ORIGINAL_ARTICLE
Cover vol. 14, no. 3, June 2017-
http://ijfs.usb.ac.ir/article_3245_ccd98255cc13944d3522d1a0d610959a.pdf
2017-06-29T11:23:20
2018-02-25T11:23:20
0
10.22111/ijfs.2017.3245
ORIGINAL_ARTICLE
ROBUST FUZZY CONTROL DESIGN USING GENETIC ALGORITHM OPTIMIZATION APPROACH: CASE STUDY OF SPARK IGNITION ENGINE TORQUE CONTROL
In the case of widely-uncertain non-linear system control design, it was very difficult to design a single controller to overcome control design specifications in all of its dynamical characteristics uncertainties. To resolve these problems, a new design method of robust fuzzy control proposed. The solution offered was by creating multiple soft-switching with Takagi-Sugeno fuzzy model for optimal solution control at all operating points that generate uncertainties. Optimal solution control at each operating point was calculated using genetic algorithm. A case study of engine torque control of spark ignition engine model was used to prove this new method of robust fuzzy control design. From the simulation results, it can be concluded that the controller operates very well for a wide uncertainty.
http://ijfs.usb.ac.ir/article_3238_c398a2f414222f158d23d078724feb5f.pdf
2017-06-29T11:23:20
2018-02-25T11:23:20
1
13
10.22111/ijfs.2017.3238
Fuzzy Logic
Robust fuzzy control
Takagi-Sugeno fuzzy model
Genetic Algorithm
Engine torque control
Spark ignition engine
Aris
Triwiyatno
aristriwiyatno@yahoo.com
true
1
Department of Electrical Engineering, Diponegoro University,
Semarang, Indonesia
Department of Electrical Engineering, Diponegoro University,
Semarang, Indonesia
Department of Electrical Engineering, Diponegoro University,
Semarang, Indonesia
LEAD_AUTHOR
Sumardi
Sumardi
true
2
Department of Electrical Engineering, Diponegoro University,
Semarang, Indonesia
Department of Electrical Engineering, Diponegoro University,
Semarang, Indonesia
Department of Electrical Engineering, Diponegoro University,
Semarang, Indonesia
AUTHOR
Esa
Apriaskar
esaindo@gmail.com
true
3
Department of Electrical Engineering, Diponegoro University, Se-
marang, Indonesia
Department of Electrical Engineering, Diponegoro University, Se-
marang, Indonesia
Department of Electrical Engineering, Diponegoro University, Se-
marang, Indonesia
AUTHOR
[1] M. Athans, A tutorial on the LQG/LTR method, in 1986 American Control Conference,
1
0582(606) (1986), 1289{1296.
2
[2] S. G. Cao, N. W. Rees and G. Feng, Analysis and design of fuzzy control systems using
3
dynamic fuzzy-state space models, IEEE Trans. Fuzzy Syst., 7(2) (1999), 192-200.
4
[3] M. A. Denai and S. A. Attia, Robust state feedback control of eld oriented induction motor,
5
in Advanced Motion Control, 2000, (2000), 281{286.
6
[4] P. Eklund and J. Zhou, Comparison of learning strategies for adaptation of fuzzy controller
7
parameters, Fuzzy Sets Syst., 106(3) (1999), 321{333.
8
[5] D. E. Goldberg, Genetic algorithm in search, optimization, and machine learning. Addison-
9
Wesley Publ. Co, (1989), 60{85.
10
[6] N. Heintz, M. Mews, G. Stier, A. Beaumont and A. Noble, An approach to torque-based
11
engine management systems, Soc. Automot. Eng., (2001-01-0269) (2001), 95-102.
12
[7] D. M. Lamberson, Torque management of gasoline engines, Thesis, University of California
13
at Berkeley, (2003), 27-40.
14
[8] Q. Li and T. Chai, Fuzzy adaptive control for a class of nonlinear systems, Fuzzy Sets Syst.,
15
101(1) (1999), 31{39.
16
[9] T.- Li, S.- Tong and G. Feng, A novel robust adaptive-fuzzy-tracking control for a class of
17
nonlinear multi-input/multi-output systems, Fuzzy Syst. IEEE Trans., 18(1) (2010), 150{
18
[10] F. Mei, M. Zhihong, X. Yu and T. Nguyen, A robust tracking control scheme for a class of
19
nonlinear systems with fuzzy nominal models, Appl. Math. Comput. Sci., 8(1:19) (1998),
20
[11] Y. Shi and M. Mizumoto, A new approach of neuro-fuzzy learning algorithm for tuning fuzzy
21
rules, Fuzzy Sets Syst., 112(1) (2000), 99{116.
22
[12] A. Stefanopoulou, Modeling and control of advanced technology engines, Thesis, The Univer-
23
sity of Michigan, (1996), 11-28.
24
[13] T. Takagi and M. Sugeno, Fuzzy identication of systems and its applications to modeling
25
and control, IEEE Trans. Syst. Man Cybern., (1) (1985), 116-132.
26
[14] A. Triwiyatno, M. Nuh, A. Santoso and I. N. Sutantra, Engine torque control of spark ignition
27
engine using robust fuzzy logic control, IACSIT Int. J. Eng. Technol., 3(4) (2011), 352{358.
28
[15] A. Triwiyatno, M. Nuh, A. Santoso and I. N. Sutantra, Engine torque control of si engine
29
using linear quadratic integral tracking ( LQIT ) Optimal Control, IPTEK, 22(4) (2011),
30
[16] A. Triwiyatno, M. Nuh, A. Santoso and I. N. Sutantra, T-S fuzzy model design for engine
31
torque control system of spark ignition engine, Transmisi, 11(4) (2009), 177-182.
32
[17] A. Triwiyatno, M. Nuh, A. Santoso and I. N. Sutantra, A new method of robust fuzzy control?:
33
case study of engine torque control of spark ignition engine, Int. J. Acad. Res., 3(5) (2011),
34
ORIGINAL_ARTICLE
TIME-VARYING FUZZY SETS BASED ON A GAUSSIAN MEMBERSHIP FUNCTIONS FOR DEVELOPING FUZZY CONTROLLER
The paper presents a novel type of fuzzy sets, called time-Varying Fuzzy Sets (VFS). These fuzzy sets are based on the Gaussian membership functions, they are depended on the error and they are characterized by the displacement of the kernels to both right and left side of the universe of discourse, the two extremes kernels of the universe are fixed for all time. In this work we focus only on the midpoint movement of the universe, all points of supports (kernels) are shifted by the same distance and in the same direction excepted the two extremes points of supports are always fixed for all computation time. To show the effectiveness of this approach we used these VFS to develop a PDC (Parallel Distributed Compensation) fuzzy controller for a nonlinear and certain system in continuous time described by the T-S fuzzy model, the parameters of the functions defining the midpoint movements are optimized by a PSO (Particle Swarm Optimization) approach.
http://ijfs.usb.ac.ir/article_3241_d7be948724c863333e8a4d68ec6387ae.pdf
2017-06-29T11:23:20
2018-02-25T11:23:20
15
39
10.22111/ijfs.2017.3241
Fuzzy sets
Fuzzy system
Gaussian Membership function
PDC fuzzy controller
PSO method
TS model and stability
LMI
Salim
Ziani
true
1
Department of Electronics, Laboratory of Automatic and Robotics
LARC, University of Mentouri brother's Constantine, Route Ain ElBey, 25000, Constantine , Algeria
Department of Electronics, Laboratory of Automatic and Robotics
LARC, University of Mentouri brother's Constantine, Route Ain ElBey, 25000, Constantine , Algeria
Department of Electronics, Laboratory of Automatic and Robotics
LARC, University of Mentouri brother's Constantine, Route Ain ElBey, 25000, Constantine , Algeria
LEAD_AUTHOR
[1] A. Baratella Lugli, E. Raimundo Neto, J. Paulo C. Henriques, M. Daniela Arambulo Her-
1
vas, M. Mauro Dias Santos and J. Francisco Justo, Industrial application control with fuzzy
2
systems, International Journal of Innovative Computing, Information and Control (IJICIC),
3
12(2) (2016), 665{676.
4
[2] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear matrix inequalities in systems
5
and control theory ,SIAM Studies in Applied Mathematics, SIAM, Philadelphia, PA, (1994),
6
[3] O. Castillo, N. Cazarez, D. Rico and L. T. Aguilar, Intelligent control of dynamic systems
7
using type2 fuzzy logic and stability issues , International Mathematical Forum, 1(28) (2006),
8
1371{1382.
9
[4] S. Chopra, R. Mitra and V. Kumar, Reduction of fuzzy rules and membership functions
10
and its application to fuzzy pi and pd type controllers, International Journal of Control,
11
Automation and Systems, 4(2) (2006), 438{447.
12
[5] Z. Daqing, Z. Qingling and Z. Yan, Stabilization of T-S fuzzy systems: an SOS approach,
13
International Journal of Innovative Computing, Information and Control, 4(9) (2008), 2273{
14
[6] J. Dong and G. H. Yang, Static output feedback control synthesis for discrete-time T-S fuzzy
15
systems, static output feedback control synthesis for discrete-time T-S fuzzy systems, Inter-
16
national Journal of Control, Automation, and Systems, 5(3) (2007), 349-354.
17
[7] C. H. Fang, Y. S. Liu, S. W. Kau, L. Hong and C. H. Lee, A new LMI-based approach to
18
relaxed quadratic stabilization of T-S fuzzy control systems, IEEE Trans. on Fuzzy Sysems,
19
14(3) (2006), 386{397.
20
[8] P. Gahinet, A. Nemirovski, A. J. Laub and M. Chilali, LMI control toolbox, The Math Works,
21
Natick, MA, 1 (1995), 175{356.
22
[9] Z. L. Gaing, A particle swarm optimization approach for optimum design of PID controller
23
in AVR system, IEEE Trans. Energy Conv., 9(2) (2004), 384{391.
24
[10] M.R. Ghazali, Z. Ibrahim, M. Helmi Suid, M. Salihin Saealal and M. Zaidi Mohd Tumari,
25
Single input fuzzy logic controller for
26
exible joint manipulator, International Journal of
27
Innovative Computing, Information and Control (IJICIC), 12(1) (2016), 181{191.
28
[11] S. J. Huang and W. C. Lin, A self-organizing fuzzy controller for an active suspension system,
29
Journal of Vibration and Control, 9 (2003), 1023{1040.
30
[12] S. J. Huang and J. S. Lee, Stable self-organizing fuzzy controller for robotic motion control,
31
IEEE Transactions on Industrial Electronics, 47(2) (2000), 421{428.
32
[13] S. Jafarzadeh and al., Stability analysis and control of discrete Type-1 and Type-2 TSK
33
fuzzy systems: Part II. control design, IEEE Transactions on fuzzy systems, 19(6) (2011),
34
[14] S. Kaitwanidvilai, P. Olranthichachart and I. Ngamroo, PSO based automatic weight selec-
35
tion and xed structure robust loop shaping control for power system control applications,
36
International Journal of Innovative Computing, Information and Control, 7(4) (2011), 1549{
37
[15] J. Kennedy and R. Eberhart, Particle swarm optimization, from Proc. IEEE Int. Conf. on
38
Neural Networks (Perth, Australia), IEEE Service Center, Piscataway, NJ, (1995), 1942{1948.
39
[16] D. W. Kim, J. B. Park, Y. H. Joo and S. H. Kim, Multirate digital control for fuzzy systems
40
LMI-based design and stability analysis, International Journal of Control, Automation, and
41
Systems, 4(4) (2006), 506{515.
42
[17] H. K. Lam, F. H. F. Leung and P. K. S. Tam, A Linear matrix inequality approach for the
43
control of uncertain fuzzy systems, IEEE Control Systems Magazine, 22(4) (2002), 20{25.
44
[18] Y. Li, S. Sui and S. Tong, Adaptive fuzzy control design for stochastic nonlinear switched sys-
45
tems with arbitrary switchings and unmodeled dynamics, IEEE Transactions on Cybernetics,
46
(99) (2016), 1{12.
47
[19] Y. Li, S. Tong and T. Li, Adaptive fuzzy output feedback dynamic surface control of intercon-
48
nected nonlinear pure-feedback systems, IEEE Transactions on Cybernetics, 45(1) (2015),
49
[20] J. Li, H. O. Wang, D. Niemann and K. Tanaka, Dynamic parallel distributed compensation
50
for Takagi-Sugeno fuzzy systems: An LMI approach, Information Sciences, 123(3-4) (2000),
51
[21] R. I. Lian, B. F. Lin and W. T. Sie, Self-organizing fuzzy control of active suspension systems,
52
International Journal of Systems Science, 36(3) (2005), 119{135.
53
[22] D. Maravall, C. Zhou and J. Alonso, Hybrid fuzzy control of the inverted pendulum via vertical
54
forces, International journal of intelligent systems, 20 (2005), 195{211.
55
[23] M. Margaliot and G. Langholz, New approaches to fuzzy modeling and control:design and
56
analysis, World scientic, Singapore, 11(4) (2000), 486{494.
57
[24] J. M. Mendel, L. Fellow, Robert I. John and Feilong Liu., Interval type-2 fuzzy systems made
58
simple, IEEE transactions on fuzzy systems, 14(6) (2006), 808{821.
59
[25] D. Niemann, J. Li, H. O. Wang and K. Tanaka, Parallel distributed compensation for Takagi-
60
Sugeno fuzzy models: New stability conditions and dynamic feedback designs, Proceeding of
61
14th World Congress of IFAC, (1999), 207{212.
62
[26] Y. M. Park, U. C. Moon and K. Y. Lee, A self-organizing fuzzy logic for dynamic system
63
using fuzzy auto-regressive moving average (FARMA) model, IEEE Transaction on fuzzy
64
system, 3(1) (1995), 75{82.
65
[27] P. A. Phan and T. J. Gale, Direct adaptive fuzzy control with a self structuring algorithm,
66
Fuzzy Sets Systems, 159(8) (2008), 871{899.
67
[28] M. Sugeno and G. T. Nishida, Fuzzy control of model car, Fuzzy Sets and Systems, 16(1)
68
(1985), 103{113.
69
[29] M. Sugeno, Industrial applications of fuzzy control, Elsevier Science Pub. Co., New York,
70
(1985), 249{269.
71
[30] T. Takagi and M. Sugeno, Fuzzy identication of systems and its application to modeling
72
and control, IEEE Trans. on Syst. Man and Cybernetics, 15 (1985), 116{132.
73
[31] K. Tanaka, T. Ikeda and H. O. Wang. , Design of fuzzy control systems based on relaxed LMI
74
stability conditions, 35th IEEE Conference on Decision and Control, 1 (1996), 598{603.
75
[32] K. Tanaka and H. O. Wang, Fuzzy control systems design and analysis : A linear matrix
76
inequality approach, Hoboken, NJ: Wiley, 1 (2001), 06{81.
77
[33] K. Tanaka and M. Sano, Fuzzy stability criterion of a class nonlinear systems, Inform. SC.,
78
71(2) (1993), 3{26.
79
[34] T. Tanaka, T. Ikeda and H. O. Wang, An LMI approach to fuzzy controller designs based on
80
relaxed stability Conditions, Proc. of the IEEE Conf. on Fuzzy Systems, (1997), 171{176.
81
[35] K. Tanaka, T. Taniguchi and H. O. Wang, Model-based fuzzy control of TORA system:
82
fuzzy regulator and fuzzy observer design via LMIs that represent decay rate, disturbance
83
rejection, robustness, optimality, Seventh IEEE International Conference on Fuzzy Systems,
84
(1998), 313{318.
85
[36] K. Tanaka, T. Ikeda and H. O. Wang, Robust stabilization of a class of uncertain nonlinear
86
systems Via fuzzy control: quadratic stabilizability, control theory and linear matrix inequal-
87
ities, IEEE Trans. on Fuzzy Systems, 4(1) (1996), 1{13.
88
[37] C. W. Ting and C. Quek., A novel blood glucose regulation using TSKFCMAC: A fuzzy
89
CMAC based on the zero-ordered TSK fuzzy inference scheme, IEEE Trans. Neural Netw.,
90
20(5) (2009), 856{871.
91
[38] H. D. Tuan, P. Apkarian, T. Narikiyo and M. Kanota, New fuzzy control model and dynamic
92
output feedback parallel distributed compensation, IEEE Trans. on Fuzzy Systems, 12(1)
93
(2004), 13{21.
94
[39] H. O. Wang, K. Tanaka and M. F. Grin, An approach to fuzzy control of nonlinear systems:
95
Stability and design issues, IEEE Transaction on fuzzy systems, 4(1) (1996), 14{23.
96
[40] D. Wu and J. M. Mendel, Enhanced KarnikMendel algorithms, IEEE Transactions on fuzzy
97
systems,17(4) (2009).
98
[41] L. A. Zadeh, The concept of linguistic variable and its application for approximate reasoning,
99
Information Sciences, 8(3) (1975), 199{249.
100
[42] L. A. Zadeh, Fuzzy sets, Information Control, 8 (1965), 335{353.
101
[43] S. Ziani and S. Filali, Time-varying fuzzy sets in adaptive control, 14th International
102
Conference on Sciences and Techniques of Automatic Control and Computer Engineering
103
(STA'2013), 1 (2013), 6{13.
104
[44] S. Ziani, S. Filali and Yunfu Huo, A time-varying fuzzy sets as functions of the error, Interna-
105
tional Journal of Innovative Computing, Information and Control, 6(12) (2010), 5709{5723.
106
ORIGINAL_ARTICLE
MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM
Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of brain tumors, such as primary gliomas from metastases, and also for grading of gliomas. Manual classification results look better because it involves human intelligence but the disadvantage is that the results may differ from one person to another person and takes long time. MRI image based automatic diagnosis method is used for early diagnosis and treatment of brain tumors. In this article, fully automatic, multi class brain tumor classification approach using hybrid structure descriptor and Fuzzy logic based Pair of RBF kernel support vector machine is developed. The method was applied to a population of 102 brain tumors histologically diagnosed as Meningioma (115), Metastasis (120), Gliomas grade II (65) and Gliomas grade II (70). Classification accuracy of proposed system in class 1(Meningioma) type tumor is 98.6\%, class 2 (Metastasis) is 99.29\%, class 3(Gliomas grade II) is 97.87\% and class 4(Gliomas grade III) is 98.6\%.
http://ijfs.usb.ac.ir/article_3243_b8813791bf5849715994dda4eea36e16.pdf
2017-06-29T11:23:20
2018-02-25T11:23:20
41
54
10.22111/ijfs.2017.3243
MRI
Classification
Fuzzy support vector machine
Feature selection
Texture
tumor class
Radial Basics Function (RBF)
A.
Jayachandran
true
1
Department of CSE, PSN College of Engineering and Technology, Tirunelveli, India
Department of CSE, PSN College of Engineering and Technology, Tirunelveli, India
Department of CSE, PSN College of Engineering and Technology, Tirunelveli, India
LEAD_AUTHOR
R.
Dhanasekaran
true
2
Department of EEE, Syed Ammal Engineering College,
Ramanathapuram,India
Department of EEE, Syed Ammal Engineering College,
Ramanathapuram,India
Department of EEE, Syed Ammal Engineering College,
Ramanathapuram,India
AUTHOR
[1] S. Bauer S, L. P. Nolte and M. Reyes, Fully automatic segmentation of brain tumor im-
1
ages using support vector machine classication in combination with hierarchical conditional
2
random eld regularization, Med Image Comput Assist Interv., 14(3) (2011), 354{361.
3
[2] C. J. C. Burges., A tutorial on support vector machines for pattern recognition, Data Mining
4
and Knowledge Discovery, 2 (1998), 121{167.
5
[3] S. Chaplot , L. M. Patnai and N. R. Jagannathan , Classication of magnetic resonance brain
6
images using wavelets as input to support vector machine and neural network, Biomedical
7
Signal Processing and Control, 1(1) (2006), 86{92.
8
[4] J. Chunming Li, R. Huang, Z. Ding and J. Chris Gatenby, A level set method for image
9
segmentation in the presence of intensity in-homogeneities with application to MRI, IEEE
10
Trans Image Process, 20 (2011), 2007{2016.
11
[5] R. Dhanasekaran and A. Jayachandranm, Brain tumor detection using fuzzy support vector
12
machine classication based on a texton Co-occurrence matrix, Journal of imaging Science
13
and Technology, 57(1) (2013), 10507-1{10507-7.
14
[6] S. R. Dubey, S. K. Singh, and R. K. Singh, Rotation and scale invariant hybrid image
15
descriptor and retrieval, Computers & Electrical Engineering, 46(8) (2015), 288{302.
16
[7] N. E. Ibrahim, S. Khalid and M. Manaf, Seed-Based region growing (SBRG) vs adaptive
17
network-based inference system (ANFIS) vs fuzzy c-means(FCM) - brain abnormalities seg-
18
mentation, World Acad. Sci. Eng. Technol., 68 (2010), 425{435.
19
[8] A. Jayachandran and R. Dhanasekaran, Automatic detection of brain tumor in magnetic
20
resonance images using multi-texton histogram and support vector machinel, International
21
Journal of Imaging Systems and Technology, 23(2) (2013), 97{103.
22
[9] A. Jayachandran and R. Dhanasekaran, Severity analysis of brain tumor in MRI images uses
23
modied multi-texton structure descriptor and kernel- SVM, The Arabian Journal of science
24
and engineering, 39(10) (2014), 7073{7086.
25
[10] B. Julesz, Textons|the elements of texture perception and their interactions, Nature, 290
26
(1981), 91{97.
27
[11] G. Kharmega Sundararaj and A. Jayachandran, Abnormality segmentation and classica-
28
tion of multi-class brain tumor in MR images using fuzzy logic-based hybrid kernel SVM,
29
International journal of Fuzzy System, 17(3) (2015), 434{443.
30
[12] J. S. Lin, K. S. Cheng and C. W. Mao, Segmentation of multispectral magnetic resonance im-
31
age using penalized fuzzy competitive learning network, Journal of Computers and Biomedical
32
Research, 29(4) (1996), 314{326.
33
[13] G. H. Liu, L. Zhang, Yingkun Hou, Zuoyong Li and Jing-Yu Yang, Image retrieval based on
34
multi-texton histogram, Pattern Recognition, 43(7) (2010), 2380{2389.
35
[14] C. L. P. Long-Chen, Philip Chen and L. U. Mingzhu, A multiple-kernel fuzzy C-means algo-
36
rithm for image segmentation, IEEE Transactions On Systems, Man, and Cybernetics{Part
37
B: Cybernetics, 41(5) (2011), 1263{1274.
38
[15] T. Wang and H. M. Chiang, Fuzzy support vector machine for multi-class text categorization,
39
Information Processing and Management, 43 (2007), 914{929.
40
[16] R. J. Young and E. A. Knopp, Brain MRI: tumor evaluation, Journal of Magnetic Resonance
41
Imaging, 24 (2006), 709{724.
42
[17] E. I. Zacharaki, S. Wang, S. Chawla, E. R. Melhem and C. Davatzikos, Classication of brain
43
tumor type and grade using MRI texture in a machine learning technique, Magn. Reson. Med.,
44
62 (2009), 1609{1618.
45
[18] K. Zhang, H. X. Cao and H. Yan, Application of support vector machines on network abnor-
46
mal intrusion detection, Application Research of Computers, 5 (2006), 98{100.
47
[19] C. Zhu and T. Jiang, Multi context fuzzy clustering for separation of brain tissues in magnetic
48
resonance images, Neuro lmage, 18(3) (2003), 685 {696.
49
[20] W. Zhu, N. Zeng and N. Wang, Sensitivity, specicity, accuracy, associated condence in-
50
terval and ROC analysis with practical SAS implementations, In: Proceedings of the SAS
51
Conference, NESUG 210, November 14{17, Baltimore, Maryland, 2010.
52
ORIGINAL_ARTICLE
FUZZY PREORDERED SET, FUZZY TOPOLOGY AND FUZZY AUTOMATON BASED ON GENERALIZED RESIDUATED LATTICE
This work is towards the study of the relationship between fuzzy preordered sets and Alexandrov (left/right) fuzzy topologies based on generalized residuated lattices here the fuzzy sets are equipped with generalized residuated lattice in which the commutative property doesn't hold. Further, the obtained results are used in the study of fuzzy automata theory.
http://ijfs.usb.ac.ir/article_3255_201b41030e5c74457d34ff1e9b8fee44.pdf
2017-06-29T11:23:20
2018-02-25T11:23:20
55
66
10.22111/ijfs.2017.3255
Generalized residuated lattice
(left/right) Subsystem
Fuzzy automata
Alexandrov (left/right) fuzzy topology
Anupam K.
Singh
true
1
Amity Institute of Applied Science (AIAS), Amity University,
Sector-125, Noida, Uttar Pradesh-201313, India
Amity Institute of Applied Science (AIAS), Amity University,
Sector-125, Noida, Uttar Pradesh-201313, India
Amity Institute of Applied Science (AIAS), Amity University,
Sector-125, Noida, Uttar Pradesh-201313, India
LEAD_AUTHOR
[1] P. Das, A fuzzy topology associated with a fuzzy nite state machine, Fuzzy Sets and Systems,
1
105(3) (1999), 469{479.
2
[2] G. Georgescu and A. Popescu, Non-commutative fuzzy Galois connections, Soft Computing,
3
7(7) (2003), 458{467.
4
[3] X. Guo, Grammar theory based on lattice-order monoid, Fuzzy Sets and Systems, 160(8)
5
(2009), 1152-1161.
6
[4] J. Ignjatovic, M. Ciric and S. Bogdanovic, Determinization of fuzzy automata with member-
7
ship values in complete residuated lattices, Information Sciences, 178(1) (2008), 164{180.
8
[5] J. Ignjatovic, M. Ciric and V. Simovic, Fuzzy relation equations and subsystems of fuzzy
9
transition systems, Knowledge-Based Systems, 38 (2013), 48-61.
10
[6] Y. B. Jun, Intuitionistic fuzzy nite state machines, J. Appl. Math. Comput., 17(1) (2005),
11
[7] Y. B. Jun, Intuitionistic fuzzy nite switchboard state machines, J. Appl. Math. Comput.,
12
20(1) (2006), 315-325.
13
[8] Y.B. Jun, Quotient structures of intuitionistic fuzzy nite state machines, Information Sci-
14
ences, 177(22) (2007), 4977-4986.
15
[9] Y. H. Kim, J. G. Kim and S. J. Cho, Products of T-generalized state machines and T-
16
generalized transformation semigroups, Fuzzy Sets and Systems, 93(1) (1998), 87-97.
17
[10] H. V. Kumbhojkar and S. R. Chaudhri, On proper fuzzication of fuzzy nite state machines,
18
Int. J. Fuzzy Math., 4(4) (2000), 1019-1027.
19
[11] H. Lai, D. Zhang, Fuzzy preorder and fuzzy topology, Fuzzy Sets and Systems, 157(14)
20
(2006), 1865-1885.
21
[12] Y. Li and W. Pedrycz, Fuzzy nite automata and fuzzy regular expressions with membership
22
values in lattice-orderd monoids, Fuzzy Sets and Systems, 156(1) (2005), 68-92.
23
[13] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56(3)
24
(1976), 621-633.
25
[14] D. S. Malik, J. N. Mordeson and M. K. Sen, Submachines of fuzzy nite state machine,
26
J. Fuzzy Math., 2 (1994), 781-792.
27
[15] J. N. Mordeson and D. S. Malik, Fuzzy Automata and Languages: Theory and Applications.
28
Chapman and Hall/CRC, London/Boca Raton, 2002.
29
[16] D. Qiu, Automata theory based on complete residuated lattice-valued logic(I), Science in
30
China, 44(6) (2001), 419-429.
31
[17] D. Qiu, Automata theory based on complete residuated lattice-valued logic(II), Science in
32
China, 45(6) (2002), 442-452.
33
[18] D. Qiu, Automata theory based on quantum logic: Some characterizations, Information and
34
Computation, 190(2) (2004), 179-195.
35
[19] D. Qiu, Characterizations of fuzzy nite automata, Fuzzy Sets and Systems, 141(3) (2004),
36
[20] D. Qiu, Automata theory based on quantum logic: Reversibilities and pushdown automata,
37
Theoretical Computer Science, 386(1-2) (2007), 38-56.
38
[21] E. S. Santos, Maximin automata, Information and Control, 12(4) (1968), 367-377.
39
[22] Y. H. She and G. J. Wang, An axiomatic approach of fuzzy rough sets based on residuated
40
lattices, Comp. Math. Appl., 58(1) (2009), 189-201.
41
[23] A. K. Srivastava and S. P. Tiwari, A topology for fuzzy automata, In: Proc. AFSS Internat.
42
Conf. on Fuzzy System, Lecture Notes in Articial Intelligence, Springer, Berlin, 2275 (2002),
43
[24] A. K. Srivastava and S. P. Tiwari, On relationships among fuzzy approximation operators,
44
fuzzy topology, and fuzzy automata, Comp. Math. Appl., 138(1) (2003), 191-204.
45
[25] S. P. Tiwari and Anupam K. Singh, Fuzzy preorder, fuzzy topology and fuzzy transition
46
system, in: Proc. ICLA 2013, Lecture Notes in Computer Science, Springer, Berlin, 7750
47
(2013), 210-219.
48
[26] C. Y. Wang and B. Q. Hu, Fuzzy rough sets based on generalized residuated lattices, Infor-
49
mation Sciences, 248 (2013), 31-49.
50
[27] W. G.Wee, On generalizations of adaptive algorithm and application of the fuzzy sets concept
51
to pattern classication, Ph. D. Thesis, Purdue University, Lafayette, IN, 2013.
52
[28] L. Wu and D. Qiu, Automata theory based on complete residuated lattice-valued logic: Re-
53
duction and minimization, Fuzzy Sets and Systems, 161(12) (2010), 1635-1656.
54
[29] L. A. Zadeh, Fuzzy Sets, Information and Control, 8(3) (1965), 338-353.
55
ORIGINAL_ARTICLE
A COMMON FRAMEWORK FOR LATTICE-VALUED, PROBABILISTIC AND APPROACH UNIFORM (CONVERGENCE) SPACES
We develop a general framework for various lattice-valued, probabilistic and approach uniform convergence spaces. To this end, we use the concept of $s$-stratified $LM$-filter, where $L$ and $M$ are suitable frames. A stratified $LMN$-uniform convergence tower is then a family of structures indexed by a quantale $N$. For different choices of $L,M$ and $N$ we obtain the lattice-valued, probabilistic and approach uniform convergence spaces as examples. We show that the resulting category $sLMN$-$UCTS$ is topological, well-fibred and Cartesian closed. We furthermore define stratified $LMN$-uniform tower spaces and show that the category of these spaces is isomorphic to the subcategory of stratified $LMN$-principal uniform convergence tower spaces. Finally we study the underlying stratified $LMN$-convergence tower spaces.
http://ijfs.usb.ac.ir/article_3256_cfb014316ad07007c6f93e1601624252.pdf
2017-06-29T11:23:20
2018-02-25T11:23:20
67
81
10.22111/ijfs.2017.3256
Stratified lattice-valued uniformity
Stratified lattice-valued uniform convergence space
Probabilistic uniform convergence space
Approach uniform convergence space
Stratified $LM$-filter
Gunther
Jager
g.jager@ru.ac.za, gunther.jaeger@fh-stralsund.de
true
1
School of Mechanical Engineering, University of Applied Sciences
Stralsund, 18435 Stralsund, Germany
School of Mechanical Engineering, University of Applied Sciences
Stralsund, 18435 Stralsund, Germany
School of Mechanical Engineering, University of Applied Sciences
Stralsund, 18435 Stralsund, Germany
LEAD_AUTHOR
[1] J. Adamek, H. Herrlich and G. E. Strecker, Abstract and concrete categories, Wiley, New
1
York 1989.
2
[2] T. M. G. Ahsanullah and G. Jager, Probabilistic uniform convergence spaces redened, Acta
3
Math. Hungar., 146 (2015), 376 { 390.
4
[3] N. Bourbaki, General topology, Chapters 1 { 4, Springer Verlag, Berlin - Heidelberg - New
5
York - London - Paris - Tokyo, 1990.
6
[4] M. H. Burton, M. A. de Prada Vicente and J. Gutierrez Garca, Generalized uniform spaces,
7
J. Fuzzy Math., 4 (1996), 363 { 380.
8
[5] C. H. Cook and H. R. Fischer, Uniform convergence structures, Math. Ann. 173 (1967), 290
9
[6] A. Craig and G. Jager, A common framework for lattice-valued uniform spaces and proba-
10
bilistic uniform limit spaces, Fuzzy Sets and Systems, 160(2009), 1177 { 1203.
11
[7] J. Fang, Lattice-valued semiuniform convergence spaces, Fuzzy Sets and Systems, 195 (2012),
12
[8] R. C. Flagg, Quantales and continuity spaces, Algebra Univers., 37 (1997), 257 { 276.
13
[9] L. C. Florescu, Probabilistic convergence structures, Aequationes Math., 38 (1989), 123 {
14
[10] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, A com-
15
pendium of continuous lattices, Springer-Verlag Berlin Heidelberg, 1980.
16
[11] J. Gutierrez Garca, A unied approach to the concept of fuzzy L-uniform space, Thesis,
17
Universidad del Pais Vasco, Bilbao, Spain, 2000.
18
[12] J. Gutierrez Garca, M. A. de Prada Vicente and A. P. Sostak, A unied approach to the
19
concept of fuzzy L-uniform space, In: S. E. Rodabaugh, E. P. Klement (Eds.), Topological
20
and algebraic structures in fuzzy sets, Kluwer, Dordrecht, (2003), 81 { 114.
21
[13] U. Hohle, Characterization of L-topologies by L-valued neighborhoods, In: U. Hohle, S.E.
22
Rodabauch (Eds.), Mathematics of Fuzzy Sets. Logic, Topology and Measure Theory, Kluwer,
23
Boston/Dordrecht/London 1999, 389 { 432.
24
[14] U. Hohle and A. P. Sostak, Axiomatic foundations of xed-basis fuzzy topology, In: U. Hohle,
25
S. E. Rodabauch (Eds.), Mathematics of Fuzzy Sets. Logic, Topology and Measure Theory,
26
Kluwer, Boston/Dordrecht/London 1999, 123 { 272.
27
[15] G. Jager, A category of L-fuzzy convergence spaces, Quaestiones Math., 24 (2001), 501 { 518.
28
[16] G. Jager, Fischer's diagonal condition for lattice-valued convergence spaces, Quaestiones
29
Math., 31 (2008), 11 { 25.
30
[17] G. Jager, A note on stratied LM-lters, Iranian Journal of Fuzzy Systems, 10(4) (2013),
31
135 { 142.
32
[18] G. Jager, Stratied LMN-convergence tower spaces, Fuzzy Sets and Systems, 282 (2016), 62
33
[19] G. Jager, Uniform connectedness and uniform local connectedness for lattice-valued uniform
34
convergence spaces, Iranian Journal of Fuzzy Systems, 13(3) (2016), 95 { 111.
35
[20] G. Jager and M. H. Burton, Stratied L-uniform convergence spaces, Quaestiones Math., 28
36
(2005), 11 { 36.
37
[21] Y. J. Lee and B. Windels, Transitivity in uniform approach theory, Int. J. Math. and Math.
38
Sci., 32 (2002), 707 { 720.
39
[22] E. Lowen, R. Lowen and P. Wuyts, The categorical topology approach to fuzzy topology and
40
fuzzy convergence, Fuzzy Sets and Systems, 40 (1991), 347 { 373.
41
[23] R. Lowen and B. Windels, AUnif: A commmon supercategory of pMET and Unif, Int. J.
42
Math. and Math. Sci., 21 (1998), 1 { 18.
43
[24] H. Nusser, A generalization of probabilistic uniform spaces, Appl. Cat. Structures, 10 (2002),
44
[25] G. Preuss, Foundations of topology - An Approach to Convenient Topology, Kluwer, Dordrecht
45
[26] B. Schweizer and A. Sklar, Probabilistic metric spaces, North Holland, New York, 1983.
46
[27] O. Wyler, Filter space monads, regularity, completions, In: TOPO 1972 | General Topology
47
and its Applications, Lecture Notes in Mathematics, Vol.378, Springer, Berlin, Heidelberg,
48
New York, (1974), 591 { 637.
49
ORIGINAL_ARTICLE
GRADED DIUNIFORMITIES
Graded ditopological texture spaces have been presented and discussed in categorical aspects by Lawrence M. Brown and Alexander {\v S}ostak in \cite{BS}. In this paper, the authors generalize the structure of diuniformity in ditopological texture spaces defined in \cite{OB} to the graded ditopological texture spaces and investigate graded ditopologies generated by graded diuniformities. The autors also compare the properties of diuniformities and graded diuniformities.
http://ijfs.usb.ac.ir/article_3257_dbef2e3527c8756110916bb957e71ffa.pdf
2017-06-29T11:23:20
2018-02-25T11:23:20
83
103
10.22111/ijfs.2017.3257
Texture
Graded ditopology
Graded diuniformity
Fuzzy topology
Ramazan
Ekmekci
true
1
Department of Mathematics, Canakkale Onsekiz Mart University,
Canakkale, TURKEY
Department of Mathematics, Canakkale Onsekiz Mart University,
Canakkale, TURKEY
Department of Mathematics, Canakkale Onsekiz Mart University,
Canakkale, TURKEY
LEAD_AUTHOR
Rza
Erturk
true
2
Department of Mathematics, Hacettepe University, Ankara, TURKEY
Department of Mathematics, Hacettepe University, Ankara, TURKEY
Department of Mathematics, Hacettepe University, Ankara, TURKEY
AUTHOR
[1] J. Adamek, H. Herrlich and G. E. Strecer, Abstract and concrete categories, New York,
1
Chichester, Brisbane, Toronto, Singapore: John Wiley & Sons, Inc., 1990.
2
[2] L. M. Brown and M. Diker, Ditopological texture spaces and intuitionistic sets, Fuzzy Sets
3
and Systems, 98 (1998), 217{224.
4
[3] L. M. Brown and R. Erturk, Fuzzy sets as texture spaces, I. Representation theorems, Fuzzy
5
Sets and Systems, 110(2) (2000), 227{236.
6
[4] L. M. Brown, R. Erturk and S. Dost, Ditopological texture spaces and fuzzy topology, I. Basic
7
concepts, Fuzzy Sets and Systems, 147(2) (2004), 171{199.
8
[5] L. M. Brown, R. Erturk and S. Dost, Ditopological texture spaces and fuzzy topology, II.
9
Topological considerations, Fuzzy Sets and Systems, 147(2) (2004), 201{231.
10
[6] L. M. Brown, R. Erturk and S. Dost, Ditopological texture spaces and fuzzy topology, III.
11
Separation Axioms, Fuzzy Sets and Systems, 157(14) (2006), 1886{1912.
12
[7] L. M. Brown and A. Sostak, Categories of fuzzy topology in the context of graded ditopologies
13
on textures, Iranian Journal of Fuzzy Systems, 11(6) (2014), 1{20.
14
[8] C. L. Chang, Fuzzy topological spaces, Math. Anal. Appl., 24 (1968), 182{190.
15
[9] R. Ekmekci and R. Erturk, Neighborhood structures of graded ditopological texture spaces,
16
Filomat, 29(7) (2015), 1445{1459.
17
[10] R. Erturk, Separation axioms in fuzzy topology characterized by bitopologies, Fuzzy Sets and
18
Systems, 58 (1993), 206{209.
19
[11] T. Kubiak, On fuzzy topologies, PhD Thesis, A. Mickiewicz University Poznan, Poland (1985).
20
[12] S. Ozcag, Uniform texture spaces, PhD Thesis, Hacettepe University, Ankara, Turkey (2004).
21
[13] S. Ozcag and L. M. Brown, Di-uniform texture spaces, Appiled General Topology, 4(1)
22
(2003), 157{192.
23
[14] S. Ozcag, L. M. Brown and K. Biljana, Di-uniformities and Hutton uniformities, Fuzzy Sets
24
and Systems, 195 (2012), 58{74.
25
[15] S. Ozcag and S. Dost, A categorical view of di-uniform texture spaces, Bol. Soc. Mat. Mexicana,
26
3(15) (2009), 63{80.
27
[16] A. Sostak, On a fuzzy topological structure, Rend. Circ. Matem. Palermo, Ser. II, 11 (1985),
28
[17] A. Sostak, Two decates of fuzzy topology: basic ideas, notions and results, Russian Math.
29
Surveys, 44(6) (1989), 125{186.
30
[18] G. Yldz, Ditopological spaces on texture spaces, MSc Thesis, Hacettepe University, Ankara,
31
Turkey (2005).
32
ORIGINAL_ARTICLE
STABILITY OF THE JENSEN'S FUNCTIONAL EQUATION IN MULTI-FUZZY NORMED SPACES
In this paper, we define the notion of (dual) multi-fuzzy normedspaces and describe some properties of them. We then investigate Ulam-Hyers stability of Jensen's functional equation for mappings from linear spaces into multi-fuzzy normed spaces. We establish an asymptotic behavior of the Jensen equation in the framework of multi-fuzzy normed spaces.
http://ijfs.usb.ac.ir/article_3258_153830833c2db157f46d916f0391cc8f.pdf
2017-06-29T11:23:20
2018-02-25T11:23:20
105
119
10.22111/ijfs.2017.3258
Fuzzy normed space
Ulam-Hyers stability
Jensen's functional equation
Multi-normed space
Mahnaz
Khanehgir
mkhanehgir@gmail.com
true
1
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
LEAD_AUTHOR
[1] A. Alotaibi, M. Mursaleen, H. Dutta and S. A. Mohiuddine, On the Ulam stability of Cauchy
1
functional equation in IFN-spaces, Appl. Math. Inf. Sci. 8(3) (2014), 1135{1143.
2
[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan,
3
2 (1950), 64{66.
4
[3] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math.
5
11(3) (2003), 687{705.
6
[4] T. Bag and S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Syst. 151 (2005),
7
[5] S. C. Cheng and J. N. Mordeson, Fuzzy linear operators and fuzzy normed linear spaces,
8
Bull. Calcutta Math. Soc., 86(5) (1994), 429{436.
9
[6] H. G. Dales and M. E. Polyakov, Multi-normed spaces and multi-Banach algebras, University
10
of Leeds, preprint, (2008), 1{156.
11
[7] C. Felbin, Finite-dimensional fuzzy normed linear space, Fuzzy Sets and Syst., 48(2) (1992),
12
[8] A. Ghaari and A. Alinejad, Stabilities of cubic mappings in fuzzy normed spaces, Adv.
13
Dierence Equ., 2010 (2010), 1{15.
14
[9] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A.,
15
27 (1941), 222{224.
16
[10] S. M. Jung, Hyers-Ulam-Rassias stability of Jensens equation and its application, Proc.
17
Amer. Math. Soc., 126 (1998), 3137{3143.
18
[11] A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Syst., 12(2) (1984), 143{
19
[12] I. Kramosil and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11(5)
20
(1975), 336-344.
21
[13] S. V. Krishna and K. K. M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets and
22
Syst., 63(2) (1994), 207{217.
23
[14] L. Li, J. Chung and D. Kim, Stability of Jensen equations in the space of generalized func-
24
tions, J. Math. Anal. Appl., 299 (2004), 578{586.
25
[15] T. Li, A. Zada and S. Faisal, Hyers-Ulam stability of n-th order linear dierential equations,
26
J. Nonlinear Sci. Appl., 9(5) (2016), 2070{2075.
27
[16] A. K. Mirmostafaee, Perturbation of generalized derivations in fuzzy Menger normed alge-
28
bras, Fuzzy Sets and Syst., 195 (2012), 109-117.
29
[17] A. K. Mirmostafaee, M. Mirzavaziri and M. S. Moslehian, Fuzzy stability of the Jensen
30
functional equation, Fuzzy Sets and Syst., 159(6) (2008), 730{738.
31
[18] M. S. Moslehian and H. M. Sirvastava, Jensen's functional equation in multi-normed spaces,
32
Taiwanese J. Math., 14(2) (2010), 453{462.
33
[19] E. Movahednia, S. Eshtehar and Y. Son, Stability of quadratic functional equations in fuzzy
34
normed spaces, Int. J. Math. Anal., 6(48) (2012), 2405{2412.
35
[20] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math.
36
Soc., 72 (1978), 297{300.
37
[21] Y. Shen, An integrating factor approach to the Hyers-Ulam stability of a class of exact
38
dierential equations of second order, J. Nonlinear Sci. Appl., 9(5) (2016), 2520{2526.
39
[22] S. M. Ulam, A collection of mathematical problems, Interscience Publ., New York, 1960.
40
[23] S. M. Vaezpour and F. Karimi, t-Best approximation in fuzzy normed spaces, Iranian Journal
41
of Fuzzy Systems, 5(2) (2008), 93{99.
42
[24] J. Z. Xiao and X. H. Zhu, Fuzzy normed space of operators and its completeness, Fuzzy Sets
43
and Syst., 133(3) (2003), 389{399.
44
[25] B. Yood, On the non-existence of norms for some algebras of functions, Stud. Math., 111(1)
45
(1994), 97-101.
46
ORIGINAL_ARTICLE
THE CATEGORY OF T-CONVERGENCE SPACES AND ITS CARTESIAN-CLOSEDNESS
In this paper, we define a kind of lattice-valued convergence spaces based on the notion of $\top$-filters, namely $\top$-convergence spaces, and show the category of $\top$-convergence spaces is Cartesian-closed. Further, in the lattice valued context of a complete $MV$-algebra, a close relation between the category of$\top$-convergence spaces and that of strong $L$-topological spaces is established. In details, we show that the category of strong $L$-topological spaces is concretely isomorphic to that of strong $L$-topological $\top$-convergence spaces categorically and bireflectively embedded in that of $\top$-convergence spaces.
http://ijfs.usb.ac.ir/article_3259_94e21cd4aee3c5cea49d7c6e5fe6545d.pdf
2017-06-29T11:23:20
2018-02-25T11:23:20
121
138
10.22111/ijfs.2017.3259
T-lter
T-convergence
Cartesian-closedness
Topological category
Reflection
Strong L-topology
Qian
Yu
yuqian198436@sina.com
true
1
Department of Mathematics, Ocean University of China, 238 Songling Road,
266100, Qingdao, P.R. China
Department of Mathematics, Ocean University of China, 238 Songling Road,
266100, Qingdao, P.R. China
Department of Mathematics, Ocean University of China, 238 Songling Road,
266100, Qingdao, P.R. China
AUTHOR
Jinming
Fang
jining-fang@163.com
true
2
Department of Mathematics, Ocean University of China, 238 Songling
Road, 266100, Qingdao, P.R. China
Department of Mathematics, Ocean University of China, 238 Songling
Road, 266100, Qingdao, P.R. China
Department of Mathematics, Ocean University of China, 238 Songling
Road, 266100, Qingdao, P.R. China
LEAD_AUTHOR
[1] G. Choquet, Convergences, Ann. Univ. Grenoble, 23 (1948), 57{112.
1
[2] J. M. Fang, Stratied L-ordered convergence structures, Fuzzy Sets and Systems, 161 (2010),
2
2130{2149.
3
[3] J. M. Fang, Relationships between L-ordered convergence structures and strong L-topologies,
4
Fuzzy Sets and Systems, 161 (2010), 2923{2944.
5
[4] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl, 18 (1967), 145{174.
6
[5] J. Gutierrez Garca and M. A. De Prada Vicente, Characteristic values of >-lter, Fuzzy
7
Sets and Systems, 156 (2005), 55{67.
8
[6] J. Gutierrez Garca and M. A. De Prada Vicente, A unied approach to the concept of fuzzy
9
L-uniform space, In: Topological and Algebraic Structures in Fuzzy Sets{A Handbook of
10
Recent Devellopments in the Mathematics of Fuzzy Sets, (S.E. Rodabaugh, E.P. Klement,
11
ed.), Kluwer Academic Publishers, Boston, Dordrecht, London, (2003), 79{114,.
12
[7] U. Hohle, Commutative residuated `-monoids, In: Non-classical Logics and Their Applications
13
to Fuzzy Subsets: A Handbook of the Mathematical Foundations of Fuzzy Set Theory,
14
(U. Hohle, E.P. Klement, Eds.), Klumer Academic Publishers, Dordrecht, Boston, London
15
(1995), 53{106.
16
[8] U. Hohle, Propbabilistische topologien, Manuscripta Math., 26 (1978), 223{245.
17
[9] U. Hohle, Probabilistic topologies induced by L-fuzzy uniformities, Manuscripta Math., 38
18
(1982), 289{323.
19
[10] G. Jager, A category of L-fuzzy convergence spaces, Quaestiones Mathematicae, 24 (2001),
20
[11] G. Jager, Subcategories of lattice-valued convergence spaces, Fuzzy Sets and Systems, 156
21
(2005), 1{24.
22
[12] G. Jager, Lattice-valued convergence spaces and regularity, Fuzzy Sets and Systems, 159
23
(2008), 2488{2502.
24
[13] R. Lowen, Convergence in fuzzy topological spaces, Gen. Top. Appl., 10 (1979), 147{160.
25
[14] E. Lowen and R. Lowen, A topological universe extension of FTS, In: Applications of category
26
theory to fuzzy sets, (S.E. Rodabaugh, E.P. Klement, U. Hohle, Eds.), Kluwer, Dordrecht
27
(1992), 153{176.
28
[15] E. Lowen, R. Lowen and P. Wuyts, The categorical topology approach to fuzzy topology and
29
fuzzy convergence, Fuzzy Sets and Systems, 40 (1991), 347{343.
30
[16] L. Li, Q. Jin and K. Hu, On stratied L-convergence spaces: Fischer's diagonal axiom, Fuzzy
31
Sets and Systems, 267 (2015), 31{40.
32
[17] G. Preuss, Foundations of topology, Kluwer Academic Publishers, Dordrecht, Boston, London
33
(2002), 30{92.
34
[18] B. Pang and J. M. Fang, L-fuzzy Q-convergence structures, Fuzzy Sets and System, 182
35
(2011), 53{65.
36
[19] B. Pang, On (L;M)-fuzzy convergence spaces, Fuzzy Sets and Systems, 238 (2014), 46{70.
37
[20] W. Yao, On many-valued stratied L-fuzzy convergence spaces, Fuzzy Sets and Systems, 159
38
(2008), 2503{2519.
39
[21] W. Yao, Moore-Smith convergence in (L;M)-fuzzy topology, Fuzzy Sets and Systems, 190
40
(2012), 47{62.
41
[22] D. Zhang, An enriched category approach to many valued topology, Fuzzy Sets and Systems,
42
158 (2007), 349{366.
43
ORIGINAL_ARTICLE
M-FUZZIFYING MATROIDS INDUCED BY M-FUZZIFYING CLOSURE OPERATORS
In this paper, the notion of closure operators of matroids is generalized to fuzzy setting which is called $M$-fuzzifying closure operators, and some properties of $M$-fuzzifying closure operators are discussed. The $M$-fuzzifying matroid induced by an $M$-fuzzifying closure operator can induce an $M$-fuzzifying closure operator. Finally, the characterizations of $M$-fuzzifying acyclic matroids are given.
http://ijfs.usb.ac.ir/article_3260_c77600a0362dce5dfb4eebb1a9ca369a.pdf
2017-06-29T11:23:20
2018-02-25T11:23:20
139
149
10.22111/ijfs.2017.3260
M$-fuzzifying matroids
$M$-fuzzifying closure operators
$M$-fuzzifying exchange law
Xiu
Xin
xinxiu518@163.com
true
1
Department of Mathematics, Tianjin University of Technology, Tianjin
300384, P.R.China
Department of Mathematics, Tianjin University of Technology, Tianjin
300384, P.R.China
Department of Mathematics, Tianjin University of Technology, Tianjin
300384, P.R.China
AUTHOR
Shao-Jun
Yang
shaojunyang@outlook.com
true
2
School of Mathematics and Statistics, Beijing Institute of Tech-
nology, Beijing 100081, P.R.China and Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, P.R.China
School of Mathematics and Statistics, Beijing Institute of Tech-
nology, Beijing 100081, P.R.China and Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, P.R.China
School of Mathematics and Statistics, Beijing Institute of Tech-
nology, Beijing 100081, P.R.China and Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, P.R.China
LEAD_AUTHOR
[1] H. L. Huang and F. G. Shi, L-fuzzy numbers and their properties, Information Sciences, 178
1
(2008), 1141{1151.
2
[2] H. Lian and X. Xin, The nullities for M-fuzzifying matroids, Applied Mathematics Letters,
3
25(3) (2012), 279{286.
4
[3] J. Oxley, Matroid Theory, Oxford University Press, 1992.
5
[4] F. G. Shi, A new approach to fuzzication of matroids, Fuzzy Sets and Systems, 160(5)
6
(2009), 696{705.
7
[5] F. G. Shi, (L,M)-fuzzy matroids, Fuzzy Sets and Systems, 160(16) (2009), 2387{2400.
8
[6] F. G. Shi and B. Pang, Categories isomorphic to the category of L-fuzzy closure system
9
spaces, Iranian Journal of Fuzzy Systems, 10(5) (2013), 127{146.
10
[7] F. G. Shi and L. Wang, Characterizations and applications of M-fuzzifying matroids, Journal
11
of Intelligent and Fuzzy Systems, 25 (2013), 919{930.
12
[8] G. J. Wang, Theory of topological molecular lattices, Fuzzy Sets and Systems, 47(3) (1992),
13
[9] L. Wang and F. G. Shi, Characterization of L-fuzzifying matroids by M-fuzzifying families
14
ats, Advances of Fuzzy Sets and Systems, 2 (2009), 203{213.
15
[10] L. Wang and F. G. Shi, Characterization of L-fuzzifying matroids by L-fuzzifying closure
16
operators, Iranian Journal of Fuzzy Systems, 7(1) (2010), 47{58.
17
[11] L. Wang and Y. P. Wei, M-fuzzifying P-closure operators, Advances in Intelligent and Soft
18
Computing, 62 (2009), 547{554.
19
[12] X. Xin and F. G. Shi, M-fuzzifying bases, Proyecciones, 28(3) (2009), 271{283.
20
[13] X. Xin and F. G. Shi, Categories of bi-fuzzy pre-matroids, Computer and Mathematics with
21
Applications, 59 (2010), 1548{1558.
22
[14] X. Xin and F. G. Shi, Rank functions for closed and perfect [0,1]-matroids, Hacettepe Journal
23
of Mathematics and Statistics, 39(1) (2010), 31{39.
24
[15] X. Xin, F. G. Shi and S. G. Li, M-fuzzifying derived operators and dierence derived operators,
25
Iranian Journal of Fuzzy Systems, 7(2) (2010), 71{81.
26
[16] Z. Y. Xiu and F. G. Shi, M-fuzzifying submodular functions, Journal of Intelligent and Fuzzy
27
Systems, 27 (2014), 1243{1255.
28
[17] W. Yao and F. G. Shi, Base axioms and circuits axioms for fuzzifying matroids, Fuzzy Sets
29
and Systems, 161 (2010), 3155{3165.
30
ORIGINAL_ARTICLE
SELECTIVE GROUPOIDS AND FRAMEWORKS INDUCED BY FUZZY SUBSETS
In this paper, we show that every selective groupoid induced by a fuzzy subset is a pogroupoid, and we discuss several properties in quasi ordered sets by introducing the notion of a framework.
http://ijfs.usb.ac.ir/article_3261_e912d237a9797afc81f6aa643e22f9db.pdf
2017-06-29T11:23:20
2018-02-25T11:23:20
151
160
10.22111/ijfs.2017.3261
Fuzzy subset
$d/BCK$-algebra
Framework
Selective groupoid
Pogroupoid
Poset
Young Hee
Kim
yhkim@cbnu.ac.kr
true
1
Department of Mathematics, Chungbuk National University, Cheongju, 28644, Korea
Department of Mathematics, Chungbuk National University, Cheongju, 28644, Korea
Department of Mathematics, Chungbuk National University, Cheongju, 28644, Korea
AUTHOR
Hee Sik
Kim
heekim@hanyang.ac.kr
true
2
Research Institute for Natural Sci., Department of Mathematics,
Hanyang University, Seoul, 04763, Korea
Research Institute for Natural Sci., Department of Mathematics,
Hanyang University, Seoul, 04763, Korea
Research Institute for Natural Sci., Department of Mathematics,
Hanyang University, Seoul, 04763, Korea
LEAD_AUTHOR
J.
Neggers
jneggers@gp.as.ua.edu
true
3
Department of Mathematics, University of Alabama, Tuscaloosa, AL
35487-0350, U. S. A.
Department of Mathematics, University of Alabama, Tuscaloosa, AL
35487-0350, U. S. A.
Department of Mathematics, University of Alabama, Tuscaloosa, AL
35487-0350, U. S. A.
AUTHOR
[1] R. K. Bandaru, K. P. Shum and N. Ra, Fuzzy ideals of implication groupoids, Italian J.
1
Pure and Appl. Math., 34 (2015), 277{290.
2
[2] G. Gratzer, General lattice theory, Springer, New York, 1978.
3
[3] J. S. Han, H. S. Kim and J. Neggers, Strong and ordinary d-algebras, J. Mult.-Valued Logic
4
& Soft Computing, 16 (2010), 331{339.
5
[4] D. Kelly and I. Rival, Planar lattices, Canad. J. Math., 27 (1975), 636{665.
6
[5] M. Khan, M. Shakeel, M. Gulistan and S. Rashid, Generalized fuzzy bi-ideals of order right
7
modular groupoids, Int. J. Algebra and Statistics, 4 (2015), 46{56.
8
[6] H. S. Kim and J. Neggers, The semigroups of binary systems and some perspectives, Bull.
9
Korean Math. Soc., 45 (2008), 651{661.
10
[7] J. Neggers, Partially ordered sets and groupoids, Kyungpook Math. J., 16 (1976), 7{20.
11
[8] J. Neggers and H. S. Kim, Modular posets and semigroups, Semigroup Forum, 53 (1996),
12
[9] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca, 49 (1999), 19{26.
13
[10] J. Neggers and H. S. Kim, Algebras associated with posets, Demonstratio Math., 34 (2001),
14
[11] J. Neggers and H. S. Kim, Fuzzy posets on sets, Fuzzy Sets and Sys., 117 (2001), 391{402.
15
[12] J. Neggers and H. S. Kim, Fuzzy pogroupoids, Information Sci., 175 (2005), 108{119.
16
[13] S. J. Shin, H. S. Kim and J. Neggers, On Abelian and related fuzzy subsets of groupoids, The
17
Scientic World J., Article ID 476057, 2013 (2013), 5 pages.
18
[14] S. J. Shin, H. S. Kim and J. Neggers, The intersection between fuzzy subsets and groupoids,
19
The Scientic World J., Article ID 246285, 2014 (2014), 6 pages.
20
[15] L. Zadeh, Fuzzy Sets, Inform. and Control, 8 (1965), 338{353.
21
ORIGINAL_ARTICLE
SOME FIXED POINT RESULTS FOR ADMISSIBLE GERAGHTY CONTRACTION TYPE MAPPINGS IN FUZZY METRIC SPACES
In this paper, we introduce the notions of fuzzy $\alpha$-Geraghty contraction type mapping and fuzzy $\beta$-$\varphi$-contractive mapping and establish some interesting results on the existence and uniqueness of fixed points for these two types of mappings in the setting of fuzzy metric spaces and non-Archimedean fuzzy metric spaces. The main results of our work generalize and extend some known comparable results in the literature. Furthermore, several illustrative examples are given to support the usability of our obtained results.
http://ijfs.usb.ac.ir/article_3262_f21105381489fdc273ef65cfa66c1548.pdf
2017-06-29T11:23:20
2018-02-25T11:23:20
161
177
10.22111/ijfs.2017.3262
Fixed point
Fuzzy $alpha$-Geraghty contraction type mapping
Fuzzy $beta$-$varphi$-contractive mapping
Fuzzy metric space
Non-Archimedean fuzzy metric space
Mina
Dinarvand
dinarvand_mina@yahoo.com
true
1
Faculty of Mathematics, K. N. Toosi University of Technology,
P.O. Box 16315-1618, Tehran, Iran
Faculty of Mathematics, K. N. Toosi University of Technology,
P.O. Box 16315-1618, Tehran, Iran
Faculty of Mathematics, K. N. Toosi University of Technology,
P.O. Box 16315-1618, Tehran, Iran
LEAD_AUTHOR
[1] I. Altun and D. Mihet, Ordered non-Archimedean fuzzy metric spaces and some xed point
1
results, Fixed Point Theory Appl., Article ID 782680, 2010 (2010), 1{11.
2
[2] M. Amini and R. Saadati, Topics in fuzzy metric spaces, J. Fuzzy Math., 11(4) (2003),
3
[3] A. Amini-Harandi and H. Emami, A xed point theorem for contraction type maps in partially
4
ordered metric spaces and application to ordinary dierential equations, Nonlinear Anal., 72
5
(2010), 2238{2242.
6
[4] S. H. Cho, J. S. Bae and E. Karapinar, Fixed point theorems for -Geraghty contraction type
7
maps in metric spaces, Fixed Point Theory Appl., Article ID 329, 2013 (2013), 1{11.
8
[5] C. Di Bari and C. Vetro, A xed point theorem for a family of mappings in a fuzzy metric
9
space, Rend. Circ. Mat. Palermo, 52(2) (2003), 315{321.
10
[6] C. Di Bari and C. Vetro, Fixed points, attractors and weak fuzzy contractive mappings in a
11
fuzzy metric space, J. Fuzzy Math., 13(4) (2005), 973{982.
12
[7] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64
13
(1994), 395{399.
14
[8] A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets
15
Syst., 90 (1997), 365{368.
16
[9] M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604{608.
17
[10] D. Gopal and C. Vetro, Some new xed point theorems in fuzzy metric spaces, Iranian J.
18
Fuzzy Syst., 11(3) (2014), 95{107.
19
[11] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst., 27 (1988), 385{389.
20
[12] V. Gregori and A. Sapena, On xed point theorems in fuzzy metric spaces, Fuzzy Sets Syst.,
21
125 (2002), 245{253.
22
[13] I. Kramosil and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetica, 11(5)
23
(1975), 336{344.
24
[14] V. La Rosa and P. Vetro, Fixed points for Geraghty-contractions in partial metric spaces, J.
25
Nonlinear Sci. Appl., 7(1) (2014), 1{10.
26
[15] D. Mihet, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets Syst., 144 (2004),
27
[16] D. Mihet, On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets Syst., 158 (2007),
28
[17] D. Mihet, Fuzzy -contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets
29
Syst., 159 (2008), 739{744.
30
[18] D. Mihet, A class of contractions in fuzzy metric spaces, Fuzzy Sets Syst., 161 (2010),
31
1131{1137.
32
[19] P. P. Murthy, U. Mishra, Rashmi and C. Vetro, Generalized ('; )-weak contractions involv-
33
ing (f; g)-reciprocally continuous maps in fuzzy metric spaces, Ann. Fuzzy Math. Inform.,
34
5(1) (2013), 45{57.
35
[20] R. Saadati, S. M. Vaezpour and Y. J. Cho, Quicksort algorithm: Application of a xed point
36
theorem in intuitionistic fuzzy quasi-metric spaces at a domain of words, J. Comput. Appl.
37
Math., 228(1) (2009), 219{225.
38
[21] B. Samet, C. Vetro and P. Vetro, Fixed point theorems for - -contractive type mappings,
39
Nonlinear Anal., 75 (2012), 2154{2165.
40
[22] B. Schweizer and A. Sklar, Statistical metric spaces, Pacic J. Math., 8(3) (1965), 338{353.
41
[23] C. Vetro, D. Gopal and M. Imdad, Common xed point theorems for (; )-weak contractions
42
in fuzzy metric spaces, Indian J. Math., 52(3) (2010), 573{590.
43
[24] C. Vetro and P. Vetro, Common xed points for discontinuous mappings in fuzzy metric
44
spaces, Rend. Circ. Mat. Palermo, 57(2) (2008), 295{303.
45
[25] L. A. Zadeh, Fuzzy Sets, Inform. Control, 10(1) (1960), 385{389.
46
ORIGINAL_ARTICLE
Persian-translation vol. 14, no. 3, June 2017
http://ijfs.usb.ac.ir/article_3263_dd93562fdd7ac72a7841f57bf2be49ec.pdf
2017-06-29T11:23:20
2018-02-25T11:23:20
181
191
10.22111/ijfs.2017.3263