A FUZZY VERSION OF HAHN-BANACH EXTENSION THEOREM

Document Type: Research Paper

Author

Department of Mathematics, Faculty of Mathematics and Infor- matics, M'sila University, P.O.Box 166 Ichbilia, M'sila 28105, Algeria

Abstract

In this paper, a fuzzy version of the analytic form of Hahn-Banach
extension theorem is given. As application, the Hahn-Banach theorem for
$r$-fuzzy bounded linear functionals on $r$-fuzzy normed
linear spaces is obtained.

Keywords


bibitem{Amrdav11} A. Amroune and B. Davvaz, {it Fuzzy ordered sets and duallity for finite fuzzy distributive lattices}, Iranian Journal of Fuzzy Systems, {bf 8}textbf{(5)} (2011), 1--12.

bibitem{BaSa05} T. Bag and S. K. Samanta, {it Fuzzy bounded linear operators}, Fuzzy Sets and Systems, textbf{151} (2005), 513--547.

bibitem{Beg04} I. Beg, {it Some applications of fuzzy ordered relations},
CUBO, textbf{6(1)} (2004), 103--114.

bibitem{Ber95} B. M. Bernadette, {it La logique floue et ses applications}, Addison-Wesley, Paris, 1995.

bibitem{Bil92} A. Billot, {it Economic theory of fuzzy equilibria},
Lecture Notes in Economics and Mathematical
systems-373, Springer-Verlag, Berlin, 1992.

bibitem{BS04} P. Binimol and A. S. Kuriakose, {it Fuzzy Hahn-Banach Theorem-a new approch I},
J. Fuzzy Math., textbf{12(1)} (2004), 127-1363.

bibitem{BS05} P. Binimol and A. S. Kuriakose, {it Fuzzy Hahn-Banach Theorem-a new approch II},
J. Fuzzy Math., textbf{13(1)} (2005), 25-33.

bibitem{Bod07} U. Bodenhofer , B. De Baets and F. Janos , {it A compendium of fuzzy weak
orders: representations and constructions}, Fuzzy Sets and
Systems, textbf{158} (2007), 811-829.

bibitem{ItCho98} M. Itoh and M. Cho, {it Fuzzy bounded operators},
Fuzzy Sets and Systems, textbf{93} (1998), 353-362.

bibitem{Kundu00} S. Kundu, {it Similarity relations, fuzzy linear orders and fuzzy partial orders},
Fuzzy Sets and Systems, textbf{109} (2000), 419-428.

bibitem{Liyen95} H. X. Li and V. C. Yen,
{it Fuzzy sets and fuzzy decision-making}, CRC Press. Inc., London, 1995.

bibitem{NVT07} A. Narayanan, S. Vijayabalajt and N. Thillaigovindan, {it Intuitionistic fuzzy bounded linear operators}, Iranian Journal of Fuzzy Systems, {bf 4}textbf{(1)} (2007), 89--101.

bibitem{Ovch91} S. V. Ovchinnikov, {it Similarity relations, fuzzy partitions, and fuzzy ordering},
Fuzzy Sets and Systems, textbf{40} (1991), 107-126.

bibitem{Ovch2000} S. V. Ovchinnikov, {it An introduction to fuzzy
relations}, In D. Dubois, H. Prade, Fundamentals of Fuzzy Sets, The
Handbooks of fuzzy sets, Kluwer Academic Publisher,
Boston, {bf7} (2000), 233-259.

bibitem{Ram99} T. V. Ramakrishnan, {it A fuzzy extension of Hahn-Banach Theorem},
J. Fuzzy Math., textbf{7(3)} (1999), 620-630.

bibitem{RH99} G. S. Rhie and I. A. Hwang, {it On the fuzzy Hahn-Banach theorem-an analytic form},
Fuzzy Sets and Systems, textbf{108} (1999), 117-121.


bibitem{StZed} A. Stouti and L. Zedam, {it On $alpha$-fuzzy orders}, J. Fuzzy Math., textbf{18(1)} (2010), 171-192.

bibitem{Ven92} P. Venugopalan, {it Fuzzy ordered sets},
Fuzzy Sets and Systems, textbf{46} (1992), 221-226.

bibitem{Xiao02}  J. Z. Xiao, {it Hahn-Banach theorem for fuzzy normed spaces},
J. Baoji College Arts Sci.Nat. Sci.,
textbf{22(1)} (2002), 11-14.

bibitem{Zadeh65} L. A. Zadeh, {it Fuzzy sets}, Information and Control, textbf{8} (1965), 338-353.

bibitem{Zadeh71} L. A. Zadeh, {it Similarity relations and fuzzy orderings},
Information Sciences, textbf{3} (1971), 177-200.

bibitem{Zim91} H. J. Zimmermann, {it Fuzzy set theory and its applications},
Kluwer Academic Publisher, Dordrecht, 1991.