ORIGINAL_ARTICLE
cover Vol. 2 No. 1
http://ijfs.usb.ac.ir/article_3125_1c08b55268965943ac4cf510119ecfcf.pdf
2005-04-27T11:23:20
2018-02-25T11:23:20
0
10.22111/ijfs.2005.3125
ORIGINAL_ARTICLE
SIMULATING CONTINUOUS FUZZY SYSTEMS: I
In previous studies we first concentrated on utilizing crisp simulationto produce discrete event fuzzy systems simulations. Then we extendedthis research to the simulation of continuous fuzzy systems models. In this paperwe continue our study of continuous fuzzy systems using crisp continuoussimulation. Consider a crisp continuous system whose evolution depends ondifferential equations. Such a system contains a number of parameters thatmust be estimated. Usually point estimates are computed and used in themodel. However these point estimates typically have uncertainty associatedwith them. We propose to incorporate uncertainty by using fuzzy numbers asestimates of these unknown parameters. Fuzzy parameters convert the crispsystem into a fuzzy system. Trajectories describing the behavior of the systembecome fuzzy curves. We will employ crisp continuous simulation to estimatethese fuzzy trajectories. Three examples are discussed.
http://ijfs.usb.ac.ir/article_471_f3efc123c3db28ced3c6f896f470dbb4.pdf
2005-04-21T11:23:20
2018-02-25T11:23:20
1
17
10.22111/ijfs.2005.471
Fuzzy systems
Fuzzy differential equations
Simulation
Uncertainty
J. J.
Buckley
buckley@math.uab.edu
true
1
Department of Mathematics, University of Alabama at Birmingham,
Birmingham, Alabama, 35294, USA
Department of Mathematics, University of Alabama at Birmingham,
Birmingham, Alabama, 35294, USA
Department of Mathematics, University of Alabama at Birmingham,
Birmingham, Alabama, 35294, USA
AUTHOR
K. D.
Reilly
jowersl,reilly@cis.uab.edu
true
2
Department of Computer and Information Sciences, University
of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
Department of Computer and Information Sciences, University
of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
Department of Computer and Information Sciences, University
of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
AUTHOR
L. J.
Jowers
true
3
Department of Computer and Information Sciences, University
of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
Department of Computer and Information Sciences, University
of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
Department of Computer and Information Sciences, University
of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
LEAD_AUTHOR
[1] J. J. Buckley, Fuzzy statistics, Springer-Verlag, Heidelberg, Germany, (2004).
1
[2] J. J. Buckley, Fuzzy probabilities and fuzzy sets for web planning, Springer-Verlag, Heidelberg,
2
Germany, (2004).
3
[3] J. J. Buckley, Simulating Fuzzy Systems, Springer-Verlag, Heidelberg, Germany, To appear.
4
[4] J. J. Buckley, Fuzzy systems, Soft Computing, To appear.
5
[5] J. J. Buckley and T. Feuring, Fuzzy initial value problem for nth order linear differential
6
equations, Fuzzy Sets and Systems, 121(2001) 247-255.
7
[6] J. J. Buckley, E. Eslami and T. Feuring, Fuzzy mathematics in economics and engineering,
8
Springer-Verlag, Heidelberg, Germany, (2002).
9
[7] J. J. Buckley, T. Feuring and Y. Hayashi, Linear systems of first order ordinary differential
10
equations: Fuzzy initial conditions, Soft Computing, 6(2002) 415-421.
11
[8] J. J. Buckley, K. Reilly and X. Zheng, Simulating fuzzy systems I, Applied Research in
12
Uncertainty Modelling and Analysis, Eds. N.O.Attoh-Okine, B.Ayyub, Kluwer, (2004), To
13
[9] J. J. Buckley, K. Reilly and X. Zheng, Simulating fuzzy systems II, Applied Research in
14
Uncertainty Modelling and Analysis, Eds. N.O.Attoh-Okine, B.Ayyub, Kluwer, (2004), To
15
[10] Maple 9, Waterloo Maple Inc., Waterloo, Canada.
16
[11] M. Olinick, An introduction to mathematical models in the social and life sciences, Addison-
17
Wesley, Reading, MA, (1978).
18
[12] scilabsoft.inria.fr
19
[13] solutions.iienet.org
20
[14] M. R. Spiegel, Applied differential equations, Third Edition, Prentice-Hall, Englewood Cliffs,
21
NJ, (1981).
22
[15] H. A. Taha, Operations research, Fifth Edition, Macmillan, N.Y., (1992).
23
[16] H. M. Wagner, Principles of operations research, Second Edition, Prentice Hall, Englewood
24
Cliffs, N.J.. (1975).
25
[17] www.mathworks.com
26
[18] D. G. Zill, A First course in differential equations, Brooks/Cole, Pacific Grove, CA, (1997).tt
27
ORIGINAL_ARTICLE
ON PROJECTIVE L- MODULES
The concepts of free modules, projective modules, injective modules and the likeform an important area in module theory. The notion of free fuzzy modules was introducedby Muganda as an extension of free modules in the fuzzy context. Zahedi and Ameriintroduced the concept of projective and injective L-modules. In this paper we give analternate definition for projective L-modules. We prove that every free L-module is aprojective L-module. Also we prove that if μ∈L(P) is a projective L-module, and if0→η f→ ν g→ μ →0 is a short exact sequence of L-modules then η⊕ μ >ν.Further it is proved that if μ∈L(P) is a projective L-module then μ is a fuzzy direct summandof a free L-module.
http://ijfs.usb.ac.ir/article_472_56c5e05d4edd4ec42f09af2b28ca8488.pdf
2005-04-21T11:23:20
2018-02-25T11:23:20
19
28
10.22111/ijfs.2005.472
The concepts of free modules
projective modules
PAUL
ISAAC
pi@cusat.ac.in
true
1
DEPARTMENT OF MATHEMATICS, BHARATA MATA COLLEGE, THRIKKAKARA KOCHI -
682 021, KERALA, INDIA
DEPARTMENT OF MATHEMATICS, BHARATA MATA COLLEGE, THRIKKAKARA KOCHI -
682 021, KERALA, INDIA
DEPARTMENT OF MATHEMATICS, BHARATA MATA COLLEGE, THRIKKAKARA KOCHI -
682 021, KERALA, INDIA
AUTHOR
[1] G. Birkhoff, Lattice theory, Ameri. Math. Soci. Coll. Pub (1967).
1
[2] K. R. Goodearl and R. B. Warfield, Jr., An introduction to noncommutative Noetherian rings,
2
Cambridge University Press (1989).
3
[3] T. W. Hungerford, Algebra, Springer-Verlag (1974).
4
[4] P. Isaac, On L-modules, Proceedings of the National Conference on Mathematical Modeling, March
5
14-16, (2002); Baselius College, Kottayam, Kerala, India, 123-134.
6
[5] P. Isaac, Simple and Semisimple L-modules (to appear in The Journal of Fuzzy Math.).
7
[6] P. Isaac, Exact sequences of L-modules (communicated).
8
[7] J. N. Mordeson and D. S. Malik, Fuzzy commutative algebra, World Scientific (1998).
9
[8] G. C. Muganda, Free fuzzy modules and their bases, Inform. Sci.,72 (1993) 65-82.
10
[9] F. Pan, Fuzzy finitely generated modules, Fuzzy Sets and Systems, 21 (1987) 105-113.
11
[10] A. Rosenfeld, Fuzzy groups, Journal Math. Anal. Appl. 35 (1971) 512-517.
12
[11] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965) 338-353.
13
[12] M. M. Zahedi and A. Ameri, On fuzzy projective and injective modules, Journal Fuzzy. Math.3, No.1
14
(1995) 181-190.
15
[13] M. M. Zahedi, Some results on L-fuzzy modules, Fuzzy Sets and Systems, 55 (1993) 355-361.
16
ORIGINAL_ARTICLE
P2-CONNECTEDNESS IN L-TOPOLOGICAL SPACES
In this paper, a certain new connectedness of L-fuzzy subsets inL-topological spaces is introduced and studied by means of preclosed sets. Itpreserves some fundamental properties of connected set in general topology.Especially the famous K. Fan’s Theorem holds.
http://ijfs.usb.ac.ir/article_473_a29f06f0f25e1ea6f87a2142260d85f3.pdf
2005-04-21T11:23:20
2018-02-25T11:23:20
29
36
10.22111/ijfs.2005.473
L-topological space
Preclosed set
P-connected set
P2-connected set
Shu-Ping
Li
lishuping46@hotmail.com or lishuping46@126.com
true
1
Department of Computer Science and Technology, Mudanjiang Teachers
College, Mudanjiang, Heilongjiang 157012, P.R. China
Department of Computer Science and Technology, Mudanjiang Teachers
College, Mudanjiang, Heilongjiang 157012, P.R. China
Department of Computer Science and Technology, Mudanjiang Teachers
College, Mudanjiang, Heilongjiang 157012, P.R. China
LEAD_AUTHOR
Zheng
Fang
fangzhengdq-1@163.com
true
2
Department of Computer Science and Technology, Daqing Teachers
College, Daqing, Heilongjiang 157012, P.R. China
Department of Computer Science and Technology, Daqing Teachers
College, Daqing, Heilongjiang 157012, P.R. China
Department of Computer Science and Technology, Daqing Teachers
College, Daqing, Heilongjiang 157012, P.R. China
AUTHOR
Jie
Zhao
true
3
Department of Computer Science and Technology, Mudanjiang Teachers
College, Mudanjiang, Heilongjiang 157012, P.R. China
Department of Computer Science and Technology, Mudanjiang Teachers
College, Mudanjiang, Heilongjiang 157012, P.R. China
Department of Computer Science and Technology, Mudanjiang Teachers
College, Mudanjiang, Heilongjiang 157012, P.R. China
AUTHOR
[1] D. M. Ali, Some other types of fuzzy connectedness, Fuzzy Sets and Systems, 46(1992) 55-61.
1
[2] D. M. Ali and A.K. Srivastava,On fuzzy connectedness, Fuzzy Sets and Systems, 28(1988)
2
[3] S.-Z. Bai, Strong connectedness in L-topological spaces, J. Fuzzy Math., 3(1995) 751-759.
3
[4] S.-Z. Bai, P-Connectedness in L-topological spaces, Soochow Journal of Mathematics,
4
29(2003) 35-42.
5
[5] G. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions,
6
Fuzzy Sets and Systems, 86(1997) 93-100.
7
[6] G. Gierz, et al., A compendium of continuous lattices, Springer Verlag, Berlin, (1980).
8
[7] P. P. Pu and Y. M. Liu, Fuzzy topology I, Neighborhood structure of a fuzzy point and
9
Moore-Smith convergence, J. Math. Anal. Appl., 76(1980) 571-599.
10
[8] I. L. Reilly and M. K. Vamanmurthy, On -continuity in topological spaces, Acta Math.
11
Hungar. 45(1985) 27-32.
12
[9] A. S. B. Shahna, On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and
13
Systems, 44(1991) 303-308.
14
[10] F.-G. Shi and C.-Y. Zheng, Connectivity in Fuzzy Topological Molecular Lattices, Fuzzy Sets
15
and Systems, 29(1989) 363-370.
16
[11] M. K. Singal and N. Prakash, Fuzzy preopen sets and fuzzy preseparation axioms, Fuzzy Sets
17
and Systems, 44(1991) 273-281.
18
[12] N. Turanli and D. Coker, On some types of fuzzy connectedness in fuzzy topological spaces,
19
Fuzzy Sets and Systems, 60(1993) 97-102.
20
[13] G.-J. Wang, Theory of topological molecular lattices, Fuzzy Sets and Systems, 47(1992) 351-
21
[14] G.-J. Wang, L-fuzzy topological spaces. Shaanxi Normal Univisity Press, (1988).
22
[15] G.-M. Wang and F.-G. Shi,Local connectedness of L-fuzzy topological spaces, Fuzzy Systems
23
and Mathematics, 10(4)(1996), 51-55.
24
[16] D.-S. Zhao and G. -J. Wang, A new kind of fuzzy connectivity, Fuzzy Mathematics, 4(1984)
25
[17] C. Y. Zheng, Connectedness of Fuzzy topological spaces, Fuzzy Mathematics, 2(1982) 59-66.
26
ORIGINAL_ARTICLE
FUZZY HYPERVECTOR SPACES OVER VALUED FIELDS
In this note we first redefine the notion of a fuzzy hypervectorspace (see [1]) and then introduce some further concepts of fuzzy hypervectorspaces, such as fuzzy convex and balance fuzzy subsets in fuzzy hypervectorspaces over valued fields. Finally, we briefly discuss on the convex (balanced)hull of a given fuzzy set of a hypervector space.
http://ijfs.usb.ac.ir/article_474_75629850ad65e93cb75b88dddde33b7f.pdf
2005-04-21T11:23:20
2018-02-25T11:23:20
37
47
10.22111/ijfs.2005.474
Fuzzy hypervector spaces
convex fuzzy sets
balanced fuzzy sets
valued fields
Reza
Ameri
true
1
Department of Mathematics, University of Mazandaran, Babolsar, Iran
Department of Mathematics, University of Mazandaran, Babolsar, Iran
Department of Mathematics, University of Mazandaran, Babolsar, Iran
AUTHOR
[1] R. Ameri, Fuzzy (Co-)Norm Hypervector Spaces, Proceedings of the 8th International Congress
1
in Algebraic Hyperstructures and Applications, Samotraki, Greece, September 1-9
2
(2002)71-79.
3
[2] R. Ameri and M. M. Zahedi, Hypergroup and Join Spaces induced by a fuzzy subset, PU.M.A
4
8 (1997) 155-168.
5
[3] R. Ameri and M. M. Zahedi, Fuzzy Subhypermodules over fuzzy hyperrings, Sixth International
6
Congress on AHA, Democritus Univ. (1996) 1–14.
7
[4] R. Ameri, Fuzzy (Transposition) Hypergroups, Italian Journal of Pure and applied mathematics
8
(to appear).
9
[5] R. Ameri and M. M. Zahedi, Hyperalgebraic System, Italian Journal of Pure and Applied
10
Mathematics, 6 (1999) 21–32.
11
[6] R. Ameri, On Fuzzy Inner Product of Hyperspaces, Proceedings of the Thired Seminar on
12
fuzzy sets and Applications, Jun, 19-20, (2002) 9-13.
13
[7] D. S. Comer, Polygroups Derived from Cogroups, Journal of Algebra, 89 (1984) 397-405.
14
[8] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore 1979.
15
[9] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Kluwer Academic Publications,
16
[10] P. Corsini and V. Leoreanu, Fuzzy sets and Join Spaces Associated with rough sets, Rend.
17
Circ. Mat., Palermo, 51 (2002) 527-536.
18
[11] P. Corsini and I. Tofan, On Fuzzy Hypergroups, PU.M.A., 8 (1997) 29-37.
19
[12] B. Davvaz, Fuzzy Hv submodules, Fuzzy Sets and Systems, 117 (2001) 477-484.
20
[13] B. Davvaz,Fuzzy Hv-groups, Fuzzy Sets and Systems, 101 (1999) 191-195.
21
[14] P.S. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl., 84 (1981) 264-269.
22
[15] A. K. Katsaras and D.B. Liu,Fuzzy Vector Spaces and Fuzzy Topological Spaces, J. Math.
23
Anal. Appl. 58 (1977) 135-146.
24
[16] Ath. Kehagias, L-fuzzy Join and Meet Hyperoperations and the Associated L-fuzzy Hyperalgebras,
25
Rend. Circ. Mat., Palermo, 51 (2002) 503-526.
26
[17] Ath. Kehagias, An Example of L-fuzzy Join Space, Rend. Circ. Mat., Palermo, 52 (2003)
27
[18] V. Leoreanu, Direct Limit and inverse limit of Join Spaces Associated with Fuzzy Sets, Pure
28
Math. Appl. 11 (2000) 509-512.
29
[19] R. Lowen, Convex Fuzzy Sets, FSS, 3 (1980) 291-310.
30
[20] F. Marty, Sur une generalization de la notion de groupe, 8iem congres des Mathematiciens
31
Scandinaves, Stockholm (1934) 45-49.
32
[21] S. Nanda, Fuzzy Linear Spaces Over valued Fields, FSS, 42 (1991) 351-354.
33
[22] S. Nanda, Fuzzy Fields and Fuzzy Linear Spaces, Fuzzy Sets and Systems, 19 (1986) 89-94.
34
[23] A. Rosenfeld, Fuzzy groups,J. Math. Anal. Appl. 35 (1971) 512-517.
35
[24] K. Serafimindis and Ath. Kehagias, The L-fuzzy Corsini Join Hyperoperation, Italian Journal
36
of Pure and applied mathematics, 12 (2002) 83-90.
37
[25] M. S. Tallini, Hypervector Spaces, Proceedings of Fourth Int. Congress in Algebraic Hyperstructures
38
and Applications, Xanthi, Greece, world scientific (1990) 167-174.
39
[26] M. S. Tallini, Hypervector Spaces and Norm in such Spaces, Algebraic Hyperstructures and
40
Applications, Hardonic Press (1994) 199-206.
41
[27] Lu Tu and Wen-Xiang Gu,Fuzzy algebraic system (I): Direct products, Fuzzy Sets and Systems,
42
61 (1994) 313-327.
43
[28] T. Vougiuklis, Hyperstructures and their representations, Hardonic Press, Inc. 1994.
44
[29] H. S. Wall, Hypergroups, Amer.J Math. (1937) 77-98.
45
[30] Gu Wenxiang, Lu Tu, Fuzzy Linear Spaces, Fuzzy Sets and Systems, 94 (1992) 377-380.
46
[31] L. A. Zadeh, Fuzzy Sets, Inform. and Control, 8 (1965) 338-353.
47
[32] M. M. Zahedi, M. Bolurian and A. Hasankhani, On polygroups and Fuzzy subpolygroups,
48
Journal of Fuzzy Mathematics, 3 (1995) 1-15.
49
ORIGINAL_ARTICLE
CATEGORY OF (POM)L-FUZZY GRAPHS AND HYPERGRAPHS
In this note by considering a complete lattice L, we define thenotion of an L-Fuzzy hyperrelation on a given non-empty set X. Then wedefine the concepts of (POM)L-Fuzzy graph, hypergraph and subhypergroupand obtain some related results. In particular we construct the categories ofthe above mentioned notions, and give a (full and faithful) functor form thecategory of (POM)L-Fuzzy subhypergroups ((POM)L-Fuzzy graphs) into thecategory of (POM)L-Fuzzy hypergraphs. Also we show that for each finiteobjects in the category of (POM)L-Fuzzy graphs, the coproduct exists, andunder a suitable condition the product also exists.
http://ijfs.usb.ac.ir/article_475_4c6e4e4c3721205d46bc60a79552b370.pdf
2005-04-21T11:23:20
2018-02-25T11:23:20
49
63
10.22111/ijfs.2005.475
Fuzzy graph
Fuzzy hypergraph
Fuzzy subhypergroup
Partially
ordered monoid
M. M.
Zahedi
zahedi mm@mail.uk.ac.ir
true
1
Department of Mathematics, Shahid Bahonar University of Kerman,
Kerman, Iran
Department of Mathematics, Shahid Bahonar University of Kerman,
Kerman, Iran
Department of Mathematics, Shahid Bahonar University of Kerman,
Kerman, Iran
AUTHOR
M. R.
Khorashadi-Zadeh
mr khorashadi@yahoo.com
true
2
Department of Mathematics, Imam Ali Military University,
Tehran, Iran
Department of Mathematics, Imam Ali Military University,
Tehran, Iran
Department of Mathematics, Imam Ali Military University,
Tehran, Iran
LEAD_AUTHOR
[1] C. Berge, Graphs and Hypergraphs, North Holland, 1979.
1
[2] G. Birkhoff, Lattice Theory, American Math. Soc., Providence, Rhode Island, USA, Third
2
Edition, 1973.
3
[3] S. C. Cheng, J. N. Mordeson and Y. Yandong, Elements of L-algebras, Lecture Notes in
4
Fuzzy Mathematics and Computer Sciences, Creighton University, USA, 1994.
5
[4] J. A. Goguen, Categories of V-sets, Bull. Am. Math. Soc., (1975) 622-624.
6
[5] U. Hohle and E. P. Klement (Eds), Nonclassical Logics and their Applications to Fuzzy
7
Subsets, Kluwer, 1995
8
[6] S. R. Lopez-Permouth and D. S. Malik, On Catgegories of Fuzzy Modules, Information Sciences,
9
52(1990) 211-220.
10
[7] F. Marty, Sur une generalization de la notion de groupe, 8iem congress Math. Scandinaves,
11
Stockholm, (1934) 45-49.
12
[8] M. Mashinchi and M. Mukaidono, Generalized fuzzy quotient subgroups, Fuzzy Sets and
13
Systems, 74(1995) 245-257.
14
[9] A. Rosenfeld, Fuzzy graphs In: L.A. Zadeh, K.S. Fu and M. Shimura, Eds, Fuzzy Sets and
15
Their Applications, Academic press, New York, (1975) 77-95.
16
[10] H. Roy and Jr. Goetschel, Introduction to fuzzy hypergraphs and Hebbian Structures, Fuzzy
17
Sets and Systems, 76(1995) 113-130.
18
[11] M. M. Zahedi and M. R. Khorashadi-Zadeh, Some Categoric Connections Between Fuzzy
19
Hypergraphs, Subhypergroups, Graphs, Subgroups and Subsets, Journal of Discrete Mathematical
20
Sciences and Cryptography, Vol. 4, No. 1(2001) 17-32.
21
ORIGINAL_ARTICLE
POTENTIAL ENERGY BASED STABILITY ANALYSIS OF FUZZY LINGUISTIC SYSTEMS
This paper presents the basic concepts of stability in fuzzy linguistic models. Theauthors have proposed a criterion for BIBO stability analysis of fuzzy linguistic modelsassociated to linear time invariant systems [25]-[28]. This paper presents the basic concepts ofstability in the general nonlinear and linear systems. This stability analysis method is verifiedusing a benchmark system analysis.
http://ijfs.usb.ac.ir/article_476_864cf32d5a991972d992edcdd3b3cb6f.pdf
2005-04-21T11:23:20
2018-02-25T11:23:20
65
74
10.22111/ijfs.2005.476
Fuzzy modeling
Stability analysis
Necessary and sufficient condition for
stability
Potential energy
AMIR ABOLFAZL
SURATGAR
a_a_suratgar@yahoo.com
true
1
DEPARTMENT OF ELECTRICAL ENGINEERING, ARAK UNIVERSITY, ARAK,
IRAN
DEPARTMENT OF ELECTRICAL ENGINEERING, ARAK UNIVERSITY, ARAK,
IRAN
DEPARTMENT OF ELECTRICAL ENGINEERING, ARAK UNIVERSITY, ARAK,
IRAN
LEAD_AUTHOR
SYED KAMALEDIN
NIKRAVESH
nikravesh@aut.ac.ir
true
2
DEPARTMENT OF ELECTRICAL ENGINEERING, AMIRKABIR UNIVERSITY
OF TECHNOLOGY, TEHRAN, IRAN
DEPARTMENT OF ELECTRICAL ENGINEERING, AMIRKABIR UNIVERSITY
OF TECHNOLOGY, TEHRAN, IRAN
DEPARTMENT OF ELECTRICAL ENGINEERING, AMIRKABIR UNIVERSITY
OF TECHNOLOGY, TEHRAN, IRAN
AUTHOR
[1] P. Albertos, R. Strietzel and N. Mort, Control engineering solution , a practical approach, IEE Press,
1
[2] C. T. Chen, Introduction to linear system theory, Prentice Hall, Englewood Cliffs (1970) 83.
2
[3] Y. Ding, H. Ying and S. Shao, Theoretical analysis of a takagi-sugeno fuzzy PI controller with
3
application to tisssue hyperthermia therapy, Proc. of IEEE on Computational Intelligence, Vol. 1
4
(1998) 252-257.
5
[4] S. S. Farinwata, A robust stablizing controller for a class of fuzzy systems, Proc. of IEEE Conf. of
6
Decision and Control, Vol. 5 (1999) 4355-4360.
7
[5] T. Furuhashi, H. Kakami, J. Peter and W. Pedrycz, A stability analysis of fuzzy control system using a
8
generalized fuzzy petri net model, Porc. of IEEE International Conference on Computational
9
Intelligence, Vol. 1 (1998) 95-100.
10
[6] S. M. Guu and C. T. Pang, On asymptotic stability of free fuzzy systems, IEEE Trans. On Fuzzy
11
Systems., Vol. 7 (1999) 467-468.
12
[7] T. Hasegawa and T. Furuhashi, Stability analysis of fuzzy control systems simplified as a discrete
13
system, Control and Cybernetics, Vol. 27, (1998), No. 1 (1998) 565-577.
14
[8] T. Hasegawa, T. Furuhashi and Y. Uchikawa, Stability analysis of fuzzy control systems using petri
15
nets, Proc. of 5-th IEEE Int. Conf. On Fuzzy Systems, (1996).
16
[9] X. He, H. Zhang and Z. Bien, Analysis on D stability of fuzzy system, Porc. of IEEE World Congress
17
on Computational Intelligence , (1998).
18
[10] G. Kang, W. Lee and M. Sugeno, Stability analysis of TSK fuzzy systems, Proc. of IEEE International
19
Conference on Computational Intelligence, Vol. 1 (1998) 555-560.
20
[11] S. Kawamoto, K. Tada, A. Ishigame and T. Taniguchi, An approach to stability analysis of second
21
order fuzzy systems, Proc. First IEEE Int. Conf. On Fuzzy Systems,(1992).
22
[12] E. Kim, A new approach to numerical stability analysis of fuzzy control systems, IEEE Trans. On
23
Syst. Man and Cyber. , Part C , Vol. 31 (2001) 107-113.
24
[13] H. K. Lam, F. H. F. Leung and P. K. S. Tam, Stability and robustness analysis and gain design for
25
fuzzy control systems subject to parameter uncertainties, Proc. of 9-th International Conf. On Fuzzy
26
Systems., Vol. 2 (2000) 682-687.
27
[14] P. Linder and B. Shafai, Qualitative robust fuzzy control with application to 1992 ACC Benchmark,
28
IEEE Trans. On Fuzzy Systems, Vol. 7 (1999) 409-421.
29
[15] M. Margaliot and G. Langholz, New approaches to fuzzy modelling and control design, World
30
Scientific Press, (2000).
31
[16] M. Margaliot and G. Langholz, Adaptive fuzzy controller design via fuzzy Lyapunov synthesis, IEEE
32
Conf. (1998).
33
[17] M. Margaliot and G. Langholz, Fuzzy control of a benchmark problem: a computing with words
34
approach, IEEE Conf. (2001).
35
[18] W. Pedrycz and F. Gomide, A new generalized fuzzy petri net model, IEEE Trans. On Fuzzy Systems,
36
Vol. 2 (1994) 295-301.
37
[19] R. E. Precup, S. Preitl and S. Solyom, Center manifold theory approach to the stability analysis of
38
fuzzy control systems, EUFIT, (1999), Dortmund.
39
[20] J. J. E. Slotine and W. Li, Applied nonlinear control, Prentice Hall
40
[21] M. Sugeno, On stability fuzzy systems expressed by fuzzy rules with singleton consequents, IEEE
41
Trans. On Fuzzy Systems. , Vol. 7 (1999) 201-224.
42
[22] A. A. Suratgar and S. K. Nikravesh, A new sufficient condition for stability of fuzzy systems, ICEE
43
2002, Tabriz, Iran, (2002).
44
[23] A. A. Suratgar and S. K. Nikravesh, Comment on: stability analysis of fuzzy control systems simplified
45
as a discrete system, Control and Cybernetics Journal, Submitted.
46
[24] A. A. Suratgar and S. K. Nikravesh, Necessary and sufficient conditions for asymptotic stability of a
47
class of applied nonlinear dynamical systems, IEEE Circuit and System Conf., Sharjah, (2003), (to
48
[25] A. A. Suratgar and S. K. Nikravesh, Two new approaches for linguistic fuzzy modeling and
49
introduction to their stability analysis, IEEE World Congress Computational Intelligence, USA,
50
[26] A. A. Suratgar and S. K. Nikravesh, Two new approaches for linguistic fuzzy modeling and its
51
stability, IEEE Fuzzy System and Knowledge Discovery FSKD’02, Singapour, (2002).
52
[27] A. A. Suratgar and S. K. Nikravesh, Two approaches for linguistic fuzzy modeling and its stability,
53
Daneshvar Journal (to be appeared), (2002) (in persian).
54
[28] A. A. Suratgar and S. K. Nikravesh, Variation model: the concept and stability analysis, IEEE World
55
Congress Computational intelligence, USA, (2003).
56
[29] Kazuo Tanaka, Stability and stabilizability of fuzzy-neural-linear control systems, IEEE Trans. On
57
Fuzzy Systems., Vol. 3 (1995) 438-447.
58
[30] K. Tanaka, T. Ikeda and H. O. Wang, A LMI approach to fuzzy controller designs based on relaxed
59
stability condition, Proc. of the Sixth IEEE International Conf. on Fuzzy Systems., Vol. 1 (1997) 171-
60
[31] K. Tanaka and M. Sugeno, Stability analysis and design of fuzzy control systems, Fuzzy Sets Systems,
61
Vol. 45 (1992) 136-156.
62
[32] M. A. L.Thathachar and P. Viswanath, On stabilityof fuzzy systems, IEEE Trans. On Fuzzy Systems.,
63
Vol. 5 (1997) 145-151.
64
[33] L. X. Wang, Fuzzy systems as nonlinear dynamic systems identifiers, part II: stability analysis and
65
simulation, Proc. of 31-th Conf. of Decision and Control, (1992 ).
66
[34] H. Yamamoto and T. Furuhashi, A new sufficient condition for stable fuzzy control system and its
67
design method, IEEE Trans. On Fuzzy Systems, Vol. 9 (2001) 554-569.
68
[35] L. A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes,
69
IEEE Transaction on Systems Man and Cybernetics, Vol. SMC-3, No. 1 (1973) 28-44.
70
ORIGINAL_ARTICLE
Persian-translation Vol. 2 No. 1
http://ijfs.usb.ac.ir/article_3126_12ac9fce1f8b3a6aae2759c54c0a60db.pdf
2005-04-28T11:23:20
2018-02-25T11:23:20
77
82
10.22111/ijfs.2005.3126