unavailable

unavailable

In this paper we consider the problem of delay-dependent robustH1 control for uncertain fuzzy systems with time-varying delay. The Takagi–Sugeno (T–S) fuzzy model is used to describe such systems. Time-delay isassumed to have lower and upper bounds. Based on the Lyapunov-Krasovskiifunctional method, a sufficient condition for the existence of a robust $H_{infty}$controller is obtained. The fuzzy state feedback gains are derived by solvingpertinent LMIs. The proposed method can avoid restrictions on the derivativeof the time-varying delay assumed in previous works. The effectiveness of ourmethod is demonstrated by a numerical example.

This paper will introduce a new method to obtain the order weightsof the Ordered Weighted Averaging (OWA) operator. We will first show therelation between fuzzy quantifiers and neat OWA operators and then offer anew combination of them. Fuzzy quantifiers are applied for soft computingin modeling the optimism degree of the decision maker. In using neat operators,the ordering of the inputs is not needed resulting in better computationefficiency. The theoretical results will be illustrated in a water resources managementproblem. This case study shows that more sensitive decisions areobtained by using the new method.

The purpose of this study is to find the percentiles of fuzzy numbersand to demonstrate their applications, which include finding weightedmeans, dispersion indices, and the percentile intervals of fuzzy numbers. Thecrisp approximations of fuzzy numbers introduced in this paper are new andinteresting for the comparison of fuzzy environments, such as a variety of economic,financial, and engineering systems control problems.

The notion of absorbent ordered filters in implicative semigroupsis introduced, and its fuzzification is considered. Relations among (fuzzy) orderedfilters, (fuzzy) absorbent ordered filters, and (fuzzy) positive implicativeordered filters are stated. The extensionproperty for (fuzzy) absorbent orderedfilters is established. Conditions for (fuzzy) ordered filters to be (fuzzy)absorbent ordered filters are provided. The notions of normal/maximal fuzzyabsorbent ordered filters and complete absorbent ordered filters are introducedand their properties are investigated.

The aim of this paper is to introduce the notions of ($epsilon, epsilon vee q$)-fuzzy p-ideals, ($epsilon, epsilon vee q$)-fuzzy q-ideals and ($epsilon, epsilon vee q$)-fuzzy a-ideals in BCIalgebras and to investigate some of their properties. Several characterizationtheorems for these generalized fuzzy ideals are proved and the relationshipamong these generalized fuzzy ideals of BCI-algebras is discussed. It is shownthat a fuzzy set of a BCI-algebra is an ($epsilon, epsilon vee q$)-fuzzy a-ideal if and only if itis both an ($epsilon, epsilon vee q$)-fuzzy p-ideal and an ($epsilon, epsilon vee q$)-fuzzy q-ideal. Finally, the concept of implication-based fuzzy a-ideals in BCI-algebras is introduced and,in particular, the implication operators in Lukasiewicz system of continuousvaluedlogic are discussed.

unavailable