MIXED VARIATIONAL INCLUSIONS INVOLVING INFINITE FAMILY OF FUZZY MAPPINGS

Document Type: Research Paper

Authors

1 Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India

2 Center for General Education, Kaohsiung Medical University, Kaohsiung 807, Taiwan

Abstract

In this paper, we introduce and study a mixed variational inclusion problem involving infinite family of fuzzy mappings. An iterative algorithm is constructed for solving a mixed variational inclusion problem involving infinite family of fuzzy mappings and the convergence of iterative sequences generated by the proposed algorithm is proved. Some illustrative examples are also given.

Keywords


bibitem {Aubin}J. P. Aubin, {em Optima and equilibria}, Second ed., Springer, Berlin, 1998.
bibitem {Chang1}S. S. Chang and N. J. Huang, {em Generalized complementarity problem for fuzzy mappings}, Fuzzy Sets and Systems, {bf 55} (1993), 227-234.
bibitem {Chang2} S. S. Chang and Y. Zhu, {em On variational inequalities for fuzzy mappings}, Fuzzy Sets and Systems, {bf 32} (1989), 359-367.

bibitem {Ding2} X. P. Ding, {em Algorithm of solutions for mixed implicit quasi-variational inequalities with fuzzy mappings}, Comput. Math. Appl., {bf 38(5-6)} (1999), 231-249.

bibitem {Ding1} X. P. Ding and J. Y. Park, {em A new class of generalized nonlinear implicit quasi variational inclusions with fuzzy mapping}, J. Comput. Appl. Math., {bf 138} (2002), 243-257.


bibitem {Heilpern} S. Heilpern, {em Fuzzy mappings and fixed point theorems}, J. Math. Anal. Appl., {bf 83} (1981), 566-569.

bibitem {Heng} W. Y. Heng, {em Infinite family of generalized set-valued quasi-variational inclusions in Banach spaces}, Acta. Anal. Functionalis Applicata, {bf 10} (2008), 1009-1327.

bibitem {Huang1} N. J. Huang, {em A new class of generalized set-valued implicit variational inclusions in Banach spaces with an application}, Comput. Math. Appl., {bf 41(718)} (2001), 937-943.

bibitem {Huang2} N. J. Huang, {em A new method for a class of nonlinear variational inequalities with fuzzy mappings}, Appl. Math. Lett., {bf 10(6)} (1997), 129-133.

bibitem {Janfada} M. Janfada, H. Baghani and O. Baghani, {em On Felbinos-type fuzzy normed linear spaces and fuzzy bounded operators}, Iranian Journal of Fuzzy Systems, {bf8(5)} (2011), 117-130.
bibitem {Kumam} P. Kumam and N. Petrol, {em Mixed variational-like inequality for fuzzy mappings in reflexive Banach spaces}, J. Inequal. Appl., {bf2009} (2009), 1-15.
bibitem {Lan1} H. Y. Lan, {em An approach for solving fuzzy implicit variational inequalities with linear membership functions}, Comput. Math. Appl., {bf 55(3)} (2008), 563-572.
bibitem {Lan2} H. Y. Lan, Y. J. Cho and R. U. Verma, {em On nonlinear relaxed cocoercive variational inclusions involving $(A,eta)$-accretive mappings in Banach spaces}, Comput. Math. Appl., {bf 51} (2006), 1529-1538.
bibitem {Lassonde} M. Lassonde, {em On the use of KKM multi function in fixed point theory and related topics}, J. Math. Anal. Appl., {bf 97} (1983), 151-201.
bibitem {Lee} B. S. Lee, M. F. Khan and Salahuddin, {em Fuzzy nonlinear set-valued variational inclusions}, Comput. Math. Appl., {bf 60(6)} (2010), 1768-1775.

bibitem  {Nadler} J. S. B. Nadler, {em Multivalued contraction mappings}, Pacific. J. math., {bf 30} (1969), 475-488.
bibitem {Noor} M. A. Noor, {em Variational inequalities with fuzzy mappings (I)}, Fuzzy Sets and Systems, {bf 55} (1989), 309-314.
bibitem {Perk1} J. Y. Park and J. U. Jeong, {em Iterative algorithm for finding approximate solutions to completely generalized strongly quasi-variational inequalities for fuzzy mappings}, Fuzzy Sets and Systems, {bf 115} (2000), 413-418.
bibitem {Perk2} J. Y. Park and J. U. Jeong, {em A perturbed algorithm of variational inclusions for fuzzy mappings}, Fuzzy Sets and Systems, {bf 115} (2000), 419-424.
bibitem {Petryshyn} W. V. Petryshyn, {em A characterization of strictly convexity of Banach spaces and other uses of duality mappings}, J. Funct. Anal., {bf 6} (1997), 282-291.
bibitem {Shih} M. H. Shih and K. K. Tan, {em Generalized quasi-variational inequalities in locally convex spaces}, J. Math. Anal. Appl., {bf 108} (1985), 333-343.
bibitem {Shivanan} E. Shivanan and E. Khorram, {em  Optimization of linear objective function subject to fuzzy relation inequalities constraints with max-product compozition}, Iranian Journal of Fuzzy Systems, {bf 7(5)} (2010), 51-71.

bibitem {Siddiqi} A. H. Siddiqi, R. Ahmad and S. S Irfan, {em Set- valued variational inclusions with fuzzy mappings in Banach spaces}, J. Concrete. Applicable. Math., {bf 4} (2006), 171-181.
bibitem  {Takahashi} W. Takahashi, {em Nonlinear variational inequalities and fixed point theorems}, J. Math. Soc. Japan, {bf 28} (1976), 168-181.
bibitem {Wu} Z. Wu and J. Xu, {em Generalized convex fuzzy mappings and fuzzy variational-like inequalities}, Fuzzy Sets and Systems, {bf 160(11)} (2009), 1590-1619.
bibitem  {Yen} C. L. Yen, {em A minimax inequality and its application to variational inequalities}, Pacific J. Math., {bf 97} (1981), 142-150.
bibitem {Zadeh} L. A. Zadeh, {em Fuzzy sets}, Information and Control, {bf 8} (1965), 338-353.
bibitem {Zimmermann} H. J. Zimmermann, {em Fuzzy set theory and its applications}, Kluwer Academic Publishers, Dordrecht, 1988.