{129.
70
[38] S. M. Ulam, A collection of the mathematical problems, Interscience Publ. New York, 1960.
71
[39] J. Xiao and X. Zhu, On linearly topological structure and property of fuzzy normed linear
72
space, Fuzzy Sets and Systems, 125 (2002), 153-161.
73
[40] J. Xiao and X. Zhu, Topological degree theory and xed point theorems in fuzzy normed space,
74
Fuzzy Sets and Systems, 147 (2004), 437-452.
75
ORIGINAL_ARTICLE
ALGEBRAICALLY-TOPOLOGICAL SYSTEMS AND
ATTACHMENTS
The paper continues the study of the authors on relationships between \emph{topological systems} of S.~Vickers and \emph{attachments} of C.~Guido. We extend topological systems to \emph{algebraically-topological systems}. A particular instance of the latter, called \emph{attachment system}, incorporates the notion of attachment, thus, making it categorically redundant in mathematics. We show that attachment systems are equipped with an internal topology, which is similar to the topology induced by locales. In particular, we provide an attachment system analogue of the well-known categorical equivalence between sober topological spaces and spatial locales.
http://ijfs.usb.ac.ir/article_863_f7926f99d233d0b927339f4338ddbc5c.pdf
2013-06-01T11:23:20
2018-02-25T11:23:20
65
102
10.22111/ijfs.2013.863
Algebraically-topological system
Attachment system
Categorically-algebraic topology
Dual attachment pair
Localic algebra
Localification of systems
(Variety-based) pointless topology
Spatialization of systems
Topological theory morphism
Variety
Anna
Frascella
frascella anna@libero.it
true
1
Department of Mathematics \E. De Giorgi", University of Salento,
P. O. Box 193, 73100 Lecce, Italy
Department of Mathematics \E. De Giorgi", University of Salento,
P. O. Box 193, 73100 Lecce, Italy
Department of Mathematics \E. De Giorgi", University of Salento,
P. O. Box 193, 73100 Lecce, Italy
AUTHOR
Cosimo
Guido
cosimo.guido@unisalento.it
true
2
Department of Mathematics \E. De Giorgi", University of Salento,
P. O. Box 193, 73100 Lecce, Italy
Department of Mathematics \E. De Giorgi", University of Salento,
P. O. Box 193, 73100 Lecce, Italy
Department of Mathematics \E. De Giorgi", University of Salento,
P. O. Box 193, 73100 Lecce, Italy
AUTHOR
Sergey A.
Solovyov
solovjovs@fme.vutbr.cz
true
3
Department of Mathematics, University of Latvia, Zellu iela 8,
LV-1002 Riga, Latvia and Institute of Mathematics and Computer Science, University
of Latvia, Raina bulvaris 29, LV-1459 Riga, Latvia
Department of Mathematics, University of Latvia, Zellu iela 8,
LV-1002 Riga, Latvia and Institute of Mathematics and Computer Science, University
of Latvia, Raina bulvaris 29, LV-1459 Riga, Latvia
Department of Mathematics, University of Latvia, Zellu iela 8,
LV-1002 Riga, Latvia and Institute of Mathematics and Computer Science, University
of Latvia, Raina bulvaris 29, LV-1459 Riga, Latvia
LEAD_AUTHOR
[1] M. Abel and A. Sostak, Towards the theory of L-bornological spaces, Iranian Journal of Fuzzy
1
Systems, 8(1) (2011), 19{28.
2
[2] J. Adamek, H. Herrlich and G. E. Strecker, Abstract and concrete categories: the joy of cats,
3
Dover Publications (Mineola, New York), 2009.
4
[3] D. Aerts, E. Colebunders, A. van der Voorde and B. van Steirteghem, State property systems
5
and closure spaces: a study of categorical equivalence, Int. J. Theor. Phys., 38(1) (1999),
6
[4] D. Aerts, E. Colebunders, A. van der Voorde and B. van Steirteghem, On the amnestic
7
modication of the category of state property systems, Appl. Categ. Struct., 10(5) (2002),
8
[5] F. Bayoumi and S. E. Rodabaugh, Overview and comparison of localic and xed-basis topo-
9
logical products, Fuzzy Sets and Systems, 161(18) (2010), 2397{2439.
10
[6] J. Benabou, Treillis locaux et paratopologies, Semin. de Topologie et de Geometrie dierentielle
11
Ch. Ehresmann, 1(2) (1957/58).
12
[7] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182{190.
13
[8] D. M. Clark and B. A. Davey, Natural dualities for the working algebraist, Cambridge Studies
14
in Advanced Mathematics, Cambridge University Press, 57 (1998).
15
[9] P. M. Cohn, Universal algebra, D. Reidel Publ. Comp., 1981.
16
[10] J. T. Denniston, A. Melton and S. E. Rodabaugh, Lattice-valued topological systems, In:
17
U. Bodenhofer, B. De Baets, E. P. Klement, S. Saminger-Platz, eds., Abstracts of the 30th
18
Linz Seminar on Fuzzy Set Theory, Johannes Kepler Universitat, Linz, 2009.
19
[11] J. T. Denniston, A. Melton and S. E. Rodabaugh, Lattice-valued predicate transformers and
20
interchange systems, In: P. Cintula, E. P. Klement, L. N. Stout, eds., Abstracts of the 31st
21
Linz Seminar on Fuzzy Set Theory, Johannes Kepler Universitat, Linz, 2010.
22
[12] J. T. Denniston, A. Melton and S. E. Rodabaugh, Interweaving algebra and topology: Lattice-
23
valued topological systems, Fuzzy Sets and Systems, 192 (2012), 58{103.
24
[13] J. T. Denniston and S. E. Rodabaugh, Functorial relationships between lattice-valued topology
25
and topological systems, Quaest. Math., 32(2) (2009), 139{186.
26
[14] C. H. Dowker and D. Papert, On Urysohn's lemma, General Topology and its Relations to
27
modern Analysis and Algebra 2, Proc. 2nd Prague topol. Sympos. 1966, (1967), 111{114.
28
[15] C. H. Dowker and D. Papert, Quotient frames and subspaces, Proc. Lond. Math. Soc., III(16)
29
(1966), 275{296.
30
[16] C. H. Dowker and D. Papert Strauss, Separation axioms for frames, Topics in Topol., Colloqu.
31
Keszthely 1972, Colloquia Math. Soc. Janos Bolyai, 8 (1974), 223{240.
32
[17] C. Ehresmann, Gattungen von lokalen Strukturen, Jahresber. Dtsch. Math.-Ver., 60 (1957),
33
[18] A. Frascella, Attachment and topological systems in varieties of algebras, Ph.D. thesis, Department
34
of Mathematics Ennio De Giorgi", University of Salento, Italy, 2011.
35
[19] A. Frascella, C. Guido and S. Solovyov, Dual attachment pairs in categorically-algebraic
36
topology, Appl. Gen. Topol., 12(2) (2011), 101{134.
37
[20] G. Gierz, K. Hofmann and etc., Continuous lattices and domains, Cambridge University
38
Press, 2003.
39
[21] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145{174.
40
[22] J. A. Goguen, The fuzzy Tychono theorem, J. Math. Anal. Appl., 43 (1973), 734{742.
41
[23] C. Guido, Fuzzy points and attachment, Fuzzy Sets and Systems, 161(16) (2010), 2150{2165.
42
[24] C. Guido and V. Scarciglia, L-topological spaces as spaces of points, Fuzzy Sets and Systems,
43
173(1) (2011), 45{59.
44
[25] C. Guido and S. Solovyov, Topological systems versus attachment relation, submitted.
45
[26] J. Gutierrez Garca and S. E. Rodabaugh, Order-theoretic, topological, categorical redun-
46
dancies of interval-valued sets, grey sets, vague sets, interval-valued intuitionistic" sets,
47
intuitionistic" fuzzy sets and topologies, Fuzzy Sets and Systems, 156(3) (2005), 445{484.
48
[27] U. Hohle, A note on the hypergraph functor, Fuzzy Sets and Systems, 131(3) (2002), 353{356.
49
[28] U. Hohle and A. P. Sostak, Axiomatic foundations of xed-basis fuzzy topology, In: U. Hohle,
50
S. E. Rodabaugh, eds., Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory,
51
The Handbooks of Fuzzy Sets Series, Kluwer Academic Publishers, 3 (1999), 123{272.
52
[29] B. Hutton, Uniformities on fuzzy topological spaces, J. Math. Anal. Appl., 58 (1977), 559{
53
[30] B. Hutton, Products of fuzzy topological spaces, Topology Appl., 11 (1980), 59{67.
54
[31] J. R. Isbell, Atomless parts of spaces, Math. Scand., 31 (1972), 5{32.
55
[32] G. Jager, Lattice-valued categories of lattice-valued convergence spaces, Iranian Journal of
56
Fuzzy Systems, 8(2) (2011), 67{89.
57
[33] P. T. Johnstone, Stone spaces, Cambridge University Press, 1982.
58
[34] G. M. Kelly, Basic concepts of enriched category theory, Cambridge University Press, 1982.
59
[35] J. C. Kelly, Bitopological spaces, Proc. Lond. Math. Soc., 13(III) (1963), 71{89.
60
[36] D. Kruml and J. Paseka, Algebraic and categorical aspects of quantales, In: M. Hazewinkel,
61
ed., Handbook of Algebra, Elsevier, 5 (2008), 323{362.
62
[37] T. Kubiak and A. Sostak, Foundations of the theory of (L;M)-fuzzy topological spaces, In:
63
U. Bodenhofer, B. De Baets, E. P. Klement, S. Saminger-Platz, eds., Abstracts of the 30th
64
Linz Seminar on Fuzzy Set Theory, Johannes Kepler Universitat, Linz, 2009.
65
[38] F. W. Lawvere, Functorial semantics of algebraic theories, Ph.D. thesis, Columbia University,
66
[39] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56 (1976),
67
[40] S. Mac Lane, Categories for the Working Mathematician, 2nd ed., Springer-Verlag, 1998.
68
[41] E. G. Manes, Algebraic theories, Springer-Verlag, 1976.
69
[42] L. Pontrjagin, Topological groups, Oxford University Press, 1939.
70
[43] P. M. Pu and Y. M. Liu, Fuzzy topology I: neighborhood structure of a fuzzy point and
71
Moore-Smith convergence, J. Math. Anal. Appl., 76 (1980), 571{599.
72
[44] S. E. Rodabaugh, Categorical frameworks for stone representation theories, In: S. E. Rodabaugh,
73
E. P. Klement, U. Hohle, eds., Applications of Category Theory to Fuzzy Subsets,
74
Theory and Decision Library: Series B: Mathematical and Statistical Methods, Kluwer Academic
75
Publishers, 14 (1992), 177{231.
76
[45] S. E. Rodabaugh, Powerset operator based foundation for point-set lattice-theoretic (poslat)
77
fuzzy set theories and topologies, Quaest. Math., 20(3) (1997), 463{530.
78
[46] S. E. Rodabaugh, Categorical foundations of variable-basis fuzzy topology, In: U. Hohle,
79
S. E. Rodabaugh, eds., Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory,
80
The Handbooks of Fuzzy Sets Series, Dordrecht: Kluwer Academic Publishers, 3 (1999),
81
[47] S. E. Rodabaugh, Powerset operator foundations for poslat fuzzy set theories and topologies,
82
In: U. Hohle, S. E. Rodabaugh, eds., Mathematics of Fuzzy Sets: Logic, Topology and Measure
83
Theory, The Handbooks of Fuzzy Sets Series, Dordrecht: Kluwer Academic Publishers,
84
3 (1999), 91{116.
85
[48] S. E. Rodabaugh, Relationship of algebraic theories to powerset theories and fuzzy topological
86
theories for lattice-valued mathematics, Int. J. Math. Math. Sci., 2007 (2007), 1{71.
87
[49] S. E. Rodabaugh, Functorial comparisons of bitopology with topology and the case for redun-
88
dancy of bitopology in lattice-valued mathematics, Appl. Gen. Topol., 9(1) (2008), 77{108.
89
[50] S. E. Rodabaugh, Necessity of non-stratied and anti-stratied spaces in lattice-valued topol-
90
ogy, Fuzzy Sets and Systems, 161(9) (2010), 1253{1269.
91
[51] S. E. Rodabaugh, Relationship of algebraic theories to powersets over objects in Set and
92
SetC, Fuzzy Sets and Systems, 161(3) (2010), 453{470.
93
[52] K. I. Rosenthal, Quantales and their applications, Pitman Research Notes in Mathematics,
94
Addison Wesley Longman, 234 (1990).
95
[53] J. D. H. Smith, Modes and modals, Discuss. Math., Algebra Stoch. Methods, 19(1) (1999),
96
[54] S. Solovjovs, Embedding topology into algebra, In: U. Bodenhofer, B. De Baets, E. P. Klement,
97
S. Saminger-Platz, eds., Abstracts of the 30th Linz Seminar on Fuzzy Set Theory, Johannes
98
Kepler Universitat, Linz, 2009.
99
[55] S. Solovjovs, Categorically-algebraic topology, In: Abstracts of the International Conference
100
on Algebras and Lattices (Jardafest), Charles University, Prague, 2010.
101
[56] S. Solovjovs, Lattice-valued categorically-algebraic topology, In: Abstracts of the 91st Peripatetic
102
Seminar on Sheaves and Logic (PSSL 91), University of Amsterdam, Amsterdam,
103
[57] S. Solovjovs, Variable-basis categorically-algebraic dualities, In: D. Dubois, M. Grabisch,
104
R. Mesiar, E. P. Klement, eds., Abstracts of the 32nd Linz Seminar on Fuzzy Set Theory,
105
[58] S. Solovyov, Categorically-algebraic topology and its applications, submitted.
106
[59] S. Solovyov, Sobriety and spatiality in varieties of algebras, Fuzzy Sets and Systems, 159(19)
107
(2008), 2567{2585.
108
[60] S. Solovyov, Categorically-algebraic dualities, Acta Univ. M. Belii, Ser. Math., 17 (2010),
109
[61] S. Solovyov, Hypergraph functor and attachment, Fuzzy Sets and Systems, 161(22) (2010),
110
2945{2961.
111
[62] S. Solovyov, Variable-basis topological systems versus variable-basis topological spaces, Soft
112
Comput., 14(10) (2010), 1059{1068.
113
[63] S. Solovyov, Localication of variable-basis topological systems, Quaest. Math., 34(1) (2011),
114
[64] S. Solovyov, On algebraic and coalgebraic categories of variety-based topological systems,
115
Iranian Journal of Fuzzy Systems, 8(5) (2011), 13{30.
116
[65] S. Solovyov, Powerset operator foundations for catalg fuzzy set theories, Iranian Journal of
117
Fuzzy Systems, 8(2) (2011), 1{46.
118
[66] S. Solovyov, Categorical foundations of variety-based topology and topological systems, Fuzzy
119
Sets and Systems, 192 (2012), 176{200.
120
[67] S. Vickers, Topology via logic, Cambridge University Press, 1989.
121
[68] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338{365.
122
[69] Q. Y. Zhang, Algebraic generations of some fuzzy powerset operators, Iranian Journal of
123
Fuzzy Systems, 8(5) (2011), 31{58.
124
ORIGINAL_ARTICLE
Preservation theorems in {\L}ukasiewicz \\model theory
We present some model theoretic results for {\L}ukasiewiczpredicate logic by using the methods of continuous model theorydeveloped by Chang and Keisler.We prove compactness theorem with respect to the class of allstructures taking values in the {\L}ukasiewicz $\texttt{BL}$-algebra.We also prove some appropriate preservation theorems concerning universal and inductive theories.Finally, Skolemization and Morleyization in this framework are discussed andsome natural examples of fuzzy theories are presented.
http://ijfs.usb.ac.ir/article_864_4dc824201c1a83e208595fdce2760b02.pdf
2013-06-01T11:23:20
2018-02-25T11:23:20
103
113
10.22111/ijfs.2013.864
Continuous model theory
{L}ukasiewicz logic
Preservation theorems
Seyed-Mohammad
Bagheri
bagheri@modares.ac.ir
true
1
Department of Pure Mathematics, Faculty of Mathemat-
ical Sciences, Tarbiat Modares University, P.O. Box 14115-134, and Institute for Re-
search in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran
Department of Pure Mathematics, Faculty of Mathemat-
ical Sciences, Tarbiat Modares University, P.O. Box 14115-134, and Institute for Re-
search in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran
Department of Pure Mathematics, Faculty of Mathemat-
ical Sciences, Tarbiat Modares University, P.O. Box 14115-134, and Institute for Re-
search in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran
AUTHOR
Morteza
Moniri
m-moniri@sbu.ac.ir, ezmoniri@gmail.com
true
2
Department of Mathematics, Shahid Beheshti University, G. C.,
Evin, Tehran, Iran
Department of Mathematics, Shahid Beheshti University, G. C.,
Evin, Tehran, Iran
Department of Mathematics, Shahid Beheshti University, G. C.,
Evin, Tehran, Iran
LEAD_AUTHOR
bibitem{Barwise} J. Barwise (editor), {it Handbook of mathematical logic}, North-Holland, 1977.
1
bibitem{CK} Chang and Keisler, {it Continuous Model Theory}, Annals of Mathematical Studies, Princeton University Press, {bf58} (1966).
2
bibitem{CH} P. Cintula and P. H'{a}jek, {it Triangular norm based predicate fuzzy logics},
3
Fuzzy sets and systems, {bf161} (2010), 311-346.
4
bibitem{DE} P. Dellunde and F. Esteva, {it On elementary extensions for fuzzy predicate logics},
5
In Proceedings of IPMU, (2010), 747-756.
6
bibitem{G} G. Gerla, {it The category of the fuzzy models and Lowenheim-Skolem theorem},
7
Mathematics of Fuzzy Systems, (1986), 121-141.
8
bibitem{Hajek1} P. H'{a}jek, {it Metamathematics of Fuzzy Logic, Trends in Logic},
9
Kluwer Academic Publishers, Dordercht, {bf4} (1998).
10
bibitem{Hajek2} P. H'{a}jek and P. Cintula, {it On theories and models in fuzzy predicate logics},
11
Journal of Symbolic Logic, {bf 71} (2006), 863-880.
12
bibitem{Montagna} F. Montagna, {it On the predicate logics of continuous t-norm BL-algebras},
13
Archive for Mathematical Logic, {bf44} (2005), 97-114.
14
bibitem{Yaacov} I. B. Yaacov, A. P. Pedersen, {it A Proof of completeness for continnuous
15
first-order logic}, Journal of Symbolic Logic, {bf75} (2010), 168-190.
16
bibitem{YBHU} I. B. Yaacov, A. Berenstein, C. W. Henson and A. Usvyatsov,
17
{it Model theory for metric structures}, In Model Theory with Applications to Algebra and Analysis,
18
Vol. II, eds. Z. Chatzidakis, D. Macpherson, A. Pillay, and A.Wilkie, Lecture Notes series
19
of the London Mathematical Society, No. 350, Cambridge University Press, (2008), 315-427.
20
ORIGINAL_ARTICLE
NEW RESULTS ON THE EXISTING FUZZY DISTANCE
MEASURES
In this paper, we investigate the properties of some recently pro-posed fuzzy distance measures. We find out some shortcomings for these dis-tances and then the obtained results are illustrated by solving several examplesand compared with the other fuzzy distances.
http://ijfs.usb.ac.ir/article_865_f126130d163cdce4954709acbe123b64.pdf
2013-06-01T11:23:20
2018-02-25T11:23:20
115
124
10.22111/ijfs.2013.865
Fuzzy distance measure
Metric properties
Fuzzy numbers
Saeid
Abbasbandy
abbasbandy@yahoo.com
true
1
Department of Mathematics, Imam Khomeini International Uni-
versity, Ghazvin, 34149-16818, Iran
Department of Mathematics, Imam Khomeini International Uni-
versity, Ghazvin, 34149-16818, Iran
Department of Mathematics, Imam Khomeini International Uni-
versity, Ghazvin, 34149-16818, Iran
LEAD_AUTHOR
Soheil
Salahshour
soheilsalahshour@yahoo.com
true
2
Young Researchers and Elite Club, Mobarakeh Branch, Islamic
Azad University, Mobarakeh, Iran
Young Researchers and Elite Club, Mobarakeh Branch, Islamic
Azad University, Mobarakeh, Iran
Young Researchers and Elite Club, Mobarakeh Branch, Islamic
Azad University, Mobarakeh, Iran
AUTHOR
[1] S. Abbasbandy and M. Amirfakhrian, The nearest trapezoidal form of a generalized left right
1
fuzzy number, Internat. J. Approx. Reason., 170 (2006), 166-178.
2
[2] S. Abbasbandy and T. Hajjari, Weighted trapezoidal approximation-preserving cores of a
3
fuzzy number, Comput. Math. Appl., 59 (2010), 3066-3077.
4
[3] A. I. Ban, On the nearest parametric approximation of a fuzzy number-revisited, Fuzzy Sets
5
and Systems, 160 (2009), 3027-3047.
6
[4] A. I. Ban, Triangular and parametric approximations of fuzzy numbers-inadvertences and
7
corrections, Fuzzy Sets and Systems, 160 (2009), 3048-3058.
8
[5] K. M. Bjork, An analytical solution to a fuzzy economic order quantity problem, Internat. J.
9
Approx. Reason., 50 (2009), 485-493.
10
[6] C. Chakraborty and D. Chakraborty, A theoretical development on a fuzzy distance measure
11
for fuzzy numbers, Math. Compu. Modelling, 43 (2006), 254-261.
12
[7] C. H. Cheng, A new approach for ranking fuzzy numbers by distance method, Fuzzy Sets and
13
Systems, 95 (1998), 307-317.
14
[8] P. Diamond, Fuzzy least squares, Information Sciences, 46 (1988), 41-157.
15
[9] D. Guha and D. Chakraborty, A new approach to fuzzy distance measure and similarity
16
measure between two generalized fuzzy numbers, Appl. Soft Comput., 10 (2010), 90-99.
17
[10] J. Kacprzyk, Multistage Fuzzy Control, Wiley, Chichester, 1997.
18
[11] A. Maturo, On some structures of fuzzy numbers, Iranian Journal of Fuzzy Systems, 6(4)
19
(2009), 49-59.
20
[12] E. Pasha, A. Saiedifar and B. Asady, The percentiles of fuzzy numbers and their applications,
21
Iranian Journal of Fuzzy Systems, 6(1) (2009), 27-44.
22
[13] R. O. Rodrguez, F. Esteva, P. Garcia and L. Godo, On implicative closure operators in
23
approximate reasoning, Int. J. Approximate Reasoning, 33 (2003), 159{184.
24
[14] L. Tran and L. Duckstein, Comparison of fuzzy numbers using a fuzzy distance measure,
25
Fuzzy Sets and Systems, 130 (2002), 331-341.
26
[15] T. Vijayan and M. Kumaran, Fuzzy economic order time models with random demand, In-
27
ternat. J. Approx. Reason., 50 (2009), 529-540.
28
[16] W. Voxman, Some remarks on distances between fuzzy numbers, Fuzzy Sets and Systems,
29
100 (1998), 353-365.
30
[17] R. Xu and C. Li, Multidimensional least-squares tting with a fuzzy model, Fuzzy Sets and
31
Systems, 119 (2001), 215-223.
32
[18] M. S. Yang and C. H. Ko, On cluster-wise fuzzy regression analysis, IEEE Transactions on
33
Systems, Man and Cybernetics Part B, 27 (1997), 1-13.
34
ORIGINAL_ARTICLE
representation theorems of $L-$subsets and $L-$families on complete residuated lattice
In this paper, our purpose is twofold. Firstly, the tensor andresiduum operations on $L-$nested systems are introduced under thecondition of complete residuated lattice. Then we show that$L-$nested systems form a complete residuated lattice, which isprecisely the classical isomorphic object of complete residuatedpower set lattice. Thus the new representation theorem of$L-$subsets on complete residuated lattice is obtained. Secondly, weintroduce the concepts of $L-$family and the system of $L-$subsets,then with the tool of the system of $L-$subsets, we obtain therepresentation theorem of intersection-preserving $L-$families oncomplete residuated lattice.
http://ijfs.usb.ac.ir/article_866_34e66093d052f7fc3dc927be495d286b.pdf
2013-06-01T11:23:20
2018-02-25T11:23:20
125
136
10.22111/ijfs.2013.866
Complete residuated lattices
$L-$subsets
$L-$nested systems
$L-$families
Level $L-$subsets
Representation theorems
Hui
Han
hanhui200801@163.com
true
1
Department of Mathematics, Ocean University of China, 266100 Qingdao,
P.R. China
Department of Mathematics, Ocean University of China, 266100 Qingdao,
P.R. China
Department of Mathematics, Ocean University of China, 266100 Qingdao,
P.R. China
LEAD_AUTHOR
Jinming
Fang
jinming-fang@163.com
true
2
Department of Mathematics, Ocean University of China, 266100 Qing-
dao, P.R. China
Department of Mathematics, Ocean University of China, 266100 Qing-
dao, P.R. China
Department of Mathematics, Ocean University of China, 266100 Qing-
dao, P.R. China
AUTHOR
[1] R. Belohlavek, Fuzzy relational systems: foundations and principles, Kluwer Academic/
1
Plenum Press, New York, 2002.
2
[2] J. M. Fang and Y. L. Han, A new representation theorem of L-Sets, Periodical of Ocean
3
University of China (Natural Science), 38(6) (2008), 1025-1028.
4
[3] M. Gorjanac-Ranitovic and A. Tepavcevic, General form of lattice-valued fuzzy sets under
5
the cutworthy approach, Fuzzy Sets and Systems, 158(11) (2007), 1213-1216.
6
[4] G. Jager, Level spaces for lattice-valued uniform convergence spaces, Quaest. Math, 31
7
(2008), 255-277.
8
[5] C. Z. Luo, Fuzzy sets and nested systems, Fuzzy Mathematics, 3(4) (1983), 113-126.
9
[6] C. V. Negoita and D. A. Ralescu, Representation theorems for fuzzy concepts, Kybernetes, 4
10
(1975), 169-174.
11
[7] B. Seselja and A. Tepavcevic, A note on a natural equivalence relation on fuzzy power set,
12
Fuzzy Sets and Systems, 148(2) (2004), 201-210.
13
[8] B. Seselja and A. Tepavcevic, Representing ordered structures by fuzzy sets: an overview,
14
Fuzzy Sets and Systems, 136(1) (2003), 21-39.
15
[9] B. Seselja and A. Tepavcevic, Completion of ordered structures by cuts of fuzzy sets: an
16
overview, Fuzzy Sets and Systems, 136(1) (2003), 1-19.
17
[10] F. G. Shi, Theory of L-nested sets and L-nested sets and applications, Fuzzy Systems
18
and Mathematics, 9(4) (1995), 65-72.
19
[11] M. Voskoglou, Measuring students modeling capacities: a fuzzy approach, Iranian Journal of
20
Fuzzy Systems, 8(3) (2011), 23-33.
21
[12] F. L. Xiong, The representation theorems on complete lattice and their application, Periodical
22
of Ocean University of Qingdao, 28(2) (1998), 339-344.
23
[13] W. X. Zhang, Fuzzy mathematic basis, Xi'an: Xi'an Jiao Tong University Press, 1984.
24
[14] Q. Y. Zhang, Algebraic generations of some fuzzy powerset operators, Iranian Journal of
25
Fuzzy Systems, 8(5) (2011), 31-58.
26
ORIGINAL_ARTICLE
Existence of Extremal Solutions for Impulsive Delay Fuzzy
Integrodifferential Equations in $n$-dimensional Fuzzy Vector Space
In this paper, we study the existence of extremal solutions forimpulsive delay fuzzy integrodifferential equations in$n$-dimensional fuzzy vector space, by using monotone method. Weshow that obtained result is an extension of the result ofRodr'{i}guez-L'{o}pez cite{rod2} to impulsive delay fuzzyintegrodifferential equations in $n$-dimensional fuzzy vector space.
http://ijfs.usb.ac.ir/article_867_92344978ee7caa723a34d804983d83c0.pdf
2013-06-01T11:23:20
2018-02-25T11:23:20
137
157
10.22111/ijfs.2013.867
Extremal solution
Impulsive delay fuzzy
integrodifferential equation
$n$-dimensional fuzzy vector space
Monotone method
Young
Chel Kwun
yckwun@dau.ac.kr
true
1
Department of Mathematics, Dong-A University, Busan 604-714,
Republic of Korea
Department of Mathematics, Dong-A University, Busan 604-714,
Republic of Korea
Department of Mathematics, Dong-A University, Busan 604-714,
Republic of Korea
AUTHOR
Jeong Soon
Kim
jeskim@donga.ac.kr
true
2
Department of Math. Education, Daegu-University, Gyeongsan 712-
714, Republic of Korea
Department of Math. Education, Daegu-University, Gyeongsan 712-
714, Republic of Korea
Department of Math. Education, Daegu-University, Gyeongsan 712-
714, Republic of Korea
AUTHOR
Jin Han
Park
jihpark@pknu.ac.kr
true
3
Department of Applied Mathematics, Pukyong National University,
Buan 608-737, Republic of Korea
Department of Applied Mathematics, Pukyong National University,
Buan 608-737, Republic of Korea
Department of Applied Mathematics, Pukyong National University,
Buan 608-737, Republic of Korea
LEAD_AUTHOR
[1] P. Balasubramaniam and S. Muralisankar, Existence and uniqueness of fuzzy solution for
1
semilinear fuzzy integrodierential equations with nonlocal conditions, Computer & Mathe-
2
matics with Applications, 47 (2004), 1115{1122.
3
[2] P. Diamond and P. Kloeden, Metric spaces of fuzzy sets, World Scientic, 1994.
4
[3] Y. C. Kwun, J. S. Kim, M. J. Park and J. H. Park, Nonlocal controllability for the semilinear
5
fuzzy integrodierential equations in n-dimensional fuzzy vector space, Advances in Dierence
6
Equations, Article ID734090, 2009 (2009).
7
[4] Y. C. Kwun, J. S. Kim, M. J. Park and J. H. Park, Controllability for the impulsive semilinear
8
nonlocal fuzzy integrodierential equations in n-dimensional fuzzy vector space , Advances
9
in Dierence Equations, Article ID983483, 2010(2010).
10
[5] Y. C. Kwun, J. S. Kim and J. H. Park, Existence of extremal solutions for impulsive fuzzy dif-
11
ferential equations with periodic boundary value in n-dimensional fuzzy vector space, Journal
12
of Computational Analysis and Applications, 13 (2011), 1157{1170.
13
[6] J. J. Nieto and R. Rodrguez-Lopez, Existence of extrmal solutions for quadratic fuzzy equa-
14
tions, Fixed Point Theory Appl., 3 (2005), 321{342.
15
[7] R. Rodrguez-Lopez, Periodic boundary value problems for impulsive fuzzy dierential equa-
16
tions Fuzzy Sets and Systems, 159 (2008), 1384{1409.
17
[8] R. Rodrguez-Lopez, Monotone method for fuzzy dierential equations Fuzzy Sets and Sys-
18
tems, 159 (2008), 2047{2076.
19
[9] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems, 24 (1987), 319{330
20
[10] O. Solaymani Fard and A. Vahidian Kamyad, Modied k-step method for solving fuzzy initial
21
value problems, Iranian Journal of Fuzzy Systems, 8 (2011), 49{63.
22
[11] G. Wang, Y. Li and C. Wen, On fuzzy n-cell number and n-dimension fuzzy vectors, Fuzzy
23
Sets and Systems, 158 (2007), 71{84.
24
[12] G. Wang and C. Wu, Fuzzy n-cell number and the dierential of fuzzy n-cell number value
25
mappings, Fuzzy Sets and Systems, 130 (2002), 367{381.
26
ORIGINAL_ARTICLE
On fuzzy convex lattice-ordered subgroups
In this paper, the concept of fuzzy convex subgroup (resp. fuzzy convex lattice-ordered subgroup) of an ordered group (resp. lattice-ordered group) is introduced and some properties, characterizations and related results are given. Also, the fuzzy convex subgroup (resp. fuzzy convex lattice-ordered subgroup) generated by a fuzzy subgroup (resp. fuzzy subsemigroup) is characterized. Furthermore, the Fundamental Homomorphism Theorem is established. Finally, it is proved that the class of all fuzzy convex lattice-ordered subgroups of a lattice-ordered group $G$ forms a complete Heyting sublattice of the lattice of fuzzy subgroups of $G$.
http://ijfs.usb.ac.ir/article_868_d0885d1f664c56b3166342279f5a2d45.pdf
2013-06-01T11:23:20
2018-02-25T11:23:20
159
172
10.22111/ijfs.2013.868
Lattice-ordered group
Convex subgroup
Fuzzy convex subgroup
Mahmood
Bakhshi
bakhshi@ub.ac.ir
true
1
Department of Mathematics, Bojnord University, Bojnord, Iran
Department of Mathematics, Bojnord University, Bojnord, Iran
Department of Mathematics, Bojnord University, Bojnord, Iran
LEAD_AUTHOR
[1] N. Ajmal and K. V. Thomas, Fuzzy lattices, Information Sciences, 79 (1994), 271{291.
1
[2] J. M. Anthony and H. Sherwood, Fuzzy groups redened, J. Math. Anal. Appl., 69 (1979),
2
[3] J. M. Anthony and H. Sherwood, A characterization of fuzzy subgroups, Fuzzy Sets and
3
Systems, 7 (1982), 297{305.
4
[4] T. S. Blyth, Lattices and ordered algebraic structures, Springer-Verlag, London, 2005.
5
[5] Y. Bo and W. Wangming, Fuzzy ideals on a distributive lattice, Fuzzy Sets and Systems, 35
6
(1990), 231{240.
7
[6] P. S. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl., 84 (1981), 264{269.
8
[7] D. S. Malik, J. N. Mordeson and P. S. Nair, Fuzzy generators and fuzzy direct sums of abelian
9
groups, Fuzzy Sets and Systems, 50 (1992), 193{199.
10
[8] J. N. Mordeson, K. R. Bhutani and A. Rosenfeld, Fuzzy group theory, Springer-Verlag,
11
Netherlands, 2005.
12
[9] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512{517.
13
[10] G. S. V. Satya Saibaba, Fuzzy lattice ordered groups, Southeast Asian Bull. Math., 32 (2008),
14
[11] U. M. Swamy and D. Viswanadha Raju, Fuzzy ideals and congruences of lattices, Fuzzy Sets
15
and Systems, 95 (1998), 249{253.
16
[12] Y. Yin, Y. B. Jun and Z. Yang, More general forms (; )-fuzzy ideals of ordered semigroups,
17
Iranian Journal of Fuzzy Systems, 9(4) (2012), 99-113.
18
[13] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338{353.
19
ORIGINAL_ARTICLE
Persian-translation vol. 10, no. 3, June 2013
http://ijfs.usb.ac.ir/article_2705_a25aa8054af994783d70a20f9b71cfe4.pdf
2013-06-01T11:23:20
2018-02-25T11:23:20
175
184
10.22111/ijfs.2013.2705