ORIGINAL_ARTICLE
Cover Vol.5 No.1, February 2008
http://ijfs.usb.ac.ir/article_2905_0ba1ebddb100516d815ebe45cc27db3b.pdf
2008-02-29T11:23:20
2019-02-16T11:23:20
0
10.22111/ijfs.2008.2905
ORIGINAL_ARTICLE
THE p-CENTER PROBLEM ON FUZZY NETWORKS AND
REDUCTION OF COST
Here we consider the
p-center problem on different types of fuzzy
networks. In particular, we are interested in the networks with interval and
triangular fuzzy arc lengths and vertex-weights. A methodology to obtain the
best satisfaction level of the decision maker who wishes to reduce the cost
within the tolerance limits is proposed. Illustrative examples are provided.
http://ijfs.usb.ac.ir/article_313_0738a752fd403495bad8e7740e8f8abd.pdf
2008-02-07T11:23:20
2019-02-16T11:23:20
1
26
10.22111/ijfs.2008.313
Fuzzy sets
location
Networks
Sk. Md. Abu
Nayeem
nayeemsma@gmail.com
true
1
Department of Mathematics, Jhargram Raj College, Jhargram,
West Bengal, 721 507, India
Department of Mathematics, Jhargram Raj College, Jhargram,
West Bengal, 721 507, India
Department of Mathematics, Jhargram Raj College, Jhargram,
West Bengal, 721 507, India
AUTHOR
Madhumangal
Pal
madhumangal@lycos.com
true
2
Madhumangal Pal, Department of Applied Mathematics with Oceanology and Computer
Programming, Vidyasagar University, Midnapore, West Bengal, 721 102, India
Madhumangal Pal, Department of Applied Mathematics with Oceanology and Computer
Programming, Vidyasagar University, Midnapore, West Bengal, 721 102, India
Madhumangal Pal, Department of Applied Mathematics with Oceanology and Computer
Programming, Vidyasagar University, Midnapore, West Bengal, 721 102, India
LEAD_AUTHOR
[1] A. Al-khedhairi and S. Salhi,Enhancement to two exact algorithms for solving the vertex
1
p-center problem, Journal of Mathematical Modelling and Algorithms, 4(2) (2005), 129-147.
2
[2] D. Bespamyatnikh, B. Bhattacharya, M. Keil, D. Kirkpatric and D. Segal,Efficient algorithms
3
for centers and medians in interval and circular-arc graphs, Networks, 39 (1979),144-152.
4
[3] M. J. Can´os, C. Ivorra and V. Liern,An exact algorithm for the fuzzy p-median problem,
5
European Journal of Operational Research,116 (1999), 80-86.
6
[4] M. J. Can´os, C. Ivorra and V. Liern,The fuzzy p-median problem : a global analysis of the
7
solutions, European Journal of Operational Research, 130 (2001), 430-436.
8
[5] S. Chanas, M. Delgado, J. L. Verdegay and M. A. Vila,Fuzzy optimal flow on a imprecise
9
structures, European Journal of Operational Research, 83 (1995), 568-580.
10
[6] S. Chanas and W. Kolodziejczyk,Maximum flow in a network with fuzzy arc capacities,
11
Fuzzy Sets and Systems,8 (1982), 165-173.
12
[7] S. Chanas and W. Kolodziejczyk,Real valued flows in a network with fuzzy arc capacities,
13
Fuzzy Sets and Systems,13 (1984), 139-151.
14
[8] P. -T. Chang and E. S. Lee,Ranking fuzzy sets based on the concept of existence, Computers
15
and Mathematics with Applications,27 (1994), 1-21.
16
[9] P. -T. Chang and E. S. Lee,Fuzzy decision networks and deconvolution, Computers and
17
Mathematics with Applications,37 (1999), 53-63.
18
[10] R. Chandrasekharan and A. Tamir,Polynomial bounded algorithms for locating p-centers on
19
a tree, Mathematics in Programming, 22 (1982), 304-315.
20
[11] M. Daskin,Network and discrete location, Wiley, NewYork, 1995.
21
[12] M. Delgado, J. L. Verdegay and M. A. Vila,On fuzzy tree definition, European Journal of
22
Operational Research,22 (1985), 243-249.
23
[13] M. Delgado, J. L. Verdegay and M. A. Vila,A procedure for ranking fuzzy numbers using
24
fuzzy relations, Fuzzy Sets and Systems, 26 (1988), 49-62.
25
[14] M. Delgado, J. L. Verdegay and M. A. Vila,On valuation and problems in fuzzy graphs : a
26
general approach and some particular cases, ORSA Journal on Computing, 2 (1990), 74-84.
27
[15] H. Y. Handler and P. B. Mirchandani,Location on networks : theory and algorithms, MIT
28
Press, Cambridge, MA, 1979.
29
[16] F. Herrera and J. L. Verdegay,Three models of fuzzy integer linear programming, European
30
Journal of Operational Research,83 (1995), 581-593.
31
[17] O. Kariv and S. L. Hakimi,An algorithmic approach to network location problems, I: the
32
p-centers, SIAM Journal of Applied Mathematics, 37 (1979), 513-538.
33
[18] A. Kaufmann and M. M. Gupta,Introduction to fuzzy arithmetic : theory and applications,
34
Van Nostrand Reinhold, New York, 1985.
35
[19] P. B. Mirchandani and R. L. Francis,Discrete location theory, Wiley, New York, 1990.
36
[20] N. Mledanovic, M. Labb´e and P. Hansen,Solving the p-center problem with tabu search and
37
variable neighborhood search, Networks, 42(1) (2003), 48-64.
38
[21] R. E. Moore,Method and application of interval analysis, SIAM, Philadelphia, 1979.
39
[22] J. N. Mordeson and P. S. Nair,Fuzzy graphs and fuzzy hypergraphs, Studies in fuzzyness and
40
soft computing, Physica-Verlag, Wurzburg, 2000.
41
[23] J. A. Moreno P´erez, J. M. Moreno Vega and J. L. Verdegay,Fuzzy location problems on
42
networks, Fuzzy Sets and Systems, 142 (2004), 393-405.
43
[24] S. M. A. Nayeem and M. Pal,Genetic algorithm to solve p-center and p-radius problem on
44
a network, International Journal of Computer Mathematics, 82 (2005), 541-550.
45
[25] S. M. A. Nayeem and M. Pal,Shortest path problem on a network with imprecise edge weight,
46
Fuzzy Optimization and Decision Making,4 (2005), 293-312.
47
[26] S. M. A. Nayeem and M. Pal,PERT on a network with imprecise edge weight, communicated.
48
[27] S. Okada and T. Soper,A shortest path problem on a network with fuzzy arc lengths, Fuzzy
49
Sets and Systems,109 (2000), 129-140.
50
[28] F. A. ¨Ozsoy and MC¸ . Pinar,An exact algorithm for the capacitated vertex p-center problem,
51
Computers and Operations Research,33(5) (2006), 1420-1436.
52
[29] A. Rosenfeld,Fuzzy graph, In: L. A. Zadeh, K. S. Fu, K. Tanaka and M. Shimura Eds.,
53
Fuzzy sets and their application to cognitive and decision processes, Academic Press, New
54
York, (1975), 79-97.
55
[30] A. Sengupta, T. K. Pal,On comparing interval numbers, European Journal of Operational
56
127 (2000), 28-43.
57
[31] J. K. Sengupta,Optimal decision under uncertainty, Springer, New York, 1981.
58
[32] A. Tamir,Improved complexity bounds for center location problems on networks by using
59
dynamic data structures, SIAM Journal of Discrete Mathematics, 1 (1988), 377-396.
60
[33] L. A. Zadeh,Fuzzy sets, Information and Control, 8 (1965), 338-353.
61
ORIGINAL_ARTICLE
INTELLIGENT TECHNIQUE OF CANCELING MATERNAL ECG IN
FECG EXTRACTION
In this paper, we propose a technique of artificial intelligence called adaptive neuro fuzzy inference system (ANFIS) for canceling maternal electrocardiogram (MECG) in fetal electrocardiogram extraction (FECG).This technique is used to estimate the MECG present in the abdominal signal of a pregnant woman. The FECG is then extracted by subtracting the estimated MECG from the abdominal signal. Performance of the proposed method in terms of mean square error, signal to noise ratio is compared with neural network. Our results show that this method is a simple and powerful means for the extraction of FECG.
http://ijfs.usb.ac.ir/article_314_f843ad26f87fb8068ddf60da36570ec3.pdf
2008-02-08T11:23:20
2019-02-16T11:23:20
27
45
10.22111/ijfs.2008.314
Interference cancellation
Neuro fuzzy logic
Fetal ECG extraction
C.
KEZI SELVA VIJIILA
vijila_2000@yahoo.com,vijila@karunya.edu
true
1
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING KARUNYA
UNIVERSITY, COIMBATORE, INDIA
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING KARUNYA
UNIVERSITY, COIMBATORE, INDIA
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING KARUNYA
UNIVERSITY, COIMBATORE, INDIA
LEAD_AUTHOR
P.
KANAGASABAPATHY
pks@mail.mitindia.edu
true
2
DEAN MIT CAMPUS, ANNA UNIVERSITY, CHENNAL, INDIA
DEAN MIT CAMPUS, ANNA UNIVERSITY, CHENNAL, INDIA
DEAN MIT CAMPUS, ANNA UNIVERSITY, CHENNAL, INDIA
AUTHOR
[1]K. Assalch and H. Al-Nashash, A novel technique for the extraction of fetal ECG using
1
polynomial networks, IEEE Transactions in Biomedical Engineering, 52 (6) (2005),1148-1152.
2
[2]K. Assaleh, Extraction of fetal electrocardiogram using adaptive neuro-fuzzy inference
3
systems,IEEE Transactions in Biomedical Engineering, 54(1) (2007), 59-68.
4
[3]M.G. Jafari, and J. A. Chambers, Fetal electrocardiogram extraction by sequential source
5
separation in the wavelet domain, IEEE Transactions in Biomedical Engineering, 52( 3)(2005), 390-400.
6
[4]J. S. R. Jang and N. Gulley, The fuzzy logic toolbox for use with MATLAB, MA: The MathWorks Inc., 1995.
7
[5]J. S. R. Jang, ANFIS: adaptive–network-based fuzzy inference system, IEEE Transactions on Systems, Man and Cybernatics, 23(3) (1993), 665-685.
8
[6]J. S. R. Jang, C. T. Sun and E. Mizuatani, Neuro-fuzzy and soft computing, Prentice Hall International Inc., 1997.
9
[7]A. Khamene and S. Negahdaripour, A new method for the extraction of fetal ECG from the composite abdominal signal
10
, IEEE Transactions in Biomedical Engineering, 47(4)(2000), 507-516.
11
[8]L. D. Lathauwer, B. D. Moor and J. Vandewalle, Fetal electrocardiogram extraction by blind source subspace separation, IEEE Transactions in Biomedical Engineering, 47(5)(2000), 567-572.
12
[9]M. Martínez, E. Soria, J. Calpe, J. F. Guerrero and J. R. Magdalena GPDS, Application
13
of the adaptive impulse correlated filter for recovering fetal electrocardiogram
14
, Computers in Cardiology, Universitat deValència. Valencia, Spain, 2001.
15
[10] C. Salustri, G. Barbati, and C. Porcaro, Fetal magnetocardiographic signals extracted
16
by‘signal subspace’, blind source separation , IEEE Transactions in Biomedical Engineering,
17
52 (6) (2005), 1140-1142.
18
[11]C. K. Selva Vijila, P. Kanagasabapathy and S. Johnson, Fetal ECG extraction using softcomputing technique
19
, Journal of Applied Sciences, 6(2) (2006), 251-256.
20
[12]V. Zarzoso and A. K. Nandi, Noninvasive fetal electrocardiogram extraction: blind separation versus adaptive noise cancellation , IEEE Transactions in Biomedical Engineering,48(1) (2001), 12-18.
21
ORIGINAL_ARTICLE
A COMMON FIXED POINT THEOREM FOR $\psi$-WEAKLY
COMMUTING MAPS IN L-FUZZY METRIC SPACES
In this paper, a common fixed point theorem for $\psi$-weakly commuting
maps in L-fuzzy metric spaces is proved.
http://ijfs.usb.ac.ir/article_315_aa6fa13685f0d564567d253b8e56287a.pdf
2008-02-08T11:23:20
2019-02-16T11:23:20
47
53
10.22111/ijfs.2008.315
L-Fuzzy contractive mapping
Complete L-fuzzy metric space
Common
fixed point theorem
$psi$-weakly commuting maps
R.
Saadati
rsaadati@eml.cc
true
1
Faculty of Sciences, University of Shomal, Amol, P.O. Box 731, Iran
Faculty of Sciences, University of Shomal, Amol, P.O. Box 731, Iran
Faculty of Sciences, University of Shomal, Amol, P.O. Box 731, Iran
LEAD_AUTHOR
S.
Sedghi
true
2
Department of Mathematics, Islamic Azad University-Ghaemshahr Branch,
Ghaemshar, P.O. Box 163, Iran
Department of Mathematics, Islamic Azad University-Ghaemshahr Branch,
Ghaemshar, P.O. Box 163, Iran
Department of Mathematics, Islamic Azad University-Ghaemshahr Branch,
Ghaemshar, P.O. Box 163, Iran
AUTHOR
H.
Zhou
true
3
Department of Mathematics, Shijiazhuang Mechnical Engineering University,
Shijiazhuang 050003, People’s Republic of China
Department of Mathematics, Shijiazhuang Mechnical Engineering University,
Shijiazhuang 050003, People’s Republic of China
Department of Mathematics, Shijiazhuang Mechnical Engineering University,
Shijiazhuang 050003, People’s Republic of China
AUTHOR
[1] H. Adibi, Y. J. Cho, D. O’Regan and R. Saadati, Common fixed point theorems in L-fuzzy
1
metric spaces , Appl. Math. Comput., 182 (2006), 820-828.
2
[2] A. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
3
[3] S. S. Chang, Y. J. Cho, B. S. Lee, J. S. Jung and S. M. Kang, Coincidence point and minimization
4
theorems in fuzzy metric spaces , Fuzzy Sets and Systems, 88 (1997), 119-128.
5
[4] Y. J. Cho, H. K. Pathak, S. M. Kang and J. S. Jung, Common fixed points of compatible
6
maps of type (B) on fuzzy metric spaces, Fuzzy Sets and Systems, 93 (1998), 99-111.
7
[5] G. Deschrijver , C. Cornelis and E. E. Kerre,On the representation of intuitionistic fuzzy
8
t-norms and t-conorms , IEEE Transactions on Fuzzy Systems, 12 (2004), 45-61.
9
[6] G. Deschrijver and E. E Kerre,On the relationship between some extensions of fuzzy set
10
theory , Fuzzy Sets and Systems, 33 (2003), 227-235.
11
[7] Z. K. Deng,Fuzzy pseduo-metric spaces, J. Math. Anal. Appl., 86 (1982), 74-95.
12
[8] M. A. Erceg,Metric spaces in fuzzy set theory, J. Math. Anal. Appl., 69 (1979), 205-230.
13
[9] A. George and P. Veeramani,On some results in fuzzy metric spaces, Fuzzy Sets and Systems,
14
64(1994), 395-399.
15
[10] J. Goguen,L-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145-174.
16
[11] V. Gregori and A. Sapena,On fixed point theorem in fuzzy metric spaces, Fuzzy Sets and
17
Systems,125 (2002), 245-252.
18
[12] O. Hadˇzi´c and E. Pap,Fixed point theory in PM spaces, Kluwer Academic Publishers, Dordrecht,
19
[13] O. Hadˇzi´c and E. Pap,New classes of probabilistic contractions and applications to random
20
operators, in: Y. J. Cho, J. K. Kim and S. M. Kong (Eds.), Fixed point theory and application,
21
Nova Science Publishers, Hauppauge, NewYork,4 (2003), 97-119.
22
[14] O. Kaleva and S. Seikkala,On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984),
23
[15] I. Kramosil and J. Michalek,Fuzzy metric and statistical metric spaces, Kybernetica, 11
24
(1975), 326-334.
25
[16] D. Miheot, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems,
26
144(2004), 431-439.
27
[17] S. B. Hosseini, D. O’Regan and R. Saadati,Some results on intuitionistic fuzzy spaces, Iranian
28
J. Fuzzy Systems,4 (2007), 53-64.
29
[18] E. Pap, O. Hadzic and R. Mesiar,A fixed point theorem in probabilistic metric spaces and
30
an application, J. Math. Anal. Appl., 202 (1996), 433-449.
31
[19] A. Razani and M. Shirdaryazdi,Some results on fixed points in the fuzzy metric space, J.
32
Appl. Math. and Computing,20 (2006), 401-408.
33
[20] J. Rodr´ıguez L´opez and S. Ramaguera,The Hausdorff fuzzy metric on compact sets, Fuzzy
34
Sets and Systems,147 (2004), 273-283.
35
[21] R. Saadati,Notes to the paper “Fixed points in intuitionistic fuzzy metric spaces” and its
36
generalization to L-fuzzy metric spaces, Chaos, Solitons and Fractals, 35(2008), 176-180.
37
[22] R. Saadati, A. Razani and H. Adibi,A Common fixed point theorem in L-fuzzy metric spaces,
38
Chaos, Solitons and Fractals,33 (2007), 358-363.
39
[23] R. Saadati and J. H. Park,On the intuitionistic fuzzy topological spaces, Chaos, Solitons and
40
Fractals,27 (2006), 331-344.
41
[24] R. Saadati and J. H. Park,Intuitionistic fuzzy Euclidean normed spaces, Commun. Math.
42
Anal.,1(2) (2006), 86-90.
43
[25] S. Sessa and B. Fisher,On common fixed points of weakly commuting mappings and set
44
valued mappings, Internat. J. Math. Math. Sci., 9(2) (1986), 323-329.
45
[26] L. A. Zadeh,Fuzzy sets, Inform. and control, 8 (1965), 338-353.
46
ORIGINAL_ARTICLE
FUZZY IDEALS AND FUZZY LIMIT STRUCTURES
In this paper, we establish the theory of fuzzy ideal convergence on
completely distributive lattices and give characterizations of some topological
notions. We also study fuzzy limit structures and discuss the relationship
between fuzzy co-topologies and fuzzy limit structures.
http://ijfs.usb.ac.ir/article_316_e3d8093b3eb52427ca38bd04776b8583.pdf
2008-02-08T11:23:20
2019-02-16T11:23:20
55
64
10.22111/ijfs.2008.316
Fuzzy co-topology
Fuzzy ideal
Fuzzy limit structure
Fuzzy remote
neighborhood system
Yueli
Yue
yueliyue@163.com
true
1
Department of Mathematics, Ocean University of China, Qingdao, 266071,
P. R. China
Department of Mathematics, Ocean University of China, Qingdao, 266071,
P. R. China
Department of Mathematics, Ocean University of China, Qingdao, 266071,
P. R. China
LEAD_AUTHOR
Jinming
Fang
jinming-fang@163.com
true
2
Department of Mathematics, Ocean University of China, Qingdao,
266071, P. R. China
Department of Mathematics, Ocean University of China, Qingdao,
266071, P. R. China
Department of Mathematics, Ocean University of China, Qingdao,
266071, P. R. China
AUTHOR
[1] J. Ad´amek, H. Herrlich and G. E. Strecker,Abstract and concrete categories, J. Wiley &
1
Sons, New York, 1990.
2
[2] C. L. Chang,Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-193.
3
[3] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott,A compendium
4
of continuous lattice, Springer Verlag, Berlin/Heidelberg/New York.
5
[4] U. H¨ohle,Upper semicontinuous fuzzy sets and applications, J. Math. Anal. Appl., 78 (1980),
6
[5] U. H¨ohle and A. P. ˇSostak,Axiomatic foundations of fixed-basis fuzzy topology, Chapter 3 in:
7
H¨ohle U., Rodabaugh S. E.(Eds), Mathematics of Fuzzy Sets-Logic, Topology and Measure
8
Theory, Kluwer Academic Publishers (Boston/Dordrecht/London), (1999), 123-272.
9
[6] K. C. Min,Fuzzy limit spaces, Fuzzy Sets and Systems, 32 (1989), 343-357.
10
[7] T. Kubiak,On fuzzy topologies, (PhD Thesis, Adam Mickiewicz, Poznan, Poland, 1985.
11
[8] Y. M. Li,Limit structures over completely distributive lattices, Fuzzy Sets and Systems, 132
12
(2002), 125-134.
13
[9] S. E. Rodabaugh,Powerset operator foundations for poslat fuzzy set theories and topologies,
14
Chapter 2 in [5]: (1999), 91-116.
15
[10] S. E. Rodabaugh,Categorical foundations of variable-basis fuzzy topology, Chapter 4 in [5],
16
[11] A. P. ˇSostak,On a fuzzy topological structure, Rendiconti Ciecolo Matematico Palermo
17
(Suppl. Ser. II),11 (1985), 89-103.
18
[12] G. J. Wang,Theory of topological molecular lattices, Fuzzy Sets and Systems, 47 (1992),
19
[13] L. S. Xu,Characterizations of fuzzifying topologies by some limit structures, Fuzzy Sets and
20
Systems,123 (2001), 169-176.
21
[14] Z. Q. Yang,Ideals in topological molecular lattices, Acta Math.Sinica, 2 (1986), 276-279 (in
22
[15] M. Ying ,A new approach to fuzzy topology (I), Fuzzy Sets and Systems, 39 (1991), 303-321.
23
[16] Y. Yue and J. Fang,Categories isomorphic to the Kubiak-ˇSostak extension of TML, Fuzzy
24
Sets and Systems,157 (2006), 832-842.
25
ORIGINAL_ARTICLE
SOME RESULTS OF INTUITIONISTIC FUZZY WEAK DUAL
HYPER K-IDEALS
In this note we consider the notion of intuitionistic fuzzy (weak) dual hyper K-ideals and obtain related results. Then we classify this notion according to level sets. After that we determine the relationships between intuitionistic fuzzy (weak) dual hyper K-ideals and intuitionistic fuzzy (weak) hyper K-ideals. Finally, we define the notion of the product of two intuitionistic fuzzy (weak) dual hyper K-ideals and prove several Decomposition Theorems.
http://ijfs.usb.ac.ir/article_317_d5e1b17cf8849cf020dee0e8e092a8ed.pdf
2008-02-08T11:23:20
2019-02-16T11:23:20
65
78
10.22111/ijfs.2008.317
Dual hyper K-ideal
Intuitionistic fuzzy dual hyper K-ideal
L.
Torkzadeh
ltorkzadeh@yahoo.com
true
1
Department Of Mathematics, Islamic Azad University
of Kerman, Kerman, Iran
Department Of Mathematics, Islamic Azad University
of Kerman, Kerman, Iran
Department Of Mathematics, Islamic Azad University
of Kerman, Kerman, Iran
LEAD_AUTHOR
M.
Abbasi
true
2
Department Of Mathematics, Islamic Azad University
of Kerman, Kerman, Iran
Department Of Mathematics, Islamic Azad University
of Kerman, Kerman, Iran
Department Of Mathematics, Islamic Azad University
of Kerman, Kerman, Iran
AUTHOR
M. M. Zahedi
Zahedi
zahedi mm@mail.uk.ac.ir
true
3
Department Of Mathematics, Shahid Bahonar University Of Kerman,
Kerman, Iran
Department Of Mathematics, Shahid Bahonar University Of Kerman,
Kerman, Iran
Department Of Mathematics, Shahid Bahonar University Of Kerman,
Kerman, Iran
AUTHOR
[1] K. Atanassov,Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1) (1986), 87-96.
1
[2] R. A. Borzooei and M. M. Zahedi,Positive implicative hyper K-ideals, Scientiae Mathematicae
2
Japonicae,53(3) (2001), 525-533.
3
[3] R. A. Borzooei, A. Hasankhani, M. M. Zahedi and Y. B. Jun,On hyper K-algebras, Math.
4
Japon.,52(1) (2000), 113-121.
5
[4] P. Corsini and V. Leoreanu,Applications of hyper structure theory, Kluwer Academic Publishers,
6
[5] Y. Imai and K. Iseki,On axiom systems of propositional calculi, XIV Proc. Japan Academy,
7
42(1966), 19-22.
8
[6] K. Iseki and S. Tanaka,An introduction to the theory of BCK-algebras, Math. Japon, 23
9
(1978), 1-26.
10
[7] F. Marty,Sur une generalization de la notion de groups, 8th congress Math. Scandinaves,
11
Stockholm, (1934), 45-49.
12
[8] J. Meng and Y. B. Jun,BCK-algebras, Kyung Moonsa, Seoul, Korea, 1994.
13
[9] L. Torkzadeh and M. M. Zahedi,Dual positive implicative hyper K-ideals of type 4, J. Quasigroups
14
and Related Systems,9 (2002), 85-106.
15
[10] L. Torkzadeh and M. M. Zahedi,(Weak) dual hyper K-ideals , Soft Computing, to appear.
16
[11] L. Torkzadeh and M. M. Zahedi,(Anti) fuzzy dual positive implicative hyper K-ideals, Italian
17
Journal of Pure and Applied Mathematics,17 (2005), 69-82.
18
[12] L. Torkzadeh and M. M. Zahedi,Intuitionistic fuzzy commutative hyper K-ideals, J. Appl.
19
Math. & Computing, to appear.
20
[13] L. A. Zadeh,Fuzzy sets, Information and Control, 8 (1965), 338-353.
21
ORIGINAL_ARTICLE
GENERALIZATION OF ($\epsilon $, $\epsilon $ $\vee$ q)−FUZZY SUBNEAR-RINGS AND
IDEALS
In this paper, we introduce the notion of ($\epsilon $, $\epsilon $ $\vee$ q_{k})− fuzzy subnear-ring which is a generalization of ($\epsilon $, $\epsilon $ $\vee$ q)−fuzzy subnear-ring. We have given examples which are ($\epsilon $, $\epsilon $ $\vee$ q_{k})−fuzzy ideals but they are not ($\epsilon $, $\epsilon $ $\vee$ q)−fuzzy ideals. We have also introduced the notions of ($\epsilon $, $\epsilon $ $\vee$ q_{k})−fuzzyquasi-ideals and ($\epsilon $, $\epsilon $ $\vee$ q_{k})−fuzzy bi-ideals of near-ring. We have characterized($\epsilon $, $\epsilon $ $\vee$ q_{k})−fuzzy quasi-ideals and ($\epsilon $, $\epsilon $ $\vee$ q_{k})−fuzzy bi-ideals of nearrings.
http://ijfs.usb.ac.ir/article_318_b1c8298fc1fdcba2269072e05efde125.pdf
2008-02-08T11:23:20
2019-02-16T11:23:20
79
97
10.22111/ijfs.2008.318
Near ring
Fuzzy subnear-ring
Fuzzy ideal
Fuzzy quasi-ideal
Fuzzy bi-ideal ($epsilon $
$epsilon $ $vee$ q)−fuzzy subnear-ring
($epsilon $
$epsilon $ $vee$ q)−fuzzy ideal
($epsilon $
$epsilon $ $vee$ q)−fuzzy quasi-ideal
($epsilon $
$epsilon $ $vee$ q)−fuzzy bi-ideal
($epsilon $
$epsilon $ $vee$ q_{k})−fuzzy subnear-ring
($epsilon $
$epsilon $ $vee$ q_{k})− fuzzy ideal
($epsilon $
$epsilon $ $vee$ q_{k})− fuzzy quasi-ideal
($epsilon $
$epsilon $ $vee$ q_{k})− fuzzy bi-ideal
P.
Dheena
dheenap@yahoo.com
true
1
Department of Mathematics, Annamalai University, Annamalainagar-
608002, India
Department of Mathematics, Annamalai University, Annamalainagar-
608002, India
Department of Mathematics, Annamalai University, Annamalainagar-
608002, India
AUTHOR
S.
Coumaressane
coumaressane_s@yahoo.com
true
2
Department of Mathematics, Annamalai University, Annamalainagar-
608002, India
Department of Mathematics, Annamalai University, Annamalainagar-
608002, India
Department of Mathematics, Annamalai University, Annamalainagar-
608002, India
LEAD_AUTHOR
[1] S. Abou-Zaid,On fuzzy subnear-rings and ideals, Fuzzy Sets and Systems, 44 (1991), 139-146.
1
[2] S. K. Bhakat and P. Das, On the definition of a fuzzy subgroup, Fuzzy Sets and Systems, 51
2
(1992), 235-241.
3
[3] S. K. Bhakat and P. Das, ($epsilon $, $epsilon $ $vee$ q)−fuzzy subgroup, Fuzzy Sets and Systems, 80 (1996),359-368.
4
[4] S. K. Bhakat and P. Das,Fuzzy subrings and ideals redefined, Fuzzy Sets and Systems, 81(1996), 383-393.
5
[5] S. K. Bhakat, ($epsilon $, $epsilon $ $vee$ q)−fuzzy normal, quasinormal and maximal subgroups, Fuzzy Sets and Systems, 112 (2000), 299-312.
6
[6] P. S. Das,Fuzzy groups and level subgroups, J. Math. Anal. Appl., 84 (1981), 264-269.
7
[7] V. N. Dixit, R. Kumar and A. Ajmal,Fuzzy ideals and fuzzy prime ideals of a ring, Fuzzy
8
Sets and Systems,4 (1991), 127-138.
9
[8] T. K. Dutta and B. K. Biswas,Fuzzy ideal of a near-ring, Bull. Cal. Math. Soc., 89 (1997),447-456.
10
[9] S. D. Kim and H. S. Kim,On fuzzy ideals of near-rings, Bull. Korean. Math. Soc., 33 (1996),593-601.
11
[10] R. Kumar,Fuzzy algebra, University of Delhi Publication Division, Delhi, Vol. I, 1993.
12
[11] N. Kuroki,Regular fuzzy duo rings, Inform. Sci., 94 (1996), 119-139.
13
[12] W. J. Liu,Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8 (1982),
14
[13] P. P Ming and L. Y. Ming,Fuzzy topology. I. neighborhood structure of a fuzzy point and
15
moore-smith convergence, J. Math. Anal. Appl., 76 (1980), 571-599.
16
[14] T. K. Mukherjee and M. K. Sen,Prime fuzzy ideals in rings, Fuzzy Sets and Systems, 32
17
(1989), 337-341.
18
[15] Al. Narayanan and T. Manikantan, ($epsilon $, $epsilon $ $vee$ q)−fuzzy subnear-rings and (2, 2 _q)−fuzzy ideals of near-rings, J. Appl. Math. & Computing, 18 (2005), 419-430.
19
[16] G. Pilz,Near-rings, North-HollandMathematics Studies, 2nd ed., Vol. 23, North-Holland,
20
Amsterdam,1983.
21
[17] A. Rosenfeld,Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517.
22
[18] H. K. Saikia and L. K. Barthakur,On fuzzy N−subgroups and fuzzy ideals of near-rings and
23
near-ring groups, The Journal of Fuzzy Mathematics, 11 (2003), 567-580.
24
[19] H. K. Saikia and L. K. Barthakur,Characterization of fuzzy substructures of a near-ring and
25
a near-ring group, The Journal of Fuzzy Mathematics, 13 (2005), 159-167.
26
[20] U. M. Swamy and K. L. N. Swamy,Fuzzy prime ideals of rings, J. Math. Anal. Appl., 134(1988), 94-103.
27
[21] T. Tamizh Chelvam and N. Ganesan,On bi-ideals of near-ring, Indian J. Pure Appl. Math.,
28
18(1987), 1002-1005.
29
[22] X. Y. Xie,On prime, quasi-prime, weakly quasi-prime fuzzy left ideals of semigroups, Fuzzy
30
Sets and Systems,123 (2001), 239-249.
31
[23] Z. Yue,Prime L-fuzzy ideals and primary L-fuzzy ideals, Fuzzy Sets and Systems, 27 (1988),
32
[24] L. A. Zadeh,Fuzzy sets, Information and Control, 8 (1965), 338-353.
33
ORIGINAL_ARTICLE
Persian-translation Vol.5 No.1, February 2008
http://ijfs.usb.ac.ir/article_2906_bce9f7073e7d8c924a02b83b217cc0f2.pdf
2008-02-29T11:23:20
2019-02-16T11:23:20
101
106
10.22111/ijfs.2008.2906