ORIGINAL_ARTICLE
Cover vol. 12, no.3, June 2015
http://ijfs.usb.ac.ir/article_2646_1c9f91d00aec73fbd39d7a287b238786.pdf
2015-06-01T11:23:20
2018-09-18T11:23:20
0
10.22111/ijfs.2015.2646
ORIGINAL_ARTICLE
Admissibility analysis for discrete-time singular systems with time-varying delays by adopting the state-space Takagi-Sugeno fuzzy model
This paper is pertained with the problem of admissibility analysis of uncertain discrete-time nonlinear singular systems by adopting the state-space Takagi-Sugeno fuzzy model with time-delays and norm-bounded parameter uncertainties. Lyapunov Krasovskii functionals are constructed to obtain delay-dependent stability condition in terms of linear matrix inequalities, which is dependent on the lower and upper delay bounds. Finally, numerical examples are provided to substantiate the theoretical results.
http://ijfs.usb.ac.ir/article_2016_669277d9b51e99a79677006ff39992f9.pdf
2015-06-30T11:23:20
2018-09-18T11:23:20
1
16
10.22111/ijfs.2015.2016
Discrete-time Singular system
Takagi-Sugeno fuzzy systems
Stability
Lyapunov-Krasovskii functional
Linear Matrix Inequality (LMI)
P.
Balasubramaniam -pour
balugru@gmail.com
true
1
Department of Mathematics, Gandhigram Rural Institute - Deemed University, Gandhigram - 624 302, Tamilnadu, India
Department of Mathematics, Gandhigram Rural Institute - Deemed University, Gandhigram - 624 302, Tamilnadu, India
Department of Mathematics, Gandhigram Rural Institute - Deemed University, Gandhigram - 624 302, Tamilnadu, India
LEAD_AUTHOR
L.
Jarina Banu
ljarina88@gmail.com
true
2
Department of Mathematics, Gandhigram Rural Institute - Deemed
University, Gandhigram - 624 302, Tamilnadu, India
Department of Mathematics, Gandhigram Rural Institute - Deemed
University, Gandhigram - 624 302, Tamilnadu, India
Department of Mathematics, Gandhigram Rural Institute - Deemed
University, Gandhigram - 624 302, Tamilnadu, India
AUTHOR
[1] J. An and G. Wen, Improved stability criteria for time-varying delayed T-S fuzzy systems
1
via delay partitioning approach, Fuzzy Sets Syst., 185(1) (2011), 83-94.
2
[2] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear matrix inequalities in system
3
and control theory, Soc. Ind. Appl. Math., Philadelphia, 1994.
4
[3] I. M. Buzurovic and D. LJ. Debeljkovic, Contact problem and controllability for singular
5
systems in biomedical robotics, Int. J. Inf. Syst. Sci., 6(2) (2010), 128-141.
6
[4] S. H. Chen and J. H. Chou, Stability robustness of linear discrete singular time-delay systems
7
with structured parameter uncertainties, IEE Proc. Control Theory Appl., 150(3) (2003),
8
[5] L. Dai, Singular Control Systems, Springer-Verlag : Berlin, 1989.
9
[6] Y. Ding, S. Zhong and W. Chen, A delay-range-dependent uniformly asymptotic stability
10
criterion for a class of nonlinear singular systems, Nonlinear Anal. B: Real World Appl.,
11
12(2) (2011), 1152-1162.
12
[7] M. Fang, Delay-dependent stabililty analysis for discrete singular systems with time-varying
13
delays, Acta Automat. Sinica, 36(5) (2010), 751-755.
14
[8] Z. Feng and J. Lam, Robust reliable dissipative ltering for discrete delay singular systems,
15
Signal Process., 92(12) (2012), 3010-3025.
16
[9] C. Huang, Stability analysis of discrete singular fuzzy systems, Fuzzy Sets Syst., 151(1)
17
(2005), 155-165.
18
[10] J. Jiao, Robust stability and stabilization of discrete singular systems with interval time-
19
varying delay and linear fractional uncertainty, Int. J. Autom. Comput., 9(1) (2012), 8-15.
20
[11] F. L. Lewis, A survey of linear singular systems, Circuits Syst. Signal Process., 5(1) (1986),
21
[12] J. Li, H. Su, Z. Wu and J. Chu, Robust stabilization for discrete-time nonlinear Singular
22
systems with mixed time delays, Asian J. Control, 14(1) (2012), 1411-1421.
23
[13] J. Li, H. Su, Z. Wu and J. Chu, Less conservative robust stability criteria for uncertain
24
discrete stochastic singular systems with time-varying delay, Int. J. Syst. Sci., 44(3) (2013),
25
[14] J. Lin, S. Fei and J. Shen, Delay-dependent H1 ltering for discrete-time singular Markovian
26
jump systems with time-varying delay and partially unknown transition probabilities, Signal
27
Process., 91(2) (2011), 277-289.
28
[15] I. R. Petersen, A stabilization algorithm for a class of uncertain linear systems, Systems
29
Control Lett., 8(4) (1987), 351-357.
30
[16] H. Rotstein, M. Sznaier and M. Idan, H2=H1 ltering theory and an aerospace application,
31
Int. J. Robust Nonlinear Control, 6 (1996), 347-366.
32
[17] T. Takagi and M. Sugeno, Fuzzy identication of systems and its applications to modelling
33
and control, IEEE Trans. Syst. Man Cybern., 15(1) (1985), 116-132.
34
[18] K. Tanaka and M. Sugeno, Stability analysis and design of fuzzy control systems, Fuzzy Sets
35
Syst., 45(2) (1992), 135-156.
36
[19] T. Taniguchi, K. Tanaka and H. O. Wang, Fuzzy descriptor systems and nonlinear model
37
following control, IEEE Trans. Fuzzy Syst., 8(4) (2000), 265-452.
38
[20] Y. Wang, Z. Sun and F. Sun, Robust fuzzy control of a class of nonlinear descriptor systems
39
with time-varying delay, Int. J. Control Autom. Syst., 2(1) (2004), 76-82.
40
[21] Z.Wu, J. H. Park, H. Su and J. Chu, Admissibility and dissipativity analysis for discrete-time
41
singular systems with mixed time-varying delays, Appl. Math. Comput., 218(13) (2012),
42
7128-7138.
43
[22] Z. Wu, P. Shi, H. Su and J. Chu, Reliable H1 control for discrete-time fuzzy systems with
44
innite-distributed delay, IEEE Trans. Fuzzy Syst., 20(1) (2012), 22-31.
45
[23] Z. Wu, H. Su and J. Chu, Robust exponential stability of uncertain singular markovian jump
46
time-delay systems, Acta Automat. Sinica, 36(4) (2010), 558-563.
47
[24] Y. Xia, L. Li, M. S. Mahmoud and H. Yang, H1 ltering for nonlinear singular markovian
48
jumping systems with interval time-varying delays, Int. J. Syst. Sci., 43(2) (2012), 272-284.
49
[25] H. Xin, D. Gan, M. Huang and K. Wang, Estimating the stability region of singular perturba-
50
tion power systems with saturation nonlinearities: an linear matrix inequality-based method,
51
IET Control Theory Appl., 4(3) (2010), 351-361.
52
[26] S. Xu, P. V. Dooren, R. Stefan and J. Lam, Robust stability and stabilization for singular
53
systems with state delay and parameter uncertainty, IEEE Trans. Autom. Control, 47(7)
54
(2002), 1122-1128.
55
[27] S. Xu, B. Song, J. Lu and J. Lam, Robust stability of uncertain discrete-time singular fuzzy
56
systems, Fuzzy Sets Syst., 158(20) (2007), 2306-2316.
57
[28] Q. L. Zhang, Decentralized control and robust control for singular systems, Xian : North-
58
western University Press, 1997.
59
[29] J. Zhang and Y. Zhao, Asymptotic stability of nonlinear singular discrete systems, Proc.
60
IEEE Int. Conf. Multimedia Tech., (2011), 2411-2413.
61
[30] S. Zhao, Quadratic stabilization for a class of switched Nonlinear singular systems, Int. J.
62
Inf. Syst. Sci., 5(3-4) (2009), 425-429.
63
ORIGINAL_ARTICLE
Fuzzy Risk Analysis Based on Ranking of Fuzzy Numbers Via New Magnitude Method
Ranking fuzzy numbers plays a main role in many applied models inreal world and in particular decision-making procedures. In manyproposed methods by other researchers may exist some shortcoming.The most commonly used approaches for ranking fuzzy numbers isbased on defuzzification method. Many ranking fuzzy numberscannot discriminate between two symmetric fuzzy numbers withidentical core. In 2009, Abbasbandy and Hajjari proposed anapproach for ranking normal trapezoidal fuzzy numbers, whichcomputed the magnitude of fuzzy numbers namely ``Mag" method.Then Hajjari extended it for non-normal trapezoidal fuzzy numbersand also for all generalized fuzzy numbers. However, thesemethods have the weakness that we mentioned above. Moreover, theresult is not consistent with human intuition in this case.Therefore, we are going to present a new method to overcome thementioned weakness. In order to overcome the shortcoming, a newmagnitude approach for ranking trapezoidal fuzzy numbers based onminimum and maximum points and the value of fuzzy numbers isgiven. The new method is illustrated by some numerical examplesand in particular, the results of ranking by the proposed methodand some common and existing methods for ranking fuzzy numbers iscompared to verify the advantages of presented method.
http://ijfs.usb.ac.ir/article_2017_2a119e1745d62f0454344e08d761a5e9.pdf
2015-06-30T11:23:20
2018-09-18T11:23:20
17
29
10.22111/ijfs.2015.2017
Decision-Making
Magnitude
Fuzzy numbers
Ranking
T.
Hajjari
tayebehajjari@iaufb.ac.ir
true
1
Mathematics Department, Firoozkooh Branch of Islamic Azad University,
Firoozkooh, Iran
Mathematics Department, Firoozkooh Branch of Islamic Azad University,
Firoozkooh, Iran
Mathematics Department, Firoozkooh Branch of Islamic Azad University,
Firoozkooh, Iran
LEAD_AUTHOR
[1] S. Abbasbandy and B. Asady, Ranking of fuzzy numbers by sign distance, Inform. Sci., 176
1
(2006), 2405-2416.
2
[2] S. Abbasbandy and T. Hajjari, A new approach for ranking of trapezoidal fuzzy numbers,
3
Comput. Math. Appl., 57 (2009), 413-419.
4
[3] S. Abbasbandy and T. Hajjari, An improvement on centroid point method for ranking of
5
fuzzy numbers, J. Sci. I.A.U., 78 (2011), 109-119.
6
[4] M. Adamo, Fuzzy decision trees, Fuzzy Sets and Systems, 4 (1980), 207-219.
7
[5] B. Asady, The revised method of ranking LR fuzzy number based on deviation degree, Expert
8
Syst with Applications, 37 (2010), 5056-5060.
9
[6] J. F. Baldwin and N. C. F. Guild, Comparison of fuzzy numbers on the same decision space,
10
Fuzzy Sets and Systems, 2 (1979), 213-233.
11
[7] S. Bass and H. Kwakernaak,Rating and ranking of multiple-aspect alternatives using fuzzy
12
sets, Automatica, 13 (1977), 47-58.
13
[8] G. Bortolan and R. Degani, A review of some methods for ranking fuzzy numbers, Fuzzy Sets
14
and Systems, 15 (1985), 1-19.
15
[9] S. H. Chen, Ranking fuzzy numbers with maximizing set and minimizing set, Fuzzy Sets and
16
Systems, 17 (1985), 113-129.
17
[10] W. K. Chang, Ranking of fuzzy utilities with triangular membership functions, International
18
Conference on Plicy Analysis and Informations Systems, Tamkang University, R. O. C.,
19
(1981), 163-171.
20
[11] C. H. Cheng, A new approach for ranking fuzzy numbers by distance method, Fuzzy Sets and
21
Systems, 95 (1998), 307-317.
22
[12] S. J. Chen and S. M. Chen, Fuzzy risk analysis based on ranking of generalized trapezoidal
23
fuzzy numbers, Applied Intelligence, 26 (2007), 1-11.
24
[13] S. M. Chen and J. H. Chen, Fuzzy risk analysis based on ranking generalized fuzzy numbers
25
with dierent heights and dierent spreads, Expert Systs with Applications, 36 (2009), 6833-
26
[14] S. J Chen and C. L. Hwang, Fuzzy multiple attribute decision making, Spinger-Verlag, Berlin,
27
[15] S. M. Chen and K. Sanguansat, Analysing fuzzy risk based on a new fuzzy ranking generalized
28
fuzzy numbers with dierent heights and dierent spreads, Expert Systs with Applications,
29
38 (2011), 2163-2171.
30
[16] C. C. Chen and H. C. Tang, Ranking non-normal pnorm trapezoidal fuzzy numbers with
31
integral value, Comput. Math. Appl., 56 (2008), 2340-2346.
32
[17] F. Choobineh and H. Li, An index for ordering fuzzy numbers, Fuzzy Sets and Systems, 54
33
(1993), 287-294.
34
[18] S. Y. Chou, L. Q. Dat and F. Y. Vincent, A revised method for ranking fuzzy numbers using
35
maximizing set and minimizing set, Comput. Ind. Eng., 61 (2011), 1342-1384.
36
[19] T. Chu and C. Tsao, Ranking fuzzy numbers with an area between the centroid point and
37
orginal point, Comput. Math. Appl., 43 (2002), 11-117.
38
[20] L. Q. Dat, F. Y. Vincent and S. Y chou, An improved ranking method for fuzzy numbers
39
based on the centroid-index, International Fuzzy Systems, 14 (3) (2012), 413-419.
40
[21] K. Deep, M. L. Kansal and K. P. Singh, Ranking of alternatives in fuzzy environment using
41
integral value, J. Math. Stat. Allied Fields, 1(2) (2007), 2070-2077.
42
[22] M. Delgado, M. A. Vila and W. Voxman, On a canonical representation of fuzzy numbers,
43
Fuzzy Sets and Systems, 93 (1998), 125-135.
44
[23] Y. Deng and Q. Liu, A TOPSIS-based centroid index ranking method of fuzzy numbers and
45
its application in decision-making, Cybernetic and Systems, 36 (2005), 581-595.
46
[24] Y. Deng, Z. F. Zhu and Q. Liu, Ranking fuzzy numbers with an area method using of gyration,
47
Comput. Math. Appl., 51 (2006), 1127-1136.
48
[25] D. Dubios and H. Prade, Operations on fuzzy numbers, Internat. J. System Sci., 9 (1978),
49
[26] M. S. Garcia and M. T. Lamata, A modication of the index of Liou and Wang for ranking
50
fuzzy numbers, Int.J. Uncer. Fuzz. Know. Based Syst., 14(4) (2007).
51
[27] T. Hajjari, On deviation degree methods for ranking fuzzy numbers, Australian Journal of
52
Basic and Applied Sciences, 5(5) (2011), 750-758.
53
[28] T. Hajjari, Ranking of fuzzy numbers based on ambiguity degree, Australian Journal of Basic
54
and Applied Sciences., 5(1) (2011), 62-69.
55
[29] T. Hajjari and S. Abbasbandy, A note on " The revised method of ranking LR fuzzy number
56
based on deviation degree", Expert Syst with Applications, 38 (2011), 13491-13492.
57
[30] R. Jain, Decision-making in the presence of fuzzy variable, IEEE Trans. Systems Man and
58
Cybernet., 6 (1976), 698-703.
59
[31] R. Jain, A procedure for multi-aspect decision making using fuzzy sets. Internat. J. Systems
60
Sci., 8 (1977), 1-7.
61
[32] A. Kumar, P. Singh, P. Kaur and A. Kaur, RM approach for ranking of L-R type generalized
62
fuzzy numbers, Soft Cumput, 15 (2011), 1373-1381.
63
[33] A. Kumar, P. Singh and A. Kuar, Ranking of generalized exponentialfuzzy numbers using
64
integral value approach, Int.J.Adv.Soft.Comput.Appl., 2(2) (2010), 221-230.
65
[34] A. Kumar, P. Singh, P. Kuar and A. Kuar, A new approach for ranking of L R type
66
generalized fuzzy numbers, Expert Syst. Appl., 38 (2011), 10906-10910.
67
[35] A. Kumar, P. Singh, A. Kaur and P. Kaur, A new approach for ranking of nonnormal pnorm
68
trapezoidal fuzzy numbers, Comput. Math. Appl., 57 (2011), 881-887.
69
[36] T. S. Liou and M. J. Wang, Ranking fuzzy numbers with integral value, Fuzzy Sets and
70
Systems, 50 (1992), 247-255.
71
[37] X. W. Liu and S. L. Han, Ranking fuzzy numbers with preference weighting function expec-
72
tationc, Comput. Math. Appl., 49 (2005), 1455-1465.
73
[38] S. Murakami, H. Maeda and S. Imamura, Fuzzy decision analysis on development of cen-
74
tralized regional energycontrol system, Proceeding of the IFAC Symposium Marseille, (1983),
75
[39] P. Phani Bushan Rao and R. Shankar, Ranking fuzzy numbers with a distance method
76
using circumcenter of centroids an index of modality, Advance in Fuzzy Systems,
77
dio:10.1155/2011/178308, 2011.
78
[40] S. Rezvani, Ranking generalized fuzzy numbers with Euclidian distance by the incentre of
79
centroid, Mathematica Aeterna, 3 (2013), 103-114.
80
[41] F. Y. Vincent and L. Q. Dat, An improved ranking method for fuzzy numbers with integral
81
values, Appl. Soft Comput., 14 (2014), 603-608.
82
[42] Y. J.Wang and H. Sh. Lee, The revised method of ranking fuzzy numbers with an erea between
83
the centroid and original points, Comput. Math. Appl., 55 (2008), 2033-2042.
84
[43] Z. X. Wang, Y. J. Liu, Z. P. Fan and B. Feng, Ranking L-R fuzzy number based on diviation
85
degree, Information Sciences, 179 (2009), 2070-2077.
86
[44] W. Wang and Z. Wang, Total orderings dened on the set of all fuzzy numbers, Fuzzy Sets
87
and Sysemts, 243 (2014), 131-141.
88
[45] Y. M. Wang and Y. Luo, Area ranking of fuzzy numbers based on positive and negative ideal
89
points, Comput. Math. Appl., 58 (2009), 1776-1779.
90
[46] X. Wang and E. E. Kerre, Reasonable properties for the ordering of fuzzy quantities (I),
91
Fuzzy Sets and Systems, 118 (2001), 375-385.
92
[47] X. Wang and E. E. Kerre, Reasonable properties for the ordering of fuzzy quantities (II),
93
Fuzzy Sets and Systems, 118 (2001), 387-405.
94
[48] R. R. Yager, On choosing between fuzzy subsets, Kybernetes, 9 (1980), 151-154.
95
[49] R. R. Yager, On a general class of fuzzy connective, Fuzzy Sets and Systems, 4 (1980),
96
[50] R. R. Yager, A procedure for ordering fuzzy subests of the unit interval, Inform. Sciences, 24
97
(1981), 143-161.
98
[51] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
99
ORIGINAL_ARTICLE
Fixed Fuzzy Points of Fuzzy Mappings in Hausdorff Fuzzy Metric Spaces with Application
Recently, Phiangsungnoen et al. [J. Inequal. Appl. 2014:201 (2014)] studied fuzzy mappings in the framework of Hausdorff fuzzy metric spaces.Following this direction of research, we establish the existence of fixed fuzzy points of fuzzy mappings. An example is given to support the result proved herein; we also present a coincidence and common fuzzy point result. Finally, as an application of our results, we investigate the existence of solution for somerecurrence relations associated to the analysis of quicksort algorithms.
http://ijfs.usb.ac.ir/article_2018_344dee53e41664d8f01d067965c0e8b6.pdf
2015-06-30T11:23:20
2018-09-18T11:23:20
31
45
10.22111/ijfs.2015.2018
Fuzzy metric space
Fuzzy mapping
Fixed fuzzy point
Quicksort algorithm
Calogero
Vetro
calogero.vetro@unipa.it
true
1
Dipartimento di Matematica e Informatica, Universita degli Studi
di Palermo, Via Archirafi 34, 90123 Palermo, Italy
Dipartimento di Matematica e Informatica, Universita degli Studi
di Palermo, Via Archirafi 34, 90123 Palermo, Italy
Dipartimento di Matematica e Informatica, Universita degli Studi
di Palermo, Via Archirafi 34, 90123 Palermo, Italy
LEAD_AUTHOR
Mujahid
Abbas
mujahid.abbas@up.ac.za
true
2
Department of Mathematics and Applied Mathematics, University of
Pretoria, Lynnwood road, Pretoria 0002, South Africa, Department of Mathematics,
Syed Babar Ali School of Science and Engineering (SBASSE), Lahore University of
Management Sciences (LUMS), Lahore, 54792, Pakistan
Department of Mathematics and Applied Mathematics, University of
Pretoria, Lynnwood road, Pretoria 0002, South Africa, Department of Mathematics,
Syed Babar Ali School of Science and Engineering (SBASSE), Lahore University of
Management Sciences (LUMS), Lahore, 54792, Pakistan
Department of Mathematics and Applied Mathematics, University of
Pretoria, Lynnwood road, Pretoria 0002, South Africa, Department of Mathematics,
Syed Babar Ali School of Science and Engineering (SBASSE), Lahore University of
Management Sciences (LUMS), Lahore, 54792, Pakistan
AUTHOR
Basit
Ali
basit.aa@gmail.com
true
3
Department of Mathematics, Syed Babar Ali School of Science and Engi-
neering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore, 54792,
Pakistan
Department of Mathematics, Syed Babar Ali School of Science and Engi-
neering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore, 54792,
Pakistan
Department of Mathematics, Syed Babar Ali School of Science and Engi-
neering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore, 54792,
Pakistan
AUTHOR
[1] B. Ali and M. Abbas, Suzuki type xed point theorem for Fuzzy mappings in ordered metric
1
spaces, Fixed Point Theory Appl., 2013:9 (2013), 1-19.
2
[2] J. W. de Bakker and E. P. de Vink, A metric approach to control
3
ow semantics, in: Proc.
4
Eleventh Summer Conference on General Topology and Applications, Ann. New York Acad.
5
Sci., 806 (1996), 11-27.
6
[3] J. W. de Bakker and E. P. de Vink, Denotational models for programming languages: appli-
7
cations of Banach's xed point theorem, Topology Appl., 85(1-3) (1998), 35-52.
8
[4] J. W. de Bakker and E. P. de Vink, Control Flow Semantics, Cambridge, MA, USA: The
9
MIT Press, 1996.
10
[5] A. Deb Ray and P. K. Saha, Fixed point theorems on generalized fuzzy metric spaces,. Hacet.
11
J. Math. Stat., 39(1) (2010), 1-9.
12
[6] V. D. Estruch and A. Vidal, A note on xed fuzzy points for fuzzy mappings, Rend Istit.
13
Univ. Trieste, 32 (2001), 39-45.
14
[7] J. X. Fang, On xed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 46(1)
15
(1992), 107-113.
16
[8] P. Flajolet, Analytic analysis of algorithms, In: W. Kuich (Ed.), Automata, Languages and
17
Programming, 19th Internat. Colloq. ICALP'92, Vienna, July 1992, in: Lecture Notes in
18
Computer Science, Berlin: Springer, 623 (1992), 186-210.
19
[9] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy sets and Systems,
20
64(3) (1994), 395-399.
21
[10] A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets
22
and Systems, 90(3) (1997), 365-368.
23
[11] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27(3) (1988),
24
[12] V. Gregori and S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Sets and Sys-
25
tems, 115(1) (2000), 485-489.
26
[13] V. Gregori and A. Sapena, On xed point theorems in fuzzy metric spaces, Fuzzy Sets and
27
Systems, 125(2) (2002), 245-253.
28
[14] R. H. Haghi, Sh. Rezapour and N. Shahzad, Some xed point generalizations are not real
29
generalizations, Nonlinear Anal., 74(5) (2011), 1799-1803.
30
[15] S. Heilpern, Fuzzy mappings and xed point theorem, J. Math. Anal. Appl., 83(2) (1981),
31
[16] G. Kahn, The semantics of a simple language for parallel processing, in: Proc. IFIP Congress,
32
North-Holland, Amsterdam: Elsevier, (1974), 471-475.
33
[17] F. Kiany and A. Amini-Harandi, Fixed point and endpoint theorems for set-valued fuzzy
34
contraction maps in fuzzy metric spaces, Fixed Point Theory Appl., 2011:94 (2011), 1-9.
35
[18] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11(5)
36
(1975), 336-344.
37
[19] R. L. Kruse, Data structures and program design, Prentice-Hall, Inc., Upper Saddle River,
38
NJ, USA, 1984.
39
[20] Y. Liu and Z. Li, Coincidence point theorems in probabilistic and fuzzy metric spaces, Fuzzy
40
Sets and Systems, 158(1) (2007), 58-70.
41
[21] S. G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General Topol-
42
ogy and Applications, Ann. New York Acad. Sci., 728 (1994), 183-197.
43
[22] D. Mihet, On the existence and the uniqueness of xed points of Sehgal contractions, Fuzzy
44
Sets and Systems, 156(1) (2005), 135-141.
45
[23] D. Mihet, On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets and Systems,
46
158(8) (2007), 915-921.
47
[24] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete
48
metric spaces, J. Math. Anal. Appl., 141(1) (1989), 177-188.
49
[25] S. B. Nadler, Multivalued contraction mappings, Pacic J. Math., 30(2) (1969), 475-488.
50
[26] S. Phiangsungnoen, W. Sintunavarat and P. Kumam, Fuzzy xed point theorems in Hausdor
51
fuzzy metric spaces, J. Inequal. Appl., 2014:201 (2014), 1-10.
52
[27] A. Razani, A contraction theorem in fuzzy metric space, Fixed Point Theory Appl., 2005(3)
53
(2005), 257-265.
54
[28] J. Rodrguez-Lopez and S. Romaguera, The Hausdor fuzzy metric on compact sets, Fuzzy
55
Sets and Systems, 147(2) (2004), 273-283.
56
[29] S. Romaguera, A. Sapena and P. Tirado, The Banach xed point theorem in fuzzy quasi-
57
metric spaces with application to the domain of words, Topology Appl., 15(10) (2007),
58
2196-2203.
59
[30] R. Saadati, S. M. Vaezpour and Y. J. Cho, Quicksort algorithm: Application of a xed point
60
theorem in intuitionistic fuzzy quasi-metric spaces at a domain of words, J. Comput. Appl.
61
Math., 228(1) (2009), 219-225.
62
[31] P. Salimi, C. Vetro and P. Vetro, Some new xed point results in non-Archimedean fuzzy
63
metric spaces, Nonlinear Anal. Model. Control, 18(3) (2013), 344-358.
64
[32] B. Schweizer and A. Sklar, Statistical metric spaces, Pacic J. Math., 10(1) (1960), 385-389.
65
[33] C. S. Sen, Fixed degree for fuzzy mappings and a generalization of Ky Fan's theorem, Fuzzy
66
Sets and Systems, 24(1) (1987), 103-112.
67
[34] T. Som and R. N. Mukherjee, Some xed point theorems for fuzzy mappings, Fuzzy Sets and
68
Systems, 33(2) (1989), 213-219.
69
[35] D. Turkoglu and B. E. Rhoades, A xed fuzzy point for fuzzy mapping in complete metric
70
spaces, Math. Commun., 10(2) (2005), 115-121.
71
[36] L. A. Zadeh, Fuzzy Sets, Inf. Control, 8(3) (1965), 338-353.
72
ORIGINAL_ARTICLE
Some classes of statistically convergent sequences of fuzzy numbers generated by a modulus function
The purpose of this paper is to generalize the concepts of statisticalconvergence of sequences of fuzzy numbers defined by a modulus functionusing difference operator $Delta$ and give some inclusion relations.
http://ijfs.usb.ac.ir/article_2019_acdb38af96e8a2b1a9eb92353d97a5e2.pdf
2015-06-30T11:23:20
2018-09-18T11:23:20
47
55
10.22111/ijfs.2015.2019
Sequence of fuzzy numbers
Statistical convergence
Modulus function
U.
Cakan
umitcakan@gmail.com
true
1
Department of Mathematics, Nevsehir Hac Bektas Veli University, Nevsehir-
Turkey
Department of Mathematics, Nevsehir Hac Bektas Veli University, Nevsehir-
Turkey
Department of Mathematics, Nevsehir Hac Bektas Veli University, Nevsehir-
Turkey
AUTHOR
Y.
Altin
yaltin23@yahoo.com
true
2
Department of Mathematics, Firat University, Elazig-Turkey
Department of Mathematics, Firat University, Elazig-Turkey
Department of Mathematics, Firat University, Elazig-Turkey
LEAD_AUTHOR
[1] H. Altnok, R. C olak and M. Et, -dierence sequence spaces of fuzzy numbers, Fuzzy Sets
1
and Systems, 160(21) (2009), 3128{3139.
2
[2] H. Altnok and R. C olak, Almost lacunary statistical and strongly almost lacunary conver-
3
gence of generalized dierence sequences of fuzzy numbers, J. Fuzzy Math., 17(4) (2009),
4
[3] H. Altnok and M. Mursaleen, -Statistical boundedness for sequences of fuzzy numbers,
5
Taiwanese Journal of Mathematics, 15(5) (2011), 2081-2093.
6
[4] M. Basarr and M. Mursaleen, Some sequence spaces of fuzzy numbers generated by innite
7
matrices, J. Fuzzy Math., 11(3) (2003), 757-764.
8
[5] J. Connor, A topological and functional analytic approach to statistical convergence, Analysis
9
of divergence (Orono, ME, 1997), 403{413, Appl. Numer. Harmon. Anal., Birkhauser Boston,
10
Boston, MA, 1999.
11
[6] P. Diamond and P. Kloeden, Metric spaces of fuzzy sets, Fuzzy Sets and Systems, 35 (1990),
12
[7] M. Et and R. C olak, On some generalized dierence sequence spaces, Soochow J. Math.,
13
21(4) (1995), 377-386.
14
[8] M. Et, H. Altnok and R. C olak, On -statistical convergence of dierence sequences of
15
fuzzy numbers, Inform. Sci., 176(15) (2006), 2268{2278.
16
[9] H. Fast, Sur la convergence statistique, Colloq. Math., (1951), 241-244.
17
[10] J. A. Fridy, On statistical convergence, Analysis., 5 (1985), 301-313.
18
[11] H. Kzmaz, On certain sequence spaces, Canadian Math. Bull., 24 (1981), 169-176.
19
[12] J. S. Kwon, On statistical and p-Cesaro convergence of fuzzy numbers, Korean J. Comput.
20
Appl. Math., 7(1) (2000), 195-203.
21
[13] M. Matloka, Sequences of fuzzy numbers, BUSEFAL, 28 (1986), 28-37.
22
[14] M. Mursaleen and M. Basarr, On some new sequence spaces of fuzzy numbers, Indian J.
23
Pure and Appl. Math., 34(9) (2003), 1351{1357.
24
[15] S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets and Systems, 33 (1989), 123-126.
25
[16] H. Nakano, Concave modulars, J. Math. Soc. Japan, 5 (1953), 29{49.
26
[17] F. Nuray and E. Savas, Statistical convergence of fuzzy numbers, Math. Slovaca, 45(3) (1995),
27
[18] T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980),
28
[19] B. Sarma, On a class of sequences of fuzzy numbers dened by modulus function, International
29
Journal of Science & Technology, 2(1) (2007), 25-28.
30
[20] I. J. Schoenberg, The integrability of certain functions and related summability methods,
31
Amer. Math. Monthly, 66 (1959), 361-375.
32
[21] O. Talo and F. Basar, Certain spaces of sequences of fuzzy numbers dened by a modulus
33
function, Demonstratio Math., 43(1) (2010), 139{149.
34
[22] B. C. Tripathy and A. J. Dutta, Bounded variation double sequence space of fuzzy real
35
numbers, Comput. Math. Appl., 59(2) (2010), 1031{1037.
36
[23] L. A. Zadeh, Fuzzy sets, Inform and Control, 8 (1965), 338-353.
37
ORIGINAL_ARTICLE
Categorically-algebraic topology and its applications
This paper introduces a new approach to topology, based on category theory and universal algebra, and called categorically-algebraic (catalg) topology. It incorporates the most important settings of lattice-valued topology, including poslat topology of S.~E.~Rodabaugh, $(L,M)$-fuzzy topology of T.~Kubiak and A.~v{S}ostak, and $M$-fuzzy topology on $L$-fuzzy sets of C.~Guido. Moreover, its respective categories of topological structures are topological over their ground categories. The theory also extends the notion of topological system of S.~Vickers (and its numerous many-valued modifications of J.~T.~Denniston, A.~Melton and S.~E.~Rodabaugh), and shows that the categories of catalg topological structures are isomorphic to coreflective subcategories of the categories of catalg topological systems. This extension initiates a new approach to soft topology, induced by the concept of soft set of D.~Molodtsov, and currently pursued by various researchers.
http://ijfs.usb.ac.ir/article_2020_3928dce38a41f1ffb43078cccd8ae550.pdf
2015-06-30T11:23:20
2018-09-18T11:23:20
57
94
10.22111/ijfs.2015.2020
Categorically-algebraic topology
Lattice-valued topology
Soft topology
Topological category
Topological system
Topological theory
Sergey A.
Solovyov
sergejs.solovjovs@lumii.lv
true
1
Institute of Mathematics, Faculty of Mechanical Engineering,
Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic and
Institute of Mathematics and Computer Science, University of Latvia, Raina bulvaris
29, LV-1459 Riga, Latvia
Institute of Mathematics, Faculty of Mechanical Engineering,
Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic and
Institute of Mathematics and Computer Science, University of Latvia, Raina bulvaris
29, LV-1459 Riga, Latvia
Institute of Mathematics, Faculty of Mechanical Engineering,
Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic and
Institute of Mathematics and Computer Science, University of Latvia, Raina bulvaris
29, LV-1459 Riga, Latvia
LEAD_AUTHOR
[1] J. Adamek, H. Herrlich, and G. E. Strecker, Abstract and concrete categories: the joy of
1
cats, Dover Publications (Mineola, New York), 2009.
2
[2] J. Adamek, J. Rosicky, and E. M. Vitale, Algebraic theories. a categorical introduction to
3
general algebra, Cambridge University Press, 2011.
4
[3] D. Aerts, Foundations of quantum physics: a general realistic and operational approach,
5
Int. J. Theor. Phys., 38(1) (1999), 289-358.
6
[4] D. Aerts, E. Colebunders, A. van der Voorde and B. van Steirteghem, State property systems
7
and closure spaces: a study of categorical equivalence, Int. J. Theor. Phys., 38(1) (1999),
8
[5] D. Aerts, E. Colebunders, A. van der Voorde and B. van Steirteghem, On the amnestic
9
modication of the category of state property systems, Appl. Categ. Struct., 10(5) (2002),
10
[6] H. Aktas and N. C agman, Soft sets and soft groups, Inf. Sci., 177(13) (2007), 2726-2735.
11
[7] J. M. Anthony and H. Sherwood, Fuzzy groups redened, J. Math. Anal. Appl., 69(1)
12
(1979), 124-130.
13
[8] B. Banaschewski and E. Nelson, Tensor products and bimorphisms, Canad. Math. Bull.,
14
19(4) (1976), 385-402.
15
[9] M. Barr and C. Wells, Toposes, triples and theories, Repr. Theory Appl. Categ., 2005(12)
16
(2005), 1-288.
17
[10] G. Birkho, On the structure of abstract algebras, Proc. Cambridge Phil. Soc., 31(4) (1935),
18
[11] S. Burris and H. P. Sankappanavar, A course in universal algebra, Graduate Texts in Mathematics,
19
Springer-Verlag, 78 (1981).
20
[12] M. Caldas, S. Jafari and R. K. Saraf, Semi--open sets and new classes of maps, Bull. Iran.
21
Math. Soc., 31(2) (2005), 37-52.
22
[13] N. C agman, S. Karatas and S. Enginoglu, Soft topology, Comput. Math. Appl., 62(1) (2011),
23
[14] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1) (1968), 182-190.
24
[15] M. M. Clementino, D. Hofmann and W. Tholen, One setting for all: Metric, topology,
25
uniformity, approach structure, Appl. Categ. Struct., 12(2) (2004), 127-154.
26
[16] P. M. Cohn, Universal Algebra, D. Reidel Publ. Comp., 1981.
27
[17] C. De Mitri and C. Guido, Some remarks on fuzzy powerset operators, Fuzzy Sets Syst.,
28
126(2) (2002), 241-251.
29
[18] M. Demirci, Pointed semi-quantales and lattice-valued topological spaces, Fuzzy Sets Syst.,
30
161(9) (2010), 1224-1241.
31
[19] J. T. Denniston, A. Melton and S. E. Rodabaugh, Lattice-valued topological systems, Abstracts
32
of the 30th Linz Seminar on Fuzzy Set Theory, Johannes Kepler Universitat, Linz,
33
(2009), 24-31.
34
[20] J. T. Denniston, A. Melton and S. E. Rodabaugh, Lattice-valued predicate transformers and
35
interchange systems, Abstracts of the 31st Linz Seminar on Fuzzy Set Theory, Johannes
36
Kepler Universitat, Linz, (2010), 31-40.
37
[21] J. T. Denniston, A. Melton and S. E. Rodabaugh, Formal concept analysis and lattice-valued
38
interchange systems, Abstracts of the 32nd Linz Seminar on Fuzzy Set Theory, Johannes
39
Kepler Universitat, Linz, (2011), 41-47.
40
[22] J. T. Denniston, A. Melton and S. E. Rodabaugh, Interweaving algebra and topology:
41
Lattice-valued topological systems, Fuzzy Sets Syst., 192 (2012), 58-103.
42
[23] J. T. Denniston and S. E. Rodabaugh, Functorial relationships between lattice-valued topol-
43
ogy and topological systems, Quaest. Math., 32(2) (2009), 139-186.
44
[24] A. Di Nola and G. Gerla, Lattice valued algebras, Stochastica, 11(2-3) (1987), 137-150.
45
[25] Y. Diers, Categories of algebraic sets, Appl. Categ. Struct., 4(2-3) (1996), 329-341.
46
[26] Y. Diers, Ane algebraic sets relative to an algebraic theory, J. Geom., 65(1-2) (1999),
47
[27] Y. Diers, Topological geometrical categories, J. Pure Appl. Algebra, 168(2-3) (2002), 177-
48
[28] D. Dikranjan, E. Giuli and A. Tozzi, Topological categories and closure operators, Quaest.
49
Math., 11(3) (1988), 323-337.
50
[29] C. Ehresmann, Gattungen von lokalen Strukturen, Jahresber. Dtsch. Math.-Ver., (German),
51
60(1) (1957), 49-77.
52
[30] P. Eklund, Categorical fuzzy topology, Ph.D. thesis, Abo Akademi, 1986.
53
[31] P. Eklund, M. A. Galan and W. Gahler, Partially ordered monads for monadic topologies,
54
rough sets and Kleene algebras, Electron. Notes Theor. Comput. Sci., 225 (2009), 67-81.
55
[32] F. Feng, Y. B. Jun and X. Zhao, Soft semirings, Comput. Math. Appl., 56(10) (2008),
56
2621-2628.
57
[33] A. Frascella, Attachment and topological systems in varieties of algebras, Ph.D. thesis,
58
Department of Mathematics Ennio De Giorgi", University of Salento, Italy, 2011.
59
[34] A. Frascella, C. Guido and S. Solovyov, Dual attachment pairs in categorically-algebraic
60
topology, Appl. Gen. Topol., 12(2) (2011), 101-134.
61
[35] W. Gahler, Monadic topology { a new concept of generalized topology, Recent Developments
62
of General Topology and its Applications, International Conference in Memory of Felix
63
Hausdor (1868 - 1942) (W. Gahler, ed.), Akademie-Verlag, (1992), 136-149.
64
[36] W. Gahler, The general fuzzy lter approach to fuzzy topology I, Fuzzy Sets Syst., 76(2)
65
(1995), 205-224.
66
[37] W. Gahler, The general fuzzy lter approach to fuzzy topology II, Fuzzy Sets Syst., 76(2)
67
(1995), 225-246.
68
[38] W. Gahler, General topology { the monadic case, examples, applications, Acta Math. Hung.,
69
88(4) (2000), 279-290.
70
[39] B. Ganter and R. Wille, Formale begrisanalyse. mathematische grundlagen, Berlin:
71
Springer, 1996.
72
[40] G. Gierz, K. H. Hofmann and etc., Continuous lattices and domains, Cambridge University
73
Press, 2003.
74
[41] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18(1) (1967), 145-174.
75
[42] J. A. Goguen, The fuzzy Tychono theorem, J. Math. Anal. Appl., 43(3) (1973), 734-742.
76
[43] G. Gratzer, Universal Algebra, 2nd ed., Springer, 2008.
77
[44] C. Guido, The subspace problem in the traditional point-set context of fuzzy topology,
78
Quaest. Math., 20(3) (1997), 351-372.
79
[45] C. Guido, Powerset operators based approach to fuzzy topologies on fuzzy sets, Topological
80
and Algebraic Structures in Fuzzy Sets. A Handbook of Recent Developments in the
81
Mathematics of Fuzzy Sets (S. E. Rodabaugh and E. P. Klement, eds.), Kluwer Academic
82
Publishers, (2003), 401-413.
83
[46] C. Guido, Fuzzy points and attachment, Fuzzy Sets Syst., 161(16) (2010), 2150-2165.
84
[47] C. Guido and V. Scarciglia, L-topological spaces as spaces of points, Fuzzy Sets Syst., 173(1)
85
(2011), 45-59.
86
[48] C. Guido and S. Solovyov, Topological systems versus attachment relations, Quaest. Math.,
87
37(4) (2014), 455-484.
88
[49] H. Herrlich and G. E. Strecker, Category theory, 3rd ed., Sigma Series in Pure Mathematics,
89
Heldermann Verlag, 1 (2007).
90
[50] U. Hohle, Upper semicontinuous fuzzy sets and applications, J. Math. Anal. Appl., 78(2)
91
(1980), 659-673.
92
[51] U. Hohle, A note on the hypergraph functor, Fuzzy Sets Syst., 131(3) (2002), 353-356.
93
[52] U. Hohle and A. P. Sostak, Axiomatic foundations of xed-basis fuzzy topology, Mathematics
94
of Fuzzy Sets: Logic, Topology and Measure Theory (U. Hohle and S. E. Rodabaugh, eds.),
95
Kluwer Academic Publishers, (1999), 123-272.
96
[53] S. Hussain and B. Ahmad, Some properties of soft topological spaces, Comput. Math. Appl.,
97
62(11) (2011), 4058-4067.
98
[54] B. Hutton, Products of fuzzy topological spaces, Topology Appl., 11(1) (1980), 59-67.
99
[55] J. R. Isbell, Atomless parts of spaces, Math. Scand., 31 (1972), 5-32.
100
[56] P. T. Johnstone, Stone spaces, Cambridge University Press, 1982.
101
[57] Y. B. Jun, Soft BCK/BCI-algebras, Comput. Math. Appl., 56(5) (2008), 1408-1413.
102
[58] J. C. Kelly, Bitopological spaces, Proc. Lond. Math. Soc., 13(III) (1963), 71-89.
103
[59] W. Kotze and T. Kubiak, Fuzzy topologies of Scott continuous functions and their relation
104
to the hypergraph functor, Quaest. Math., 15(2) (1992), 175-187.
105
[60] T. Kubiak, On fuzzy topologies, Ph.D. thesis, Adam Mickiewicz University, Poznan, Poland,
106
[61] T. Kubiak and A. Sostak, Foundations of the theory of (L;M)-fuzzy topological spaces,
107
Abstracts of the 30th Linz Seminar on Fuzzy Set Theory, Johannes Kepler Universitat,
108
Linz, (2009), 70-73.
109
[62] F. W. Lawvere, Functorial semantics of algebraic theories and some algebraic problems
110
in the context of functorial semantics of algebraic theories, Repr. Theory Appl. Categ.,
111
2004(5) (2004), 1-121.
112
[63] N. Levine, Semi-open sets and semi-continuity in topological spaces, Am. Math. Mon., 70
113
(1963), 36-41.
114
[64] F. E. J. Linton, Some aspects of equational categories, Proc. Conf. Categor. Algebra, La
115
Jolla, (1965), 84{94.
116
[65] X. Liu, D. Xiang, J. Zhan and K. P. Shum, Isomorphism theorems for soft rings, Algebra
117
Colloq., 19(4) (2012), 649-656.
118
[66] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56(3)
119
(1976), 621-633.
120
[67] S. Mac Lane, Categories for the working mathematician, 2nd ed., Springer-Verlag, 1998.
121
[68] P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Comput. Math. Appl., 45(4-5) (2003),
122
[69] E. G. Manes, Algebraic theories, Springer-Verlag, 1976.
123
[70] W. K. Min, A note on soft topological spaces, Comput. Math. Appl., 62(9) (2011), 3524-
124
[71] D. Molodtsov, Soft set theory { rst results, Comput. Math. Appl., 37(4-5) (1999), 19-31.
125
[72] J. N. Mordeson and D. S. Malik, Fuzzy commutative algebra, Singapore: World Scientic,
126
[73] C. J. Mulvey and J. W. Pelletier, On the quantisation of points, J. Pure Appl. Algebra,
127
159(2) (2001), 231-295.
128
[74] C. J. Mulvey and J. W. Pelletier, On the quantisation of spaces, J. Pure Appl. Algebra,
129
175(1-3) (2002), 289-325.
130
[75] N. Nakajima, Generalized fuzzy sets, Fuzzy Sets Syst., 32(3) (1989), 307-314.
131
[76] C. V. Negoita and D. A. Ralescu, Applications of fuzzy sets to systems analysis, Interdisciplinary
132
Systems Research, Birkhauser Verlag, 11 (1975).
133
[77] D. Papert and S. Papert, Sur les treillis des ouverts et les paratopologies, Semin. de Topologie
134
et de Geometrie dierentielle Ch. Ehresmann 1 (1957/58), 1 (1959), 1-9.
135
[78] B. Pazar Varol, A. Shostak and H. Aygun, Categories related to topology viewed as soft sets,
136
Proceedings of the 7th Conference of the European Society for Fuzzy Logic and Technology
137
(EUSFLAT-2011) and LFA-2011, Atlantis Press, 1 (2011), 883-890.
138
[79] V. Pratt, Chu spaces, School on Category Theory and Applications (Coimbra, 1999), 39-100,
139
Textos Mat. Ser. B, 21, Univ. Coimbra, Coimbra, 1999.
140
[80] G. Richter, Kategorielle Algebra, Akademie-Verlag, 1979.
141
[81] S. E. Rodabaugh, The Hausdor separation axiom for fuzzy topological spaces, Topology
142
Appl., 11(3) (1980), 319-334.
143
[82] S. E. Rodabaugh, A categorical accommodation of various notions of fuzzy topology, Fuzzy
144
Sets Syst., 9(1) (1983), 241-265.
145
[83] S. E. Rodabaugh, Point-set lattice-theoretic topology, Fuzzy Sets Syst., 40(2) (1991), 297-
146
[84] S. E. Rodabaugh, Categorical foundations of variable-basis fuzzy topology, Mathematics of
147
Fuzzy Sets: Logic, Topology and Measure Theory (U. Hohle and S. E. Rodabaugh, eds.),
148
Kluwer Academic Publishers, (1999), 273-388.
149
[85] S. E. Rodabaugh, Necessary and sucient conditions for powersets in Set and Set C to
150
form algebraic theories, Abstracts of the 26th Linz Seminar on Fuzzy Set Theory, Johannes
151
Kepler Universitat, Linz, (2005), 89-97.
152
[86] S. E. Rodabaugh, Relationship of algebraic theories to powerset theories and fuzzy topolog-
153
ical theories for lattice-valued mathematics, Int. J. Math. Math. Sci., 2007 (2007), 1-71.
154
[87] S. E. Rodabaugh, Functorial comparisons of bitopology with topology and the case for redun-
155
dancy of bitopology in lattice-valued mathematics, Appl. Gen. Topol., 9(1) (2008), 77-108.
156
[88] S. E. Rodabaugh, Relationship of algebraic theories to powersets over objects in Set and
157
SetC, Fuzzy Sets Syst., 161(3) (2010), 453-470.
158
[89] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35(3) (1971), 512-517.
159
[90] K. I. Rosenthal, Quantales and their applications, Addison Wesley Longman, 1990.
160
[91] J. Rosicky, Equational categories, Cah. Topol. Geom. Dier., 22(1) (1981), 85{95.
161
[92] G. J. Seal, A Kleisli-based approach to lax algebras, Appl. Categ. Structures, 17(1) (2009),
162
[93] M. Shabir and M. Naz, On soft topological spaces, Comput. Math. Appl., 61(7) (2011),
163
1786-1799.
164
[94] F.-G. Shi and B. Pang, Redundancy of fuzzy soft topological spaces, J. Intell. Fuzzy Syst.,
165
27(4) (2014), 1757-1760.
166
[95] S. Solovyov, On the category Set(JCPos), Fuzzy Sets Syst., 157(3) (2006), 459-465.
167
[96] S. Solovyov, Categorical frameworks for variable-basis sobriety and spatiality, Math. Stud.
168
(Tartu), 4 (2008), 89-103.
169
[97] S. Solovyov, Sobriety and spatiality in varieties of algebras, Fuzzy Sets Syst., 159(19)
170
(2008), 2567-2585.
171
[98] S. Solovyov, Variable-basis topological systems versus variable-basis topological spaces, Soft
172
Comput., 14(10) (2010), 1059-1068.
173
[99] S. Solovyov, Fuzzy algebras as a framework for fuzzy topology, Fuzzy Sets Syst., 173(1)
174
(2011), 81-99.
175
[100] S. Solovyov, On a generalization of the concept of state property system, Soft Comput.,
176
15(12) (2011), 2467-2478.
177
[101] S. Solovyov, Categorical foundations of variety-based topology and topological systems, Fuzzy
178
Sets Syst., 192 (2012), 176-200.
179
[102] S. Solovyov, Composite variety-based topological theories, Fuzzy Sets Syst., 195 (2012), 1-32.
180
[103] S. Solovyov, Categorically-algebraic topology versus universal topology, Fuzzy Sets Syst.,
181
227 (2013), 25-45.
182
[104] S. Solovyov, Lattice-valued soft algebras, Soft Comput., 17(10) (2013), 1751-1766.
183
[105] A. P. Sostak, On a fuzzy topological structure, Rend. Circ. Mat. Palermo, II. Ser. Suppl.,
184
11 (1985), 89-103.
185
[106] S. Vickers, Topology via Logic, Cambridge University Press, 1989.
186
[107] L. A. Zadeh, Fuzzy sets, Inf. Control, 8(3) (1965), 338-365.
187
[108] D. Zhang and Y.-M. Liu, L-fuzzy version of Stone's representation theorem for distributive
188
lattices, Fuzzy Sets Syst., 76(2) (1995), 259-270.
189
ORIGINAL_ARTICLE
Convergence, Consistency and Stability in Fuzzy Differential Equations
In this paper, we consider First-order fuzzy differential equations with initial value conditions. The convergence, consistency and stability of difference method for approximating the solution of fuzzy differential equations involving generalized H-differentiability, are studied. Then the local truncation error is defined and sufficient conditions for convergence, consistency and stability of difference method are provided and fuzzy stiff differential equation and one example are presented to illustrate the accuracy and capability of our proposed concepts.
http://ijfs.usb.ac.ir/article_2021_27827fb7f621d2c20415fb8f401902e5.pdf
2015-06-30T11:23:20
2018-09-18T11:23:20
95
112
10.22111/ijfs.2015.2021
Consistence
Stability
Local truncation error
Generalized differentiability
Fuzzy stiff differential equation
R.
Ezzati
ezati@kiau.ac.ir
true
1
Department of Mathematics, Karaj Branch, Islamic Azad University,
Karaj, Iran
Department of Mathematics, Karaj Branch, Islamic Azad University,
Karaj, Iran
Department of Mathematics, Karaj Branch, Islamic Azad University,
Karaj, Iran
LEAD_AUTHOR
K.
Maleknejad
maleknejad@iust.ac.ir
true
2
Department of Mathematics, Karaj Branch, Islamic Azad University,
Karaj, Iran
Department of Mathematics, Karaj Branch, Islamic Azad University,
Karaj, Iran
Department of Mathematics, Karaj Branch, Islamic Azad University,
Karaj, Iran
AUTHOR
S.
Khezerloo
s_khezerloo@azad.ac.ir
true
3
Department of Mathematics, Islamic Azad University - South Tehran
Branch, Tehran, Iran
Department of Mathematics, Islamic Azad University - South Tehran
Branch, Tehran, Iran
Department of Mathematics, Islamic Azad University - South Tehran
Branch, Tehran, Iran
AUTHOR
M.
Khezerloo
khezerloo@iasbs.ac.ir
true
4
Department of Mathematics, Institute for Advanced Studies in Basic
Sciences(IASBS), P.O. BOX 45195-1159, Zanjan, Iran
Department of Mathematics, Institute for Advanced Studies in Basic
Sciences(IASBS), P.O. BOX 45195-1159, Zanjan, Iran
Department of Mathematics, Institute for Advanced Studies in Basic
Sciences(IASBS), P.O. BOX 45195-1159, Zanjan, Iran
AUTHOR
[1] S. Abbasbandy and T. Allahviranloo, Numerical solutions of fuzzy dierential equations by
1
Taylor method, Journal of Computational Methods in Applied Mathematics, 2 (2002), 113{
2
[2] T. Allahviranloo, N. A. Kiani and M. Barkhordari, Toward the existence and uniquness
3
of solution of second- order fuzzy dierential equations, Information Sciences, 179 (2009),
4
1207{1215.
5
[3] T. Allahviranloo and M. Barkhordari, Fuzzy laplace transforms, Soft Computing, 14 (2010),
6
[4] B. Bede and SG. Gal, Almost periodic fuzzy-number valued functions, Fuzzy Sets and Sys-
7
tems, 147 (2004), 385{403.
8
[5] B. Bede and SG. Gal, Generalizations of dierentiablity of fuzzy number valued function with
9
application to fuzzy dierential equations, Fuzzy Sets and Systems, 151 (2005), 581-599.
10
[6] B. Bede, Imre J. Rudas c and Attila L., First order linear fuzzy dierential equations under
11
generalized dierentiability, Information Sciences, 177 (2007), 3627-3635.
12
[7] Y. Chalco-Cano and H. Roman-Flores, On new solutions of fuzzy dierential equations,
13
Chaos, solitons and Fractals (2006), 1016-1043.
14
[8] S. L. Chang and L. A. Zadeh, On fuzzy mapping and control, IEEE Trans, Systems Man
15
Cybernet., 2 (1972), 30-34.
16
[9] D. Dubois and H. Prade, Towards fuzzy dierential calculus: Part 3, dierentiation, Fuzzy
17
Sets and Systems, 8 (1982), 225-233.
18
[10] S. G. Gal, Approximation theory in fuzzy setting, in: G.A. Anastassiou (Ed.), Handbook of
19
Analytic-Computational Methods in Applied Mathematics, Chapman Hall CRC Press, (2000),
20
[11] R. Goetschel and W. Voxman, Elementary fuzzy calculus, Fuzzy sets and Systems, 18 (1986),
21
[12] O. Kaleva, Fuzzy dierential equations, Fuzzy Sets and Systems, 24 (1987), 301-317.
22
[13] O. Kaleva, The Cuachy problem for fuzzy dierential equations, Fuzzy Sets and Systems, 35
23
(1990), 389-396.
24
[14] M. Ma, M. Friedman and A. Kandel, Numerical solutions of fuzzy dierential equations,
25
Fuzzy Sets and Systems, 105 (1999), 133-138.
26
[15] M. L. Puri and D. A. Ralescu, Dierentials of fuzzy functions, J. math. Analysis. Appl., 91
27
(1983), 552-558.
28
[16] S. Salahshour and T. Allahviranloo, Applications of fuzzy Laplace transforms, Soft comput-
29
ing, 17 (2013), 145-158.
30
[17] S. Salahshour and T. Allahviranloo, A new method for solving fuzzy rst order dierential
31
equations, IPMU, 2012.
32
[18] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems, 24 (1987), 319-330.
33
[19] C. Wu and Z. Gong, On Henstock integral of fuzzy-number-valued functions I, Fuzzy Sets
34
and Systems, 120 (2001), 523-532.
35
ORIGINAL_ARTICLE
Interval Type-2 Fuzzy Rough Sets and Interval Type-2 Fuzzy Closure Spaces
The purpose of the present work is to establish a one-to-one correspondence between the family of interval type-2 fuzzy reflexive/tolerance approximation spaces and the family of interval type-2 fuzzy closure spaces.
http://ijfs.usb.ac.ir/article_2022_3ededbfe97b2d5a0693ea6c5302fba77.pdf
2015-06-29T11:23:20
2018-09-18T11:23:20
113
125
10.22111/ijfs.2015.2022
Interval type-2 fuzzy set
Interval type-2
fuzzy rough set
Interval type-2 fuzzy reflexive approximation
space
Interval type-2 fuzzy tolerance approximation space
Interval type-2 fuzzy closure space
Interval type-2 fuzzy
topology
Shambhu
Sharan
shambhupuremaths@gmail.com
true
1
School of Advanced Sciences, VIT University,Vellore-632014,Tamil
Nadu, India
School of Advanced Sciences, VIT University,Vellore-632014,Tamil
Nadu, India
School of Advanced Sciences, VIT University,Vellore-632014,Tamil
Nadu, India
LEAD_AUTHOR
S. P.
Tiwari
sptiwarimaths@gmail.com
true
2
Department of Applied Mathematics, Indian School of Mines, Dhanbad-
826004, India
Department of Applied Mathematics, Indian School of Mines, Dhanbad-
826004, India
Department of Applied Mathematics, Indian School of Mines, Dhanbad-
826004, India
AUTHOR
V. K.
Yadav
vijayyadav3254@gmail.com
true
3
Department of Applied Mathematics, Indian School of Mines, Dhanbad-
826004, India
Department of Applied Mathematics, Indian School of Mines, Dhanbad-
826004, India
Department of Applied Mathematics, Indian School of Mines, Dhanbad-
826004, India
AUTHOR
[1] D. Dubois and H. Prade, Rough fuzzy set and fuzzy rough set, Internation Journal of General
1
Systems, 17(2-3) (1990), 191-209.
2
[2] J. Elorza and P. Burillo, On the relation between fuzzy peorders and fuzzy consequence oper-
3
ators, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 7(3)
4
(1999), 219-234.
5
[3] J. Elorza and P. Burillo, Connecting fuzzy preorders, fuzzy consequence operators and fuzzy
6
closure and co-closure systems, Fuzzy Sets and Systems, 139(3) (2003), 601-613.
7
[4] J. Elorza, R. Fuentes-Gonzalez, J. Bragard and P. Burillo, On the relation between fuzzy
8
closing morphological operators, fuzzy consequence operators induced by fuzzy preorders and
9
fuzzy closure and co-closure systems, Fuzzy Sets and Systems, 218 (2013), 73-89.
10
[5] J. Fang and P. Chen, One-to-one correspondence between fuzzifying topologies and fuzzy
11
preorders, Fuzzy Sets and Systems, 158(16) (2007), 1814-1822.
12
[6] J. Hao and Q. Li, The relationship between L-fuzzy rough set and L-topology, Fuzzy Sets and
13
Systems, 178(1) (2011), 74-83.
14
[7] M. Kondo, On the structure of generalized rough sets, Information Sciences, 176(5) (2006),
15
[8] H. Lai and D. Zhang, Fuzzy preorder and fuzzy topology, Fuzzy Sets and Systems, 157(14)
16
(2006), 1865-1885.
17
[9] Q. Liang and J. M. Mendel, Interval type-2 fuzzy logic systems: Theory and design, IEEE
18
Transactions on Fuzzy Systems, 8(5) (2000), 535-550.
19
[10] A. S. Mashhour and M. H. Ghanim, Fuzzy closure spaces, Journal of Mathematical Analysis
20
and Applications, 106(1) (1985), 154-170.
21
[11] J. M. Mendel and R. I. John, Type-2 fuzzy sets made simple, IEEE Transactions on Fuzzy
22
Systems, 10(2) (2002), 117-127.
23
[12] J. M. Mendel, R. I. John and F. Liu, Interval type-2 fuzzy logic systems made simple, IEEE
24
Transactions on Fuzzy Systems, 14(6) (2006), 808-821.
25
[13] M. Mizumoto and K. Tanaka, Some properties of fuzzy sets of type-2, Information and Con-
26
trol, 31(4) (1976), 312-340.
27
[14] Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences, 11
28
(1982), 341{356.
29
[15] K. Qin and Z. Pei, On the topological properties of fuzzy rough sets, Fuzzy sets and Systems,
30
151 (2005), 601-613.
31
[16] E. Sanchez, Eigen fuzzy sets and fuzzy relations, Journal of Mathematical Analysis and
32
Applications, 81(2) (1981), 399-421.
33
[17] Y. H. She and G. J. Wang, An axiomatic approach of fuzzy rough sets based on residuated
34
lattices, Computers and Mathematics with Applications, 58(1) (2009), 189-201.
35
[18] R. Srivastava, A. K. Srivastava and A. Choubey, Fuzzy closure spaces, Journal of fuzzy
36
Mathematics, 2 (1994), 525-534.
37
[19] S. P. Tiwari and A. K. Srivastava, Fuzzy rough sets, fuzzy preorders and fuzzy topologies,
38
Fuzzy sets and Systems, 210 (2013), 63-68.
39
[20] H. Y. Wu, Y. Y. Wu and J. P. Luo, An interval type-2 fuzzy rough set model for attribute
40
reduction, IEEE Transactions on Fuzzy Systems, 17(2) (2009), 301-315.
41
[21] Y. Y. Yao, Constructive and algebraic methods of the theory of rough sets, Information
42
Sciences, 109(1-4) (1998), 21-47.
43
[22] D. S. Yeung, D. Chen, E. C. C. Tsang, J. W. T. Lee and W. Xizhao, On the generalization
44
of fuzzy rough sets, IEEE Transactions on Fuzzy Systems, 13(3) (2005), 343-361.
45
[23] L. A. Zadeh, Fuzzy sets, Information and Control, 8(3) (1965), 338-353.
46
[24] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning,
47
Information Sciences, 8(3) (1975), 199-249.
48
[25] Z. Zhang, On characterization of generalized interval type-2 fuzzy rough sets, Information
49
Sciences, 219 (2013), 124-150.
50
ORIGINAL_ARTICLE
Boundedness of linear order-homomorphisms in $L$-topological vector spaces
A new definition of boundedness of linear order-homomorphisms (LOH)in $L$-topological vector spaces is proposed. The new definition iscompared with the previous one given by Fang [The continuity offuzzy linear order-homomorphism, J. Fuzzy Math. 5 (4) (1997)829$-$838]. In addition, the relationship between boundedness andcontinuity of LOHs is discussed. Finally, a new uniform boundednessprinciple in $L$-topological vector spaces is established in thesense of a new definition of uniform boundedness for a family ofLOHs.
http://ijfs.usb.ac.ir/article_2023_6994345f4f77c7f78c179cfc9a2c1c83.pdf
2015-06-30T11:23:20
2018-09-18T11:23:20
127
135
10.22111/ijfs.2015.2023
$L$-topological vector space
Linear order-homomorphism
Bounde-dness
Hua-Peng
Zhang
huapengzhang@163.com
true
1
School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
LEAD_AUTHOR
Jin-Xuan
Fang
jxfang@njnu.edu.cn
true
2
School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China
School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China
School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China
AUTHOR
[1] D. Dubois and H. Prade, Fuzzy sets and systems: theory and applications, Academic Press,
1
New York, 1980.
2
[2] M. A. Erceg, Functions, equivalence relations, quotient spaces and subsets in fuzzy set theory,
3
Fuzzy Sets and Systems, 3 (1980), 75{92.
4
[3] J. X. Fang, Fuzzy linear order-homomorphism and its structures, J. Fuzzy Math., 4(1) (1996),
5
[4] J. X. Fang, The continuity of fuzzy linear order-homomorphism, J. Fuzzy Math., 5(4) (1997),
6
[5] J. X. Fang and C. H. Yan, L-fuzzy topological vector spaces, J. Fuzzy Math., 5(1) (1997),
7
[6] J. X. Fang and H. Zhang, Boundedness and continuity of fuzzy linear order-homomorphisms
8
on I-topological vector spaces, Iranian Journal of Fuzzy Systems, 11(1) (2014), 147{157.
9
[7] M. He, Bi-induced mappings on L-fuzzy sets, Kexue Tongbao, (in Chinese), 31 (1986), 475.
10
[8] U. Hohle and S. E. Rodabaugh (Eds.), Mathematics of fuzzy sets: logic, topology and measure
11
theory, the handbooks of fuzzy sets series, vol. 3, Kluwer Academic Publishers, Dordrecht,
12
[9] A. K. Katsaras, Fuzzy topological vector spaces I, Fuzzy Sets and Systems, 6 (1981), 85{95.
13
[10] Y. M. Liu, Structures of fuzzy order homomorphisms, Fuzzy Sets and Systems, 21 (1987),
14
[11] Y. M. Liu and M. K. Luo, Fuzzy topology, World Scientic Publishing, Singapore, 1997.
15
[12] S. E. Rodabaugh, Point-set lattice-theoretic topology, Fuzzy Sets and Systems, 40 (1991),
16
[13] S. E. Rodabaugh, Powerset operator based foundation for point-set lattice-theoretic
17
(POSLAT) fuzzy set theories and topologies, Quaestiones Math., 20 (1997), 463{530.
18
[14] G. J. Wang, Order-homomorphisms on fuzzes, Fuzzy Sets and Systems, 12 (1984), 281{288.
19
[15] G. J. Wang, Theory of L-fuzzy topological spaces, Shaanxi Normal University Press, Xi'an,
20
(in Chinese), 1988 .
21
[16] C. H. Yan, Initial L-fuzzy topologies determined by the family of L-fuzzy linear order-
22
homomorphisms, Fuzzy Sets and Systems, 116 (2000), 409{413.
23
[17] C. H. Yan, Generalization of inductive topologies to L-topological vector spaces, Fuzzy Sets
24
and Systems, 131 (2002), 347{352.
25
[18] C. H. Yan and J. X. Fang, The uniform boundedness principle in L-topological vector spaces,
26
Fuzzy Sets and Systems, 136 (2003), 121{126.
27
ORIGINAL_ARTICLE
Distinct Fuzzy Subgroups of a Dihedral Group of Order $2pqrs$ for Distinct Primes $p, , q, , r$ and $s$
In this paper we classify fuzzy subgroups of the dihedral group $D_{pqrs}$ for distinct primes $p$, $q$, $r$ and $s$. This follows similar work we have done on distinct fuzzy subgroups of some dihedral groups.We present formulae for the number of (i) distinct maximal chains of subgroups, (ii) distinct fuzzy subgroups and (iii) non-isomorphic classes of fuzzy subgroups under our chosen equivalence and isomorphism. Some results presented here hold for any dihedral group of order $2n$ where $n$ is a product of any number of distinct primes.
http://ijfs.usb.ac.ir/article_2024_a19538744d9dc0e80b3a8fe6a94fe7a9.pdf
2015-06-30T11:23:20
2018-09-18T11:23:20
137
149
10.22111/ijfs.2015.2024
Dihedral group
Equivalence
Isomorphism
Fuzzy subgroup
Maximal chain
Keychain
Distinguishing factor
Babington
Makamba
bmakamba@ufh.ac.za
true
1
Department of Mathematics, University of Fort Hare, Alice
5700 , Eastern Cape , South Africa
Department of Mathematics, University of Fort Hare, Alice
5700 , Eastern Cape , South Africa
Department of Mathematics, University of Fort Hare, Alice
5700 , Eastern Cape , South Africa
LEAD_AUTHOR
Odilo
Ndiweni
ondiweni@ufh.ac.za
true
2
Department of Mathematics, University of Fort Hare, Alice 5700 ,
Eastern Cape , South Africa
Department of Mathematics, University of Fort Hare, Alice 5700 ,
Eastern Cape , South Africa
Department of Mathematics, University of Fort Hare, Alice 5700 ,
Eastern Cape , South Africa
AUTHOR
[1] S. Branimir and A. Tepavcevic, A note on a natural equivalence relation on fuzzy power set,
1
Fuzzy Sets and Systems, 148(2) (2004), 201{210.
2
[2] C. Degang, J. Jiashang, W. Congxin and E. C. C. Tsang, Some notes on equivalent fuzzy
3
sets and fuzzy subgroups, Fuzzy Sets and systems, 152(2) (2005), 403{409.
4
[3] V. Murali and B. B. Makamba, On an equivalence of fuzzy subgroups I, Fuzzy Sets and
5
Systems 123(2) (2001), 259{264.
6
[4] O. Ndiweni and B. B. Makamba, Classication of fuzzy subgroups of a dihedral group of
7
order 2pqr for distinct primes p, q and r, International Jounal of Mathematical Sciences and
8
Engineering Applications, 6(4) (2012) , 159{174.
9
[5] M. Pruszyriska and M. Dudzicz, On isomorphism between nite chains, Journal of Formalised
10
Mathematics, 12(1) (2003) , 1{2.
11
[6] S. Ray, Isomorphic fuzzy groups, Fuzzy Sets and Systems, 50(2) (1992) , 201{207.
12
[7] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971) , 512{517.
13
[8] M. Tarnauceanu and L. Bentea, On the number of subgroups of nite abelian groups, Fuzzy
14
Sets and Systems, 159(10) (2008) , 1084{1096.
15
[9] A. C. Volf, Counting fuzzy subgroups and chains of subgroups, Fuzzy Systems and Articial
16
Intelligence, 10(3) (2004) , 191{200.
17
ORIGINAL_ARTICLE
Solvable $L$-subgroup of an $L$-group
In this paper, we study the notion of solvable $L$-subgroup of an $L$-group and provide its level subset characterization and this justifies the suitability of this extension. Throughout this work, we have used normality of an $L$-subgroup of an $L$-group in the sense of Wu rather than Liu.
http://ijfs.usb.ac.ir/article_2025_54e716181d9591e118bc01071c130667.pdf
2015-06-30T11:23:20
2018-09-18T11:23:20
151
166
10.22111/ijfs.2015.2025
$L$-algebra
$L$-subgroup
Normal $L$-subgroup
Solvable $L$-subgroup
Derived series
Solvable series
Iffat
Jahan
ij.umar@yahoo.com
true
1
Department of Mathematics, Ramjas College,, University of Delhi,,
Delhi-110007, India
Department of Mathematics, Ramjas College,, University of Delhi,,
Delhi-110007, India
Department of Mathematics, Ramjas College,, University of Delhi,,
Delhi-110007, India
LEAD_AUTHOR
Naseem
Ajmal
nasajmal@yahoo.com
true
2
Department of Mathematics, Zakir Husain Delhi College,, J.N.Marg,
University of Delhi, Delhi-110006, India
Department of Mathematics, Zakir Husain Delhi College,, J.N.Marg,
University of Delhi, Delhi-110006, India
Department of Mathematics, Zakir Husain Delhi College,, J.N.Marg,
University of Delhi, Delhi-110006, India
AUTHOR
[1] N. Ajmal, Fuzzy groups with sup property, Inform. Sci., 93 (1996), 247-264.
1
[2] N. Ajmal and I. Jahan , A study of normal fuzzy subgroups and characteristic fuzzy subgroups
2
of a fuzzy group, Fuzzy Information and Engineering, 2 (2012), 123-143.
3
[3] N. Ajmal and I. Jahan, Nilpotency and theory of L-subgroups of an L-group, Fuzzy Informa-
4
tion and Engineering, 6 (2014), 1-17.
5
[4] N. Ajmal and A. Jain, Some constructions of the join of fuzzy subgroups and certain lattices
6
of fuzzy subgroups with sup property, Inform. Sci., 179 (2009), 4070-4082.
7
[5] N. Ajmal and I. Jahan,Generated L-subgroup of an L-group, Iranian Journal of Fuzzy Sys-
8
tems, 12(2) (2015), 129-136.
9
[6] J. A. Goguen, Lfuzzy sets, J. Math. Anal. Appl., 18 (1967), 145-174.
10
[7] K. C. Gupta and B. K. Sarma, nilpotent fuzzy groups, Fuzzy Sets and Systems, 101 (1999),
11
[8] W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8 (1982),
12
[9] D. S. Malik, J. N. Mordeson and P. S. Nair, Fuzzy normal subgroups in fuzzy subgroups, J.
13
Korean Math. Soc., 29 (1992), 1-8.
14
[10] L. Martinez, L Fuzzy subgroups of fuzzy groups and fuzzy ideals of fuzzy rings, J. Fuzzy
15
Math., 3 (1995), 833-849.
16
[11] J. N. Mordeson, K. R. Bhutani and A. Rosenfeld, Fuzzy group theory, Springer, 2005.
17
[12] J. N. Mordeson and D. S. Malik, Fuzzy commutative algebra, World Scientic, 1998.
18
[13] N. P. Mukherjee and P. Bhattacharya, Fuzzy groups: some group-theoretic analogs, Inform.
19
Science, 39 (1986), 247-268.
20
[14] A. S. Prajapati and N. Ajmal, Maximal ideals of L-subrings, J. Fuzzy Math., 15 (1999),
21
[15] A. S. Prajapati and N. Ajmal,Maximal ideals of L{subrings. II, J. Fuzzy Math., 15 (2007),
22
[16] M. G. Ranitovic and A. Tepavcevic, General form of lattice-valued fuzzy sets under the
23
cutworthy approach, Fuzzy Sets and Systems, 158 (2007), 1213-1216.
24
[17] S. Ray, Solvable fuzzy groups, Inform. Science 75 (1993) 47-61.
25
[18] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517.
26
[19] B. K. Sarma, Solvable fuzzy groups, Fuzzy Sets and Systems, 106 (1999), 463-467.
27
[20] B. Seselja, D. Stojic and A. Tepavcevic, On existence of P-valued fuzzy sets with a given
28
collection of cuts, Fuzzy Sets and Systems, 161 (2010), 763-768.
29
[21] B. Seselja and A. Tepavcevic,Completion of ordered structures by cuts of fuzzy sets: an
30
overview, Fuzzy Sets and Systems, 136 (2003), 1-19.
31
[22] W. Wu, Normal fuzzy subgroups, Fuzzy Math., 1 (1981), 21-30.
32
ORIGINAL_ARTICLE
Persian-translation vol. 12, no.3, June 2015
http://ijfs.usb.ac.ir/article_2647_57c7fc92eea1f99ca53467fa3f4fe555.pdf
2015-06-29T11:23:20
2018-09-18T11:23:20
169
178
10.22111/ijfs.2015.2647