IJFS University of Sistan and Baluchestan Iranian Journal of Fuzzy Systems 1735-0654 University of Sistan and Baluchestan 21 10.22111/ijfs.2005.3125 unavailable cover Vol. 2 No. 1 27 04 2005 2 1 0 0 17 04 2017 17 04 2017 Copyright © 2005, University of Sistan and Baluchestan. 2005 http://ijfs.usb.ac.ir/article_3125.html

unavailable

IJFS University of Sistan and Baluchestan Iranian Journal of Fuzzy Systems 1735-0654 University of Sistan and Baluchestan 21 10.22111/ijfs.2005.471 Research Paper SIMULATING CONTINUOUS FUZZY SYSTEMS: I SIMULATING CONTINUOUS FUZZY SYSTEMS: I Buckley J. J. Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA Reilly K. D. Department of Computer and Information Sciences, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA Jowers L. J. Department of Computer and Information Sciences, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA 21 04 2005 2 1 1 17 21 02 2005 21 02 2005 Copyright © 2005, University of Sistan and Baluchestan. 2005 http://ijfs.usb.ac.ir/article_471.html

In previous studies we first concentrated on utilizing crisp simulationto produce discrete event fuzzy systems simulations. Then we extendedthis research to the simulation of continuous fuzzy systems models. In this paperwe continue our study of continuous fuzzy systems using crisp continuoussimulation. Consider a crisp continuous system whose evolution depends ondifferential equations. Such a system contains a number of parameters thatmust be estimated. Usually point estimates are computed and used in themodel. However these point estimates typically have uncertainty associatedwith them. We propose to incorporate uncertainty by using fuzzy numbers asestimates of these unknown parameters. Fuzzy parameters convert the crispsystem into a fuzzy system. Trajectories describing the behavior of the systembecome fuzzy curves. We will employ crisp continuous simulation to estimatethese fuzzy trajectories. Three examples are discussed.

Fuzzy systems Fuzzy differential equations Simulation Uncertainty
 J. J. Buckley, Fuzzy statistics, Springer-Verlag, Heidelberg, Germany, (2004).  J. J. Buckley, Fuzzy probabilities and fuzzy sets for web planning, Springer-Verlag, Heidelberg, Germany, (2004).  J. J. Buckley, Simulating Fuzzy Systems, Springer-Verlag, Heidelberg, Germany, To appear.  J. J. Buckley, Fuzzy systems, Soft Computing, To appear.  J. J. Buckley and T. Feuring, Fuzzy initial value problem for nth order linear differential equations, Fuzzy Sets and Systems, 121(2001) 247-255.  J. J. Buckley, E. Eslami and T. Feuring, Fuzzy mathematics in economics and engineering, Springer-Verlag, Heidelberg, Germany, (2002).  J. J. Buckley, T. Feuring and Y. Hayashi, Linear systems of first order ordinary differential equations: Fuzzy initial conditions, Soft Computing, 6(2002) 415-421.  J. J. Buckley, K. Reilly and X. Zheng, Simulating fuzzy systems I, Applied Research in Uncertainty Modelling and Analysis, Eds. N.O.Attoh-Okine, B.Ayyub, Kluwer, (2004), To  J. J. Buckley, K. Reilly and X. Zheng, Simulating fuzzy systems II, Applied Research in Uncertainty Modelling and Analysis, Eds. N.O.Attoh-Okine, B.Ayyub, Kluwer, (2004), To  Maple 9, Waterloo Maple Inc., Waterloo, Canada.  M. Olinick, An introduction to mathematical models in the social and life sciences, Addison- Wesley, Reading, MA, (1978).  scilabsoft.inria.fr  solutions.iienet.org  M. R. Spiegel, Applied differential equations, Third Edition, Prentice-Hall, Englewood Cliffs, NJ, (1981).  H. A. Taha, Operations research, Fifth Edition, Macmillan, N.Y., (1992).  H. M. Wagner, Principles of operations research, Second Edition, Prentice Hall, Englewood Cliffs, N.J.. (1975).  www.mathworks.com  D. G. Zill, A First course in differential equations, Brooks/Cole, Pacific Grove, CA, (1997).tt
IJFS University of Sistan and Baluchestan Iranian Journal of Fuzzy Systems 1735-0654 University of Sistan and Baluchestan 21 10.22111/ijfs.2005.472 Research Paper ON PROJECTIVE L- MODULES ON PROJECTIVE L- MODULES ISAAC PAUL DEPARTMENT OF MATHEMATICS, BHARATA MATA COLLEGE, THRIKKAKARA KOCHI - 682 021, KERALA, INDIA 21 04 2005 2 1 19 28 21 01 2004 21 09 2004 Copyright © 2005, University of Sistan and Baluchestan. 2005 http://ijfs.usb.ac.ir/article_472.html

The concepts of free modules, projective modules, injective modules and the likeform an important area in module theory. The notion of free fuzzy modules was introducedby Muganda as an extension of free modules in the fuzzy context. Zahedi and Ameriintroduced the concept of projective and injective L-modules. In this paper we give analternate definition for projective L-modules. We prove that every free L-module is aprojective L-module. Also we prove that if μ∈L(P) is a projective L-module, and if0→η f→ ν g→ μ →0 is a short exact sequence of L-modules then η⊕ μ >ν.Further it is proved that if μ∈L(P) is a projective L-module then μ is a fuzzy direct summandof a free L-module.

The concepts of free modules projective modules
 G. Birkhoff, Lattice theory, Ameri. Math. Soci. Coll. Pub (1967).  K. R. Goodearl and R. B. Warfield, Jr., An introduction to noncommutative Noetherian rings, Cambridge University Press (1989).  T. W. Hungerford, Algebra, Springer-Verlag (1974).  P. Isaac, On L-modules, Proceedings of the National Conference on Mathematical Modeling, March 14-16, (2002); Baselius College, Kottayam, Kerala, India, 123-134.  P. Isaac, Simple and Semisimple L-modules (to appear in The Journal of Fuzzy Math.).  P. Isaac, Exact sequences of L-modules (communicated).  J. N. Mordeson and D. S. Malik, Fuzzy commutative algebra, World Scientific (1998).  G. C. Muganda, Free fuzzy modules and their bases, Inform. Sci.,72 (1993) 65-82.  F. Pan, Fuzzy finitely generated modules, Fuzzy Sets and Systems, 21 (1987) 105-113.  A. Rosenfeld, Fuzzy groups, Journal Math. Anal. Appl. 35 (1971) 512-517.  L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965) 338-353.  M. M. Zahedi and A. Ameri, On fuzzy projective and injective modules, Journal Fuzzy. Math.3, No.1 (1995) 181-190.  M. M. Zahedi, Some results on L-fuzzy modules, Fuzzy Sets and Systems, 55 (1993) 355-361.
IJFS University of Sistan and Baluchestan Iranian Journal of Fuzzy Systems 1735-0654 University of Sistan and Baluchestan 21 10.22111/ijfs.2005.473 Research Paper P2-CONNECTEDNESS IN L-TOPOLOGICAL SPACES P2-CONNECTEDNESS IN L-TOPOLOGICAL SPACES Li Shu-Ping Department of Computer Science and Technology, Mudanjiang Teachers College, Mudanjiang, Heilongjiang 157012, P.R. China Fang Zheng Department of Computer Science and Technology, Daqing Teachers College, Daqing, Heilongjiang 157012, P.R. China Zhao Jie Department of Computer Science and Technology, Mudanjiang Teachers College, Mudanjiang, Heilongjiang 157012, P.R. China 21 04 2005 2 1 29 36 21 03 2004 21 11 2004 Copyright © 2005, University of Sistan and Baluchestan. 2005 http://ijfs.usb.ac.ir/article_473.html

In this paper, a certain new connectedness of L-fuzzy subsets inL-topological spaces is introduced and studied by means of preclosed sets. Itpreserves some fundamental properties of connected set in general topology.Especially the famous K. Fan’s Theorem holds.

L-topological space Preclosed set P-connected set P2-connected set
 D. M. Ali, Some other types of fuzzy connectedness, Fuzzy Sets and Systems, 46(1992) 55-61.  D. M. Ali and A.K. Srivastava,On fuzzy connectedness, Fuzzy Sets and Systems, 28(1988)  S.-Z. Bai, Strong connectedness in L-topological spaces, J. Fuzzy Math., 3(1995) 751-759.  S.-Z. Bai, P-Connectedness in L-topological spaces, Soochow Journal of Mathematics, 29(2003) 35-42.  G. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems, 86(1997) 93-100.  G. Gierz, et al., A compendium of continuous lattices, Springer Verlag, Berlin, (1980).  P. P. Pu and Y. M. Liu, Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., 76(1980) 571-599.  I. L. Reilly and M. K. Vamanmurthy, On -continuity in topological spaces, Acta Math. Hungar. 45(1985) 27-32.  A. S. B. Shahna, On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems, 44(1991) 303-308.  F.-G. Shi and C.-Y. Zheng, Connectivity in Fuzzy Topological Molecular Lattices, Fuzzy Sets and Systems, 29(1989) 363-370.  M. K. Singal and N. Prakash, Fuzzy preopen sets and fuzzy preseparation axioms, Fuzzy Sets and Systems, 44(1991) 273-281.  N. Turanli and D. Coker, On some types of fuzzy connectedness in fuzzy topological spaces, Fuzzy Sets and Systems, 60(1993) 97-102.  G.-J. Wang, Theory of topological molecular lattices, Fuzzy Sets and Systems, 47(1992) 351-  G.-J. Wang, L-fuzzy topological spaces. Shaanxi Normal Univisity Press, (1988).  G.-M. Wang and F.-G. Shi,Local connectedness of L-fuzzy topological spaces, Fuzzy Systems and Mathematics, 10(4)(1996), 51-55.  D.-S. Zhao and G. -J. Wang, A new kind of fuzzy connectivity, Fuzzy Mathematics, 4(1984)  C. Y. Zheng, Connectedness of Fuzzy topological spaces, Fuzzy Mathematics, 2(1982) 59-66.
IJFS University of Sistan and Baluchestan Iranian Journal of Fuzzy Systems 1735-0654 University of Sistan and Baluchestan 21 10.22111/ijfs.2005.474 Research Paper FUZZY HYPERVECTOR SPACES OVER VALUED FIELDS FUZZY HYPERVECTOR SPACES OVER VALUED FIELDS Ameri Reza Department of Mathematics, University of Mazandaran, Babolsar, Iran 21 04 2005 2 1 37 47 21 07 2004 21 02 2005 Copyright © 2005, University of Sistan and Baluchestan. 2005 http://ijfs.usb.ac.ir/article_474.html

In this note we first redefine the notion of a fuzzy hypervectorspace (see ) and then introduce some further concepts of fuzzy hypervectorspaces, such as fuzzy convex and balance fuzzy subsets in fuzzy hypervectorspaces over valued fields. Finally, we briefly discuss on the convex (balanced)hull of a given fuzzy set of a hypervector space.

Fuzzy hypervector spaces convex fuzzy sets balanced fuzzy sets valued fields
 R. Ameri, Fuzzy (Co-)Norm Hypervector Spaces, Proceedings of the 8th International Congress in Algebraic Hyperstructures and Applications, Samotraki, Greece, September 1-9 (2002)71-79.  R. Ameri and M. M. Zahedi, Hypergroup and Join Spaces induced by a fuzzy subset, PU.M.A 8 (1997) 155-168.  R. Ameri and M. M. Zahedi, Fuzzy Subhypermodules over fuzzy hyperrings, Sixth International Congress on AHA, Democritus Univ. (1996) 1–14.  R. Ameri, Fuzzy (Transposition) Hypergroups, Italian Journal of Pure and applied mathematics (to appear).  R. Ameri and M. M. Zahedi, Hyperalgebraic System, Italian Journal of Pure and Applied Mathematics, 6 (1999) 21–32.  R. Ameri, On Fuzzy Inner Product of Hyperspaces, Proceedings of the Thired Seminar on fuzzy sets and Applications, Jun, 19-20, (2002) 9-13.  D. S. Comer, Polygroups Derived from Cogroups, Journal of Algebra, 89 (1984) 397-405.  P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore 1979.  P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Kluwer Academic Publications,  P. Corsini and V. Leoreanu, Fuzzy sets and Join Spaces Associated with rough sets, Rend. Circ. Mat., Palermo, 51 (2002) 527-536.  P. Corsini and I. Tofan, On Fuzzy Hypergroups, PU.M.A., 8 (1997) 29-37.  B. Davvaz, Fuzzy Hv submodules, Fuzzy Sets and Systems, 117 (2001) 477-484.  B. Davvaz,Fuzzy Hv-groups, Fuzzy Sets and Systems, 101 (1999) 191-195.  P.S. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl., 84 (1981) 264-269.  A. K. Katsaras and D.B. Liu,Fuzzy Vector Spaces and Fuzzy Topological Spaces, J. Math. Anal. Appl. 58 (1977) 135-146.  Ath. Kehagias, L-fuzzy Join and Meet Hyperoperations and the Associated L-fuzzy Hyperalgebras, Rend. Circ. Mat., Palermo, 51 (2002) 503-526.  Ath. Kehagias, An Example of L-fuzzy Join Space, Rend. Circ. Mat., Palermo, 52 (2003)  V. Leoreanu, Direct Limit and inverse limit of Join Spaces Associated with Fuzzy Sets, Pure Math. Appl. 11 (2000) 509-512.  R. Lowen, Convex Fuzzy Sets, FSS, 3 (1980) 291-310.  F. Marty, Sur une generalization de la notion de groupe, 8iem congres des Mathematiciens Scandinaves, Stockholm (1934) 45-49.  S. Nanda, Fuzzy Linear Spaces Over valued Fields, FSS, 42 (1991) 351-354.  S. Nanda, Fuzzy Fields and Fuzzy Linear Spaces, Fuzzy Sets and Systems, 19 (1986) 89-94.  A. Rosenfeld, Fuzzy groups,J. Math. Anal. Appl. 35 (1971) 512-517.  K. Serafimindis and Ath. Kehagias, The L-fuzzy Corsini Join Hyperoperation, Italian Journal of Pure and applied mathematics, 12 (2002) 83-90.  M. S. Tallini, Hypervector Spaces, Proceedings of Fourth Int. Congress in Algebraic Hyperstructures and Applications, Xanthi, Greece, world scientific (1990) 167-174.  M. S. Tallini, Hypervector Spaces and Norm in such Spaces, Algebraic Hyperstructures and Applications, Hardonic Press (1994) 199-206.  Lu Tu and Wen-Xiang Gu,Fuzzy algebraic system (I): Direct products, Fuzzy Sets and Systems, 61 (1994) 313-327.  T. Vougiuklis, Hyperstructures and their representations, Hardonic Press, Inc. 1994.  H. S. Wall, Hypergroups, Amer.J Math. (1937) 77-98.  Gu Wenxiang, Lu Tu, Fuzzy Linear Spaces, Fuzzy Sets and Systems, 94 (1992) 377-380.  L. A. Zadeh, Fuzzy Sets, Inform. and Control, 8 (1965) 338-353.  M. M. Zahedi, M. Bolurian and A. Hasankhani, On polygroups and Fuzzy subpolygroups, Journal of Fuzzy Mathematics, 3 (1995) 1-15.
IJFS University of Sistan and Baluchestan Iranian Journal of Fuzzy Systems 1735-0654 University of Sistan and Baluchestan 21 10.22111/ijfs.2005.475 Research Paper CATEGORY OF (POM)L-FUZZY GRAPHS AND HYPERGRAPHS CATEGORY OF (POM)L-FUZZY GRAPHS AND HYPERGRAPHS Zahedi M. M. Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran Khorashadi-Zadeh M. R. Department of Mathematics, Imam Ali Military University, Tehran, Iran 21 04 2005 2 1 49 63 21 04 2013 21 04 2013 Copyright © 2005, University of Sistan and Baluchestan. 2005 http://ijfs.usb.ac.ir/article_475.html

In this note by considering a complete lattice L, we define thenotion of an L-Fuzzy hyperrelation on a given non-empty set X. Then wedefine the concepts of (POM)L-Fuzzy graph, hypergraph and subhypergroupand obtain some related results. In particular we construct the categories ofthe above mentioned notions, and give a (full and faithful) functor form thecategory of (POM)L-Fuzzy subhypergroups ((POM)L-Fuzzy graphs) into thecategory of (POM)L-Fuzzy hypergraphs. Also we show that for each finiteobjects in the category of (POM)L-Fuzzy graphs, the coproduct exists, andunder a suitable condition the product also exists.

Fuzzy graph Fuzzy hypergraph Fuzzy subhypergroup Partially ordered monoid
 C. Berge, Graphs and Hypergraphs, North Holland, 1979.  G. Birkhoff, Lattice Theory, American Math. Soc., Providence, Rhode Island, USA, Third Edition, 1973.  S. C. Cheng, J. N. Mordeson and Y. Yandong, Elements of L-algebras, Lecture Notes in Fuzzy Mathematics and Computer Sciences, Creighton University, USA, 1994.  J. A. Goguen, Categories of V-sets, Bull. Am. Math. Soc., (1975) 622-624.  U. Hohle and E. P. Klement (Eds), Nonclassical Logics and their Applications to Fuzzy Subsets, Kluwer, 1995  S. R. Lopez-Permouth and D. S. Malik, On Catgegories of Fuzzy Modules, Information Sciences, 52(1990) 211-220.  F. Marty, Sur une generalization de la notion de groupe, 8iem congress Math. Scandinaves, Stockholm, (1934) 45-49.  M. Mashinchi and M. Mukaidono, Generalized fuzzy quotient subgroups, Fuzzy Sets and Systems, 74(1995) 245-257.  A. Rosenfeld, Fuzzy graphs In: L.A. Zadeh, K.S. Fu and M. Shimura, Eds, Fuzzy Sets and Their Applications, Academic press, New York, (1975) 77-95.  H. Roy and Jr. Goetschel, Introduction to fuzzy hypergraphs and Hebbian Structures, Fuzzy Sets and Systems, 76(1995) 113-130.  M. M. Zahedi and M. R. Khorashadi-Zadeh, Some Categoric Connections Between Fuzzy Hypergraphs, Subhypergroups, Graphs, Subgroups and Subsets, Journal of Discrete Mathematical Sciences and Cryptography, Vol. 4, No. 1(2001) 17-32.
IJFS University of Sistan and Baluchestan Iranian Journal of Fuzzy Systems 1735-0654 University of Sistan and Baluchestan 21 10.22111/ijfs.2005.476 Research Paper POTENTIAL ENERGY BASED STABILITY ANALYSIS OF FUZZY LINGUISTIC SYSTEMS POTENTIAL ENERGY BASED STABILITY ANALYSIS OF FUZZY LINGUISTIC SYSTEMS SURATGAR AMIR ABOLFAZL DEPARTMENT OF ELECTRICAL ENGINEERING, ARAK UNIVERSITY, ARAK, IRAN NIKRAVESH SYED KAMALEDIN DEPARTMENT OF ELECTRICAL ENGINEERING, AMIRKABIR UNIVERSITY OF TECHNOLOGY, TEHRAN, IRAN 21 04 2005 2 1 65 74 21 04 2005 21 04 2005 Copyright © 2005, University of Sistan and Baluchestan. 2005 http://ijfs.usb.ac.ir/article_476.html

This paper presents the basic concepts of stability in fuzzy linguistic models. Theauthors have proposed a criterion for BIBO stability analysis of fuzzy linguistic modelsassociated to linear time invariant systems -. This paper presents the basic concepts ofstability in the general nonlinear and linear systems. This stability analysis method is verifiedusing a benchmark system analysis.

Fuzzy modeling Stability analysis Necessary and sufficient condition for stability Potential energy
 P. Albertos, R. Strietzel and N. Mort, Control engineering solution , a practical approach, IEE Press,  C. T. Chen, Introduction to linear system theory, Prentice Hall, Englewood Cliffs (1970) 83.  Y. Ding, H. Ying and S. Shao, Theoretical analysis of a takagi-sugeno fuzzy PI controller with application to tisssue hyperthermia therapy, Proc. of IEEE on Computational Intelligence, Vol. 1 (1998) 252-257.  S. S. Farinwata, A robust stablizing controller for a class of fuzzy systems, Proc. of IEEE Conf. of Decision and Control, Vol. 5 (1999) 4355-4360.  T. Furuhashi, H. Kakami, J. Peter and W. Pedrycz, A stability analysis of fuzzy control system using a generalized fuzzy petri net model, Porc. of IEEE International Conference on Computational Intelligence, Vol. 1 (1998) 95-100.  S. M. Guu and C. T. Pang, On asymptotic stability of free fuzzy systems, IEEE Trans. On Fuzzy Systems., Vol. 7 (1999) 467-468.  T. Hasegawa and T. Furuhashi, Stability analysis of fuzzy control systems simplified as a discrete system, Control and Cybernetics, Vol. 27, (1998), No. 1 (1998) 565-577.  T. Hasegawa, T. Furuhashi and Y. Uchikawa, Stability analysis of fuzzy control systems using petri nets, Proc. of 5-th IEEE Int. Conf. On Fuzzy Systems, (1996).  X. He, H. Zhang and Z. Bien, Analysis on D stability of fuzzy system, Porc. of IEEE World Congress on Computational Intelligence , (1998).  G. Kang, W. Lee and M. Sugeno, Stability analysis of TSK fuzzy systems, Proc. of IEEE International Conference on Computational Intelligence, Vol. 1 (1998) 555-560.  S. Kawamoto, K. Tada, A. Ishigame and T. Taniguchi, An approach to stability analysis of second order fuzzy systems, Proc. First IEEE Int. Conf. On Fuzzy Systems,(1992).  E. Kim, A new approach to numerical stability analysis of fuzzy control systems, IEEE Trans. On Syst. Man and Cyber. , Part C , Vol. 31 (2001) 107-113.  H. K. Lam, F. H. F. Leung and P. K. S. Tam, Stability and robustness analysis and gain design for fuzzy control systems subject to parameter uncertainties, Proc. of 9-th International Conf. On Fuzzy Systems., Vol. 2 (2000) 682-687.  P. Linder and B. Shafai, Qualitative robust fuzzy control with application to 1992 ACC Benchmark, IEEE Trans. On Fuzzy Systems, Vol. 7 (1999) 409-421.  M. Margaliot and G. Langholz, New approaches to fuzzy modelling and control design, World Scientific Press, (2000).  M. Margaliot and G. Langholz, Adaptive fuzzy controller design via fuzzy Lyapunov synthesis, IEEE Conf. (1998).  M. Margaliot and G. Langholz, Fuzzy control of a benchmark problem: a computing with words approach, IEEE Conf. (2001).  W. Pedrycz and F. Gomide, A new generalized fuzzy petri net model, IEEE Trans. On Fuzzy Systems, Vol. 2 (1994) 295-301.  R. E. Precup, S. Preitl and S. Solyom, Center manifold theory approach to the stability analysis of fuzzy control systems, EUFIT, (1999), Dortmund.  J. J. E. Slotine and W. Li, Applied nonlinear control, Prentice Hall  M. Sugeno, On stability fuzzy systems expressed by fuzzy rules with singleton consequents, IEEE Trans. On Fuzzy Systems. , Vol. 7 (1999) 201-224.  A. A. Suratgar and S. K. Nikravesh, A new sufficient condition for stability of fuzzy systems, ICEE 2002, Tabriz, Iran, (2002).  A. A. Suratgar and S. K. Nikravesh, Comment on: stability analysis of fuzzy control systems simplified as a discrete system, Control and Cybernetics Journal, Submitted.  A. A. Suratgar and S. K. Nikravesh, Necessary and sufficient conditions for asymptotic stability of a class of applied nonlinear dynamical systems, IEEE Circuit and System Conf., Sharjah, (2003), (to  A. A. Suratgar and S. K. Nikravesh, Two new approaches for linguistic fuzzy modeling and introduction to their stability analysis, IEEE World Congress Computational Intelligence, USA,  A. A. Suratgar and S. K. Nikravesh, Two new approaches for linguistic fuzzy modeling and its stability, IEEE Fuzzy System and Knowledge Discovery FSKD’02, Singapour, (2002).  A. A. Suratgar and S. K. Nikravesh, Two approaches for linguistic fuzzy modeling and its stability, Daneshvar Journal (to be appeared), (2002) (in persian).  A. A. Suratgar and S. K. Nikravesh, Variation model: the concept and stability analysis, IEEE World Congress Computational intelligence, USA, (2003).  Kazuo Tanaka, Stability and stabilizability of fuzzy-neural-linear control systems, IEEE Trans. On Fuzzy Systems., Vol. 3 (1995) 438-447.  K. Tanaka, T. Ikeda and H. O. Wang, A LMI approach to fuzzy controller designs based on relaxed stability condition, Proc. of the Sixth IEEE International Conf. on Fuzzy Systems., Vol. 1 (1997) 171-  K. Tanaka and M. Sugeno, Stability analysis and design of fuzzy control systems, Fuzzy Sets Systems, Vol. 45 (1992) 136-156.  M. A. L.Thathachar and P. Viswanath, On stabilityof fuzzy systems, IEEE Trans. On Fuzzy Systems., Vol. 5 (1997) 145-151.  L. X. Wang, Fuzzy systems as nonlinear dynamic systems identifiers, part II: stability analysis and simulation, Proc. of 31-th Conf. of Decision and Control, (1992 ).  H. Yamamoto and T. Furuhashi, A new sufficient condition for stable fuzzy control system and its design method, IEEE Trans. On Fuzzy Systems, Vol. 9 (2001) 554-569.  L. A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Transaction on Systems Man and Cybernetics, Vol. SMC-3, No. 1 (1973) 28-44.
IJFS University of Sistan and Baluchestan Iranian Journal of Fuzzy Systems 1735-0654 University of Sistan and Baluchestan 21 10.22111/ijfs.2005.3126 unavailable Persian-translation Vol. 2 No. 1 28 04 2005 2 1 77 82 17 04 2017 17 04 2017 Copyright © 2005, University of Sistan and Baluchestan. 2005 http://ijfs.usb.ac.ir/article_3126.html

unavailable