BILEVEL LINEAR PROGRAMMING WITH FUZZY PARAMETERS

Document Type: Research Paper

Authors

1 Faculty of Mathematics, University of Sistan and Baluchestan, Za- hedan, Iran

2 Faculty of Mathematics, University of Sistan and Baluches- tan, Zahedan, Iran

Abstract

Bilevel linear programming  is a decision making problem with a two-level decentralized organization. The \textquotedblleft leader\textquotedblright~ is in the upper level and the \textquotedblleft follower\textquotedblright, in the lower. Making a decision at one level affects that at the other one. In this paper, bilevel linear programming  with inexact parameters has been studied and a method is proposed to solve a fuzzy bilevel linear programming  using  interval bilevel linear programming.

Keywords


bibitem{AaW:Smls}
G. Anandalingam and D. White, {it A solution method for the linear Stackelberg problem using penalty functions}, IEEE Trans. Automatic Control,
{bf 35} (1990), 1170--1173.

bibitem{Bar:Ocbp}
J. Bard, {it Optimality conditions for the bilevel progamming problem}, Naval Research Logistics Quarterly, {bf 31} (1984),
13--26.

bibitem{Bar:Pboa}
J. Bard, {it Practical bilevel optimizaton: algorithms and applications}, Kluver Academic Publishers, The Netherlands, USA, 1988.


bibitem{BaM:BaB}
J. Bard and J. Moore, {it A branch and bound algorithm for the bilevel programming problem}, SIAM J. Sci. Stat. Comput., {bf 11}textbf{(2)} (1990), 281--292.


bibitem{BaBl:Cdbl}
O. Ben-Ayed and C. Blair, {it Computational difficulties of bilevel linear programming}, Operations Research, {bf
38} (1990), 556--560.

bibitem{BaK:Tlp}
W. Bialas and M. Karwan, {it Two level linear programming}, Management Science, {bf
30} (1984), 1004--1020.

bibitem{CadVer:Ufnlp}
J. M. Cadenas and J. L. Verdegay, {it Using fuzzy numbers in linear programming}, IEEE Transaction on Systems, Man and Cybernetics (Part B: Cybernetics),
 {bf 27}textbf{(6)} (1997), 1016--1022.

bibitem{CadVer:Pfom}
J. M. Cadenas and J. L. Verdegay, {it A Primer on fuzzy optimization models and methods}, Iranian Journal of Fuzzy Systems,
 {bf 3}textbf{(1)} (2006), 1--21.

bibitem{CaG:Lbpic}
H. I. Calvete and C. Gal'{e}, {it Linear bilevel programming with interval coefficients}, Journal of Computational and Applied Mathematics, {bf 236}textbf{(15)} (2012), 3751--3762.

bibitem{Car:Lpic}
JW. Chinneck and K. Ramadan, {it Linear programming with interval coefficients}, J. Oper. Res. Society, {bf
51} (2000), 209--220.

bibitem{DelVer:Gmflp}
M. Delgado, J. L Verdegay and M. A. Vila, {it A general model for fuzzy linear programming}, Fuzzy
Set and Systems, {bf 29} (1989), 21--29.
%-------------------------------
bibitem{JaMaMah:Flps}
N. Javadian, Y. Maali and N. Mahdavi-Amiri, {it Fuzzy linear programming with grades of satisfaction in constraints}, Iranian Journal of Fuzzy Systems,
 {bf 6}textbf{(3)} (2009), 17--35.
%------------------------------
bibitem{Jaf:Slbl}
J. Judice and A. Faustino, {it A sequential LCP method for bilevel linear programming}, Annals of  Operations Research, {bf
34} (1992), 89--106.

bibitem{LaJaZ:Ogsq}
H. Li, Y. Jiao and L. Zhang, {it Orthogonal genetic algorithm for solving quadratic bilevel programming problems}, Journal of Systems Engineering and Electronics, {bf 21} (2010), 763--770.

bibitem{Mal:Rfaflp}
H. R. Maleki, {it Ranking functions and their applications to fuzzy linear programming}, Far
East Journal of Mathematical Sciences, {bf 4}textbf{(3)} (2003), 283--301.

bibitem{MalTaMa:Lfv}
H. R. Maleki, M. Tata and M. Mashinchi, {it Linear programming with fuzzy variables}, Fuzzy
Set and Systems, {bf 106} (2000), 21--33.

bibitem{MalTaMa:Fnlp}
H. R. Maleki, M. Tata and M. Mashinchi, {it Fuzzy number linear programming}, In: C. Lucas
, ed., Proc. Internat. Conf. on Intelligent and Cognitive System FSS ’96, sponsored by
IEE ISRF, Tehran, Iran, (1996), 145--148.

bibitem{MaA:Ilp}
H. Mishmast Nehi and M. Allahdadi, {it Interval linear programming}, 4th Iranian Conference on Applied Mathematics, 2010.

bibitem{RamRamin:Irfb}
J. Ramik and J. Raminak, {it Inequality relation between fuzzy numbers and its use in fuzzy
optimization}, Fuzzy
Set and Systems, {bf 16} (1985), 123--138.

bibitem{SafMalZa:Nzlp}
M. R. Safi, H. R. Maleki and E. Zaeimazad, {it A note on Zimmermann method for solving fuzzy linear
programming problem}, Iranian Journal of Fuzzy Systems,
 {bf 4}textbf{(2)} (2007), 31--45.

bibitem{Ver:Fmp}
J. L. Verdegay, {it Fuzzy mathematical programming}, In: M. M. Gupta and E. Sanchez, eds.,
Fuzzy Information and Decision Processes, North-Holland, Amsterdam, (1982), 231--237.

bibitem{St:Fbp}
H. Von Stackelberg, {it The theory of the market economy}, Oxford University Press, New York, Oxford, 1952.


bibitem{ZaL:Fbp}
G. Zhang  and J. Lu, {it Fuzzy bilevel programming with multiple objectives and cooperative multiple followers}, J. Glob. Optim., {bf 47}textbf{(3)} (2010), 403--419.

bibitem{ZaLaD:Dmb}
G. Zhang  and J. Lu  and J. Dillon, {it Decentralized multi-objective bilevel decision making with fuzzy demonds}, Knowl. Base. Syst., {bf 20} (2007), 495--507.


bibitem{ZhaLu:Dose}
G. Zhang  and J. Lu, {it The definition of optimal solution and an extended Kuhn-Tucker approach for fuzzy linear bilevel programming}, IEEE Inteligent Information Bulletin, {bf 6} (2005), 1--7.

bibitem{ZhaLuaDi:Flbp}
G. Zhang, J. Lu  and J. Dillon, {it Fuzzy linear bilevel optimization: solution concepts, approaches and applications}, Studies in Fuzziness and Soft Computing, {bf 215} (2007), 351--379.

bibitem{Zim:Fplp}
H. J. Zimmermann, {it Fuzzy programming and linear programming with several objective
functions}, Fuzzy
Sets and Systems, {bf 1} (1978), 45--55.