THE RELATIONSHIP BETWEEN L-FUZZY PROXIMITIES AND L-FUZZY QUASI-UNIFORMITIES

Document Type: Research Paper

Authors

1 Department of Mathematics, Chonnam National University, 300 Yongbong- dong, Bukgu, 500-757, Gwangju, Korea

2 Department of Mathematics, Chonnam National University, 300 Yongbong- dong, Bukgu, 500-757, GwangJu, Korea

Abstract

In this paper, we investigate the L-fuzzy proximities and the relationships betweenL-fuzzy topologies, L-fuzzy topogenous order and L-fuzzy uniformity. First, we show that the category of-fuzzy topological spaces can be embedded in the category of L-fuzzy quasi-proximity spaces as a coreective full subcategory. Second, we show that the category of L -fuzzy proximity spaces is isomorphic to the category of L-fuzzy topogenous order spaces. Finally,we obtain that the category of L-fuzzy proximity spaces can be embeddedin the category of L-fuzzy uniform spaces as a bireective full subcategory.
 

Keywords


[1] J. Adamek J, H. Herrlich and G. E. Strecker, Abstract and concrete categories, J. Wiley and
Sons, New York, 1990.
[2] G. Artico and R. Moresco, Fuzzy proximities and totally bounded fuzzy uniformities, J. Math.
Anal. Appl., 9 (1984), 320-1337.
[3] G. Artico and R. Moresco, Fuzzy proximities compatible with Lowen uniformities, Fuzzy Sets
and Systems, 21 (1987), 85-99.
[4] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
[5] A. Csaszar, Foundations of general topology, Pergamon Press, 1963.
[6] D. Dzajanbajev and A. Sostak, On a fuzzy uniform structure, Acta Comm. Univ. Tartu, 940
(1992), 31-36.

[7] J. M. Fang and Y. L. Yue, Base and subbase in I-fuzzy topological spaces, J. Math. Res.
Expositon, 26 (2006), 89-95.
[8] M. H. Ghanim, O. A. Tantawy and F. M. Selim, On S-fuzzy quasi-proximity spaces, Fuzzy
Sets and Systems, 109 (2000), 285-290.
[9] F. Gierz, et al., A compendium of continuous lattices, Berlin: Springer Verlag, 1980.
[10] J. Gutierrez Garcia, M. A. de Prada Vicente and A. Sostak, A uni ed approach to the
concept of fuzzy L-uniform space, In: Topological and Algebraic Strutures in Fuzzy Sets,
A Handbook of Recent Developments in the Mathematics of Fuzzy Sets, S. E. Rodabaugh
and E. P. Klement eds. Kluwer Acad. Publ., Dordrecht, Boston, London, Chapter 3, (2003),
81-114.
[11] U. Hohle, Upper semicontinuous fuzzy sets and applications, J. Math. Anal. Appl., 78 (1980),
659-674.
[12] B. Hutton, Uniformities on fuzzy topological spaces, J. Math. Anal. Appl., 58 (1977), 557-571.
[13] A. K. Katsaras, On fuzzy syntopogenous structures, J. Math. Anal. Appl., 99 (1983), 219-236.
[14] A. K. Katsaras, On fuzzy uniform spaces, J. Math. Anal. Appl., 101 (1984), 97-114.
[15] T. Kubiak, On fuzzy topologies, PhD Thesis, Adam Mickiewicz, Poznan (Poland), 1985.
[16] W. J. Liu, Fuzzy proximity spaces rede ned, Fuzzy Sets and Systems, 15 (1985), 241-248.
[17] Y. M. Liu and M. K. Luo, Fuzzy topology, Singapore: World Scienti c Press, 1997.
[18] S. Markin and A.Sostak , Another approach to the concept of a fuzzy proximity, Suppl. Rend.
Mat. Palermo, 29 (1992), 530-551.
[19] G. Preuss, Theory of topological structures: an approch to categorical topology, D. Reidel
Publishing Company, 1987.
[20] F. G. Shi, The category of pointwise S-proximity spaces, Fuzzy Sets and Systems, 152 (2005),
349-372.
[21] A. Sostak, On a fuzzy topological structure, Rend. Cire. Matem. Palermo, Ser. II, 11 (1985),
89-103.
[22] A. Sostak, Basic structures of fuzzy topology, J. Math. Sciences, 78 (1996), 662-697.
[23] A. Sostak, Fuzzy syntopogenous structures, Quaestiones Math., 20 (1997), 431-461.
[24] Y. Yue and J. Fang, Categories isomorphic to the Kubiak-Sostak extension of TML, Fuzzy
Sets and Systems, 157 (2006), 832-842.
[25] Y. Yue and F. G. Shi, Generalized quasi-proximities, Fuzzy Sets and Systems, 158 (2007),
386-398.