THE RELATIONSHIP BETWEEN L-FUZZY PROXIMITIES AND L-FUZZY QUASI-UNIFORMITIES

E. S. KIM, S. H. AHN AND D. H. PARK

Abstract. In this paper, we investigate the L-fuzzy proximities and the relationships between L-fuzzy topologies, L-fuzzy topogenous order and L-fuzzy uniformity. First, we show that the category of L-fuzzy topological spaces can be embedded in the category of L-fuzzy quasi-proximity spaces as a coreflective full subcategory. Second, we show that the category of L-fuzzy proximity spaces is isomorphic to the category of L-fuzzy topogenous order spaces. Finally, we obtain that the category of L-fuzzy proximity spaces can be embedded in the category of L-fuzzy uniform spaces as a bireflective full subcategory.

1. Introduction

Proximity spaces were introduced in 1936 by V. A. Efremovic. Proximity is an important concept in topology and it can be considered either as axiomatizations of geometric notions, close to but quite independent of topology, or as convenient tools for an investigation of topological spaces. Hence proximity has close relations with topology, uniformity and metric. With the development of topology, the theory of proximity makes a massive progress. In the framework of L-topology, many authors generalized the crisp proximity to L-fuzzy setting. For example, in [8], Ghanim et al. introduced the concept of S-quasi-proximities on $[0,1]^X$ and in [20], Shi studied S-quasi-proximities on L_X and pointwise S-quasi-proximities. Katsaras [14] introduced quasi-proximity in $[0,1]$-fuzzy set theory. Subsequently, Liu [16], Artico and Moresco [2] extended it into L-fuzzy set theory. In recently Yue extended the proximity theory of L-topology to L-fuzzy topology, see [25]. Motivated by that, in this paper we make a further research on the relationship between L-fuzzy proximities and L-fuzzy quasi-uniformities.

The outline of this paper is as follows. In section 2, we give some concepts and results which will be used in the sequel. In section 3, we show that the category of L-fuzzy topological spaces can be embedded in the category of L-fuzzy quasi-proximity spaces as a coreflective full subcategory. In section 4, we study the relationship between L-fuzzy proximities and L-fuzzy topogenous orders, and show that the category of L-fuzzy proximity spaces is isomorphic to the category of L-fuzzy topogenous order spaces. In section 5, we study the relationship between L-fuzzy uniform spaces and L-fuzzy quasi-uniformities.
Similarly, if \(\eta \) and \(\tau \) are \(L \)-fuzzy proximities and \(L \)-fuzzy uniformities, and we obtain that the category of \(L \)-fuzzy proximity spaces can be embedded in the category of \(L \)-fuzzy uniform spaces as a bireflective full subcategory.

2. Preliminaries

In this section, we give some basic concepts and useful results which will be used in the sequel.

An element \(a \) in a complete lattice \(L \) is said to be coprime if \(a \leq b \lor c \) implies that \(a \leq b \) or \(a \leq c \). The set of all coprimes of \(L \) is denoted by \(c(L) \). We say \(a \) is wedge below \(b \), in symbols, \(a \ll b \) or \(b \gg a \), if for every arbitrary subset \(D \subseteq L \), \(\bigvee D \geq b \) implies \(a \leq d \) for some \(d \in D \). The lattice \(L \) is completely distributive if every element \(a \in L \) is the supremum of all elements wedge below it. We know that every element \(a \in L \) is the supremum of all coprimes wedge below it if \(L \) is completely distributive. It is well known that both the way below relation and the wedge below relation have the interpolation property, hence if \(a \ll b \) in a completely distributive lattice \(L \) and \(a \) is a coprime, there is some coprime \(c \in c(L) \) such that \(a \ll c \ll b \).

Throughout this paper, \(L \) is a completely distributive lattice with an order reversing involution \(\cdot \). \(L^X \) is the set of all \(L \)-fuzzy sets on \(X \). The elements \(1_X \) and \(0_X \) are the top and bottom one of \(L^X \), respectively. The set of all coprimes in \(L^X \) is denoted by \(c(L^X) \). In this paper, we always assume \(e \in c(L^X) \) when we take \(e \in L^X \) such that \(e \ll A \) for \(A \in L^X \). Let \(e|A \) denote the set \(\{ B \in L^X | e \not\subseteq B \geq A \} \) for \(e \in c(L^X) \) and \(A \in L^X \). For undefined notions and results about complete lattices, please refer to [9].

Proposition 2.1. [9] Let \(L \) be a complete lattice. The following conditions are equivalent:

1. \(L \) is completely distributive;
2. \(L \) is distributive continuous lattice with enough coprimes;
3. \(L \) is distributive and both \(L \) and \(L^{op} \) are continuous;

Now we present some definition of topology:

Definition 2.2. [15, 21] An \(L \)-fuzzy topology on a set \(X \) is defined to be a mapping \(\tau : L^X \rightarrow L \) satisfying

\[
\text{(FT1)} \quad \tau(1_X) = \tau(0_X) = 1;
\]

\[
\text{(FT2)} \quad \tau(A \lor B) \geq \tau(A) \lor \tau(B) \text{ for all } A, B \in L^X;
\]

\[
\text{(FT3)} \quad \tau(\bigvee_{t \in T} A_t) \geq \bigwedge_{t \in T} \tau(A_t) \text{ for every family } \{ A_t | t \in T \} \subseteq L^X.
\]

If \(\tau \) is an \(L \)-fuzzy topology on \(X \), the pair \((L^X, \tau)\) is called an \(L \)-fuzzy topological space. An \(L \)-fuzzy continuous mapping between \(L \)-fuzzy topological spaces \((L^X, \tau)\) and \((L^Y, \tau_1)\) is a mapping \(F : X \rightarrow Y \) such that \(\tau(F^{-1}_L(B)) \geq \tau_1(B) \) for all \(B \in L^Y \).

The category of \(L \)-fuzzy topological spaces and \(L \)-fuzzy continuous mappings are denoted by \(L\text{-FTOP} \) and let \(L\text{-FTOP}(X) \) denotes all the \(L \)-fuzzy topologies on \(X \). Similarly, if \(\eta : L^X \rightarrow L \) satisfying
\[(\text{FCT1}) \quad \eta(1_X) = \eta(0_X) = 1;\]
\[(\text{FCT2}) \quad \eta(A \lor B) \geq \eta(A) \land \eta(B) \text{ for all } A, B \in L^X;\]
\[(\text{FCT3}) \quad \eta(\bigwedge_{j \in J} A_j) \geq \bigwedge_{j \in J} \eta(A_j) \text{ for every family } \{A_j | j \in J\} \subseteq L^X;\]

\(\eta\) is called an \(L\)-fuzzy co-topology. The category of \(L\)-fuzzy co-topological spaces and continuous mappings is denoted by \(L\text{-FCTOP}\).

In [7], Fang introduced the concept of base and subbase in \([0, 1]\)-fuzzy topology and it is easy to generalize them in \(L\)-fuzzy setting as follows:

Definition 2.3. (1) Let \(\tau\) be an \(L\)-fuzzy topology on \(X\), \(B : L^X \to L\) such that \(B \leq \tau\) (in pointwise sense). Then \(B\) is called a base of \(\tau\) if \(B\) satisfies the following condition:

\[\forall A \in L^X, \tau(A) = \bigvee_{\lambda \in \Lambda} \bigwedge_{\lambda \in \Lambda} B(\lambda),\]

where the expression \(\bigvee_{\lambda \in \Lambda} B(\lambda)\) will be denoted by \(B^{(\cup)}(A)\).

(2) Let \(\phi : L^X \to L\) be a mapping. Then \(\phi\) is called a subbase of \(\tau\) if \(\phi^{(\cap)} : L^X \to L\) is a base, where \(\phi^{(\cap)}(A) = \bigwedge_{\lambda \in \Lambda} \phi(B(\lambda))\) for all \(A \in L^X\) with \((\cap)\) standing for “finite intersection”. A mapping \(\phi : L^X \to L\) is a subbase if and only if \(\phi^{(\cup)}(1_X) = 1\).

(3) Let \((L^{X_t}, \tau_t)\) be a family of \(L\)-fuzzy topological spaces and \(P_t : \prod_{t \in T} X_t \to X_t\) the projection. Then the \(L\)-fuzzy topology whose subbase is defined by

\[\forall A \in L^{\prod_{t \in T} X_t}, \phi(A) = \bigvee_{t \in T} \tau_t(B)\]

is called the product topology of \(\{\tau_t | t \in T\}\), denoted \(\prod_{t \in T} \tau_t\). \((L^{\prod_{t \in T} X_t}, \prod_{t \in T} \tau_t)\) is called the product space of \(\{(L^{X_t}, \tau_t) | t \in T\}\).

Definition 2.4. [24] A fuzzy remote neighborhood system is a set \(R = \{R_e | e \in c(L^X)\}\) of maps \(R_e : L^X \to L\) such that:

\[(\text{FRN1}) \quad R_e(1) = 0, R_e(0) = 1;\]
\[(\text{FRN2}) \quad R_e(u) > 0 \Rightarrow e \not\leq u;\]
\[(\text{FRN3}) \quad R_e(u \lor v) = R_e(u) \land R_e(v).\]

The pair \((L^X, R)\) is called a fuzzy remote neighborhood space (FRNS, in short), if it also satisfies the following equation:

\[(\text{FRN4}) \quad R_e(u) = \bigvee_{v \in e[u] \land u \leq v} R_e(v).\]

We call it topological fuzzy remote neighborhood space, in short TFRNS. Let \((L^X, R^1)\) and \((L^Y, R^2)\) be two fuzzy remote neighborhood spaces \(F : (L^X, R^1) \to (L^Y, R^2)\) is called continuous if \(R^2_{F^{-1}(e)}(A) \leq R^1_{F^{-1}(e)}(A)\) for \(e \in c(L^X)\) and \(A \in L^Y\). The category of topological remote neighborhood spaces is denoted by \(L\text{-TFRNS}\).
Let $\eta : L^X \to L$ be an L-fuzzy co-topology and define $R_\eta : L^X \to L^X$ as follows:

$$R_\eta(A) = \left\{ \begin{array}{ll} \bigvee_{B \in e|A} \eta(B), & e \not\leq A, \\
0, & e \leq A. \end{array} \right.$$

Then $R^n = \{ R_\eta | e \subset c(L^X) \}$ is topological fuzzy remote neighborhood system. Conversely, if $R = \{ R_\eta | e \subset c(L^X) \}$ is fuzzy remote neighborhood system then η^R is an L-fuzzy co-topology, where $\eta^R : L^X \to M$ is defined by $\eta^R(A) = \bigwedge_{e \not\leq A} R_e(A)$.

In [24], we know that L-TFRNS is isomorphic to L-FCTOP.

Lemma 2.5. Let $R = \{ R_e | e \subset c(L^X) \}$ be a set satisfying (FRN1)-(FRN3). Then the following two statements are equivalent:

1. η^R is a L-fuzzy co-topology, where $\eta^R(A) = \bigwedge_{e \not\leq A} R_e(A)$.

2. η^R is the biggest element of L-FQUS, for short). Let $(FQU1)$ $U(f_1) = 1$;

$(FQU2)$ $U(f \land g) = U(f) \land U(g)$ for all $f, g \in H(L^X)$;

$(FQU3)$ $U(f) = \bigvee_{g \land f \leq f} U(g)$ for each $f \in H(L^X)$.

If U is an L-fuzzy quasi-uniformity on X, we say (L^X, U) is an L-fuzzy quasi-uniform space (or L-FQUS, for short). Let (L^X, U) and (L^Y, U_1) be two L-FQUSs, $F : (L^X, U) \to (L^Y, U_1)$ is called L-fuzzy quasi-uniformly continuous if $U(F^{-1}_U \circ f)$
3. \textit{L-fuzzy Proximity}

In this section, we show that the category of \(L\)-fuzzy topological spaces can be embedded in the category of \(L\)-fuzzy quasi-proximity spaces as a coreflective full subcategory.

Firstly, we give the definition of \(L\)-fuzzy quasi-proximity as follows:

Definition 3.1. [25] An \(L\)-fuzzy quasi-proximity on \(L^X\) is a mapping \(\delta : L^X \times L^X \to L\) satisfying the following conditions:

\[
\begin{align*}
(FP1) \ & \ \delta(1_X,0_X) = \delta(0_X,1_X) = 0; \\
(FP2) \ & \ \delta(A \lor B, C) = \delta(A, C) \lor \delta(B, C); \ \delta(A, B \lor C) = \delta(A, B) \lor \delta(A, C); \\
(FP3) \ & \ \delta(A, B) \geq \bigwedge_{C \in L^X} \delta(A, C) \lor \delta(C', B)); \\
(FP4) \ & \ \delta(A, B) < 1 \text{ implies } A \leq B'.
\end{align*}
\]

\(\delta\) is called an \(L\)-fuzzy proximity on \(L^X\) if it also satisfies the following condition:

\[
(FP5) \ \delta(A, B) = \delta(B, A).
\]

The pair \((L^X, \delta)\) is called an \(L\)-fuzzy (quasi-)proximity space. A mapping \(F : (L^X, \delta) \to (L^Y, \delta_1)\) is called continuous if \(\delta(A, B) \leq \delta_1(F^{-1}(A), F^{-1}(B))\) holds for all \(A, B \in L^X\). The categories of \(L\)-fuzzy quasi-proximity spaces and \(L\)-fuzzy proximity spaces are denoted by \(L\text{-FQProX}\) and \(L\text{-FProX}\), respectively.

Note that, Yue showed that \(R^{(\delta)} = \{R^{(\delta)}_A \mid e \in c(L^X)\}\) is a topological fuzzy remote neighborhood system, where \(R^{(\delta)}_A : L^X \to L\) is defined by \(R^{(\delta)}_A(A) = \bigvee_{e \leq B} \delta(B', A)'\) for the given \(L\)-fuzzy quasi-proximity \(\delta\), see [25]. In fact, we can also prove the following similarly results.

Since the proofs are similar to those in [25], we omit the proofs of Theorem 3.2, 3.3, 3.5 and Theorem 3.6, and just list the results.

Theorem 3.2. Let \((L^X, \delta)\) be an \(L\)-fuzzy quasi-proximity space and define \(R^{\delta}_\epsilon : L^X \to L\) by \(R^{\delta}_\epsilon(A) = \bigvee_{e \leq B} \delta(A, B)'\). Then \(R^{\delta} = \{R^{\delta}_\epsilon \mid e \in c(L^X)\}\) is a topological fuzzy remote neighborhood system.

Theorem 3.3. Let \((L^X, R)\) be a topological remote neighborhood space and define \(\delta^R : L^X \times L^X \to L\) by \(\delta^R(A, B) = \bigvee_{a \leq A'} R_a(A)'\). Then \(\delta^R\) is an \(L\)-fuzzy quasi-proximity.

Remark 3.4. Let \((L^X, R)\) be a topological remote neighborhood space and define \(\delta^{(R)} : L^X \times L^X \to L\) by \(\delta^{(R)}(A, B) = \bigvee_{a \leq A'} R_a(B)'\). Then \(\delta^{(R)}\) is also an \(L\)-fuzzy quasi-proximity. If \(R\) satisfies the following propositionerties:

\[
\forall A, B \in L^X, \quad \bigwedge_{a \leq A'} R_a(B) = \bigwedge_{a \leq B'} R_a(A),
\]

then \(\delta^{(R)} = \delta^R\).

Theorem 3.5. (1) Let \((L^X, R)\) be a topological remote neighborhood space, then \(R^{R_S} = R\).
proximity on L satisfying the following conditions:

Definition 4.1. An L-fuzzy proximity on L is denoted by δ.

Theorem 4.2. Let δ be an L-fuzzy proximity on L. Then $T^\delta : L^X \times L^X \rightarrow L$ defined by $T^\delta(A, B) = \delta(A, B')'$ is an L-fuzzy topogenous order on L.

Theorem 4.3. Let T be an L-fuzzy topogenous order on L. Then $\delta_T : L^X \times L^X \rightarrow L$ defined by $\delta_T(A, B) = T(A, B')'$ is an L-fuzzy proximity on L.

Theorem 4.4. Let T be an L-fuzzy topological order on L and δ be an L-fuzzy proximity on L. Then we have $T^{\delta_T} = T$ and $\delta^{T^\delta} = \delta$.

4. L-fuzzy Topogenous Orders

In [5], Csaszar gave a new method for the foundation of general topology based on the theory of topogenous structure to develop a unified approach to the three main structures of set-theoretic topology: topologies, uniformities and proximities. In [13], Katsaras studied topogenous structures in fuzzy setting. Moreover, in [0,1]-fuzzy topology the theory of topogenous orders was developed in [23]. In this section, we will generalized the concept of topogenous orders in L-fuzzy topology, and show that the category of L-fuzzy proximity spaces is isomorphic to the category of L-fuzzy topogenous order spaces.

Definition 4.1. An L-fuzzy topogenous order on L is a mapping $T : L^X \times L^X \rightarrow L$ satisfying the following conditions:

1. $T(0_X, 0_X) = T(1_X, 1_X) = 1$;
2. $T(A \cup B, C \cup D) \geq T(A, C) \land T(B, D)$;
3. $T(A, B) \leq \bigvee_{C \in L^X} (T(A, C) \land T(C, B))$;
4. If $A \leq A$ and $B \leq B'$, then $T(A, A') \leq T(A, B)$;
5. $T(A, B) > 0$ implies $A \leq B$;

The pair (L, T) is called an L-fuzzy topogenous order space. A mapping $F : (L, T) \rightarrow (L', T')$ is called continuous if $T_1(C, D) \leq T(F_1^C(D), F_1^D(D))$ holds for all $C, D \in L'$. The category of L-fuzzy topogenous order spaces and continuous mappings is denoted by L-FTopO.

The readers can easily check the following results.

Theorem 3.6. Let δ be an L-fuzzy quasi-proximity on L. Then $\delta_T : L^X \rightarrow L$ defined by $\delta_T(A) = \delta(A, A')'$ is an L-fuzzy topogenous order on L.

Theorem 3.7. FRNS can be embedded in L-FQProX as a bicoreflective full subcategory. Hence, L-FCTOP can be embedded in L-FQProX as a bicoreflective full subcategory.
Theorem 5.1. Let \((FP1)\) and \((FP4)\) are trivial, and the proof of \((FP2)\) is routine. We only prove \((FP3)\) then \(\delta\) can be embedded in the category of \(f\)-fuzzy uniformities, and we obtain that the category of \(L\)-fuzzy uniform spaces as a bireflective full subcategory.

Proof. \((FP1)\) and \((FP4)\) are trivial, and the proof of \((FP2)\) is routine. We only prove \((FP3)\).

\((FP3)\): In order to prove \(\delta^U : L^X \times L^X \to L\) as follows:

\[
\delta^U(A, B) = \bigwedge_{f(A) \leq B'} U(f),
\]

Then \(\delta^U\) is an \(L\)-fuzzy quasi-proximity. Furthermore, if \(U\) is an \(L\)-fuzzy uniformity, then \(\delta^U\) is an \(L\)-fuzzy proximity.

Proof. \((FP1)\) and \((FP4)\) are trivial, and the proof of \((FP2)\) is routine. We only prove \((FP3)\).

\((FP3)\): In order to prove \(\delta^U(A, B) \geq \bigwedge_{C \subseteq L^X} (\delta^U(A, C) \vee \delta^U(C', B))\), it suffices to show that

\[
\bigvee_{f(A) \leq B'} U(f) \leq \bigvee_{f(A) \leq B'} \left(\bigwedge_{g(A) \leq C} U(g) \land \bigwedge_{h(C') \leq B'} U(h) \right).
\]

Let \(t < \bigvee_{f(A) \leq B'} U(f)\), i.e.,

\[
t < \bigvee_{f(A) \leq B'} U(f) = \bigvee_{f(A) \leq B'} \bigvee_{g \leq f} U(g).
\]

Then there exist \(f_1, g_1 \in H(L^X)\) such that \(f_1(A) \leq B'\), \(g_1 \circ g_1 \leq f_1\) and \(t \leq U(g_1)\). Let \(C = (g_1(A))'\). Then \(t \leq U(g_1) \leq \bigvee_{g(A) \leq C} U(g)\). Furthermore, we have \(g_1(C') = g_1(g_1(A)) \leq f_1(A) \leq B'\) and \(t \leq U(g_1) \leq \bigvee_{h(C') \leq B'} U(h)\). From the arbitrariness of \(t\), we have the conclusion as desired.

Furthermore, when \(U\) is an \(L\)-fuzzy uniformity, it can be easily checked that \(\delta^U\) satisfies \((FP3)\).

\(\square\)

Theorem 5.2. Let \((L^X, U)\) be an \(L\)-fuzzy quasi-uniformity. Then \(R^U = R^{\delta^U}\), this is to say that \(U\) and \(\delta^U\) induce the same topological fuzzy remote neighborhood system.

Proof. It needs to prove that \(R^U_e(A) = R^{\delta^U}_e(A)\) for all \(e \in c(L^X)\) and \(A \in L^X\), i.e.,

\[
\bigvee_{e \leq f(A)} U(f) = \bigvee_{e \leq B, f(A) \leq B} U(f).
\]
First, \(\bigvee_{e \leq f(A)} U(f) \geq \bigvee_{e \leq B} \bigvee_{f(A) \leq B} U(f) \) is obvious. Conversely, let
\[
 t < \bigvee_{e \in f(A)} \bigvee_{g \leq f} U(f) = \bigvee_{e \in f(A)} \bigvee_{g \leq f} U(g),
\]
then there exist \(f, g \in H(L^X) \) such that \(e \not\leq f(A) \), \(g \circ g \leq f \) and \(t \leq U(g) \). Now let \(B = g(A) \). Then \(e \not\leq f(A) \geq g(A) = B \). Thus \(t \leq U(g) \leq \bigvee_{e \leq B} \bigvee_{f(A) \leq B} U(f) \), as desired. □

Theorem 5.3. Let \((L^X, \delta) \) be an L-fuzzy quasi-proximity and put
\[
 A_b = \{(A, B) \in L^X \times L^X | \delta(A, B) < 1\}.
\]
For all \((A, B) \in A\), define \(f_{BA} : L^X \to L^X \) as follows:
\[
 f_{BA}(D) = \begin{cases} B', & D \leq A, \\ 1_X, & \text{others}. \end{cases}
\]
Then \(U^\delta \) is an L-fuzzy quasi-uniformity on \(L^X \), where \(U^\delta : H(L^X) \to L \) is defined by
\[
 \forall f \in H(L^X), \ U^\delta(f) = \bigvee \{ \wedge_{i=1}^n (\delta(A_i, B_i)) | f \geq \wedge_{i=1}^n f_{BA_i}, n \in N \}.
\]
Furthermore, if \(\delta \) is an L-fuzzy proximity, then \(U^\delta \) is an L-fuzzy uniformity.

Proof. First of all, it can be easily checked that \(f_{BC'} \circ f_{CA} = f_{BA} \). Now we show that \(U^\delta \) is an L-fuzzy quasi-uniformity and we only check (FQU3), i.e., \(U^\delta(f) = \bigvee_{g \leq f} U^\delta(g) \). Let
\[
 t < U^\delta(f) = \bigvee \{ \wedge_{i=1}^n (\delta(A_i, B_i)) | f \geq \wedge_{i=1}^n f_{BA_i}, n \in N \},
\]
then there exists \(\{(A_i, B_i)\}_{i=1}^n \) such that \(f \geq \wedge_{i=1}^n f_{BA_i} \) and \(t < \wedge_{i=1}^n (\delta(A_i, B_i)) \).
From (FP3), there exist \(\{C_i\}_{i=1}^n \) such that \(t \leq \delta(A_i, C_i') \land \delta(C_i', B_i') \) for all \(i = 1, \cdots, n \). Let \(g = \wedge_{i=1}^n f_{BC_i' \land \wedge_{i=1}^n f_{CA_i}} \). Then we have
\[
 g \leq \wedge_{i=1}^n (f_{BC_i' \circ f_{CA_i}}) = \wedge_{i=1}^n f_{BA_i} \leq f.
\]
Therefore, \(t \leq \wedge_{i=1}^n (\delta(A_i, C_i') \land \delta(C_i', B_i')) \leq U^\delta(g) \). This completes the proof.
Furthermore, it is easy to check \(f_{BA} = f_{AB} \) for all \((A, B) \in A\). From this, it is easy to show that \(U^\delta \) is an L-fuzzy uniformity if \(\delta \) is an L-fuzzy proximity. □

Theorem 5.4. Let \((L^X, \delta) \) be an L-fuzzy quasi-proximity space. Then we have \(\delta = \delta^\delta \).

Proof. First of all, we have the interpretation of \(\delta^\delta \) as follows:
\[
 \delta^\delta(A, B) = \bigwedge_{f(A) \leq B'} U^\delta(f)' = \bigwedge_{f(A) \leq B'} \bigwedge_{f(A) \leq B' f \geq \wedge_{i=1}^n f_{BA_i}} \wedge_{i=1}^n \delta(A_i, B_i)
\]
If \(\delta(A, B) = 1 \), then \(\delta(A, B) \geq \delta^{U^t}(A, B) \). We assume that \(\delta(A, B) < 1 \). From \(f_{BA}(A) = B' \), we know that

\[
\bigwedge_{f(A) \leq B'} \bigwedge_{f \geq \bigwedge_{i=1}^{n} f_{Bi, A_i}} \forall_{i=1}^{n} \delta(A_i, B_i) \leq \delta(A, B).
\]

On the other hand, without loss of generality, we assume that \(\delta^{U^t}(A, B) < 1 \). We want to show that \(\forall_{i=1}^{n} \delta(A_i, B_i) \geq \delta(A, B) \) for all \(f \in H(L^X) \) and \(\{(A_i, B_i)\}_{i=1}^{n} \) satisfying \(f(A) \leq B' \) and \(f \geq \bigwedge_{i=1}^{n} f_{Bi, A_i} \). Notice that \(\bigwedge_{i=1}^{n} f_{Bi, A_i}(A) \leq f(A) \leq B' \), and \(\forall e \in A \), there exists \(I(e) \subseteq \{1, 2, \ldots, n\} \) such that \(e \leq \bigwedge_{j \in I(e)} A_j \) and \(e \leq \bigwedge_{j \in I(e)} B_j \) when \(\bigwedge_{i=1}^{n} f_{Bi, A_i}(e) = \bigwedge_{j \in I(e)} B_j \) (say), we have \(\bigwedge_{i=1}^{n} \bigvee_{e \in A}^{j \in I(e)} B_j \geq B \) and \(A = \bigvee_{e \in A} B \leq \bigwedge_{j \in I(e)} A_j \). It is easy to see \(\{\bigwedge_{j \in I(e)} A_j | e \in A\} \) and \(\{\bigwedge_{j \in I(e)} A_j | e \in A\} \) are two finite sets. Therefore,

\[
\delta(A, B) \leq \bigwedge_{e \in A} \bigvee_{j \in I(e)} \bigwedge_{e \in A} \bigvee_{j \in I(e)} B_j
\]

as desired.

Theorem 5.5. Let \((L^X, \delta)\) be an \(L\)-fuzzy quasi-proximity space. Then \(R^S = R^{U^t}\).

Proof. The proof is similar to that of Theorem 5.4.

Theorem 5.6. Let \((L^X, U)\) be an \(L\)-fuzzy quasi-uniform space. Then \(U^{U^t} \leq U\).

Proof. \(U^{U^t} \leq U\) can be proved by the following computation.

\[
U^{U^t}(f) = \bigvee \{\bigwedge_{i=1}^{n} (f_{Bi, A_i}) | f \geq \bigwedge_{i=1}^{n} f_{Bi, A_i}, n \in N\}
\]

\[
= \bigvee_{f \geq \bigwedge_{i=1}^{n} f_{Bi, A_i}} \bigvee_{i=1}^{n} U(f_{Bi, A_i})
\]

\[
\leq \bigvee_{f \geq \bigwedge_{i=1}^{n} f_{Bi, A_i}} \bigwedge_{i=1}^{n} U(f_{Bi, A_i})
\]

\[
\leq U(f).
\]

Theorem 5.7. (1) If \(F : (L^X, U) \rightarrow (L^Y, U_1)\) is continuous, then \(F : (L^X, U^t) \rightarrow (L^Y, U^{U^t})\) is continuous.

(2) If \(F : (L^X, \delta) \rightarrow (L^Y, \delta_1)\) is continuous, then \(F : (L^X, U^t) \rightarrow (L^Y, U^{U^t})\) is continuous.
Proof. (1) Suppose \(\delta \) is continuous, then \(\mathcal{U}_I(g) \leq \mathcal{U}(F^\infty(g)) \) for all \(g \in H(L^Y) \). For every \(A, B \in L^X \), from the definition of \(\delta^\Delta \), we have
\[
\delta^{\Delta}(F^-_L(A), F^-_L(B)) = \bigvee_{g,(F^-_L(A)) \leq (F^-_L(B))} \mathcal{U}(g)'
\geq \bigvee_{g,(F^-_L(A)) \leq (F^-_L(B))} \mathcal{U}(F^\infty(g))'
\geq \bigvee_{F^\infty(g) \leq (F^\infty(g))'} \mathcal{U}(f)'
= \mathcal{U}^\Delta(A, B),
\]
as desired.

(2) Let \(\delta : (L^X, \delta) \to (L^Y, \delta_1) \) be continuous, we know \(\delta(A, B) \leq \delta_1(F^-_L(A), F^-_L(B)) \) for all \(A, B \in L^X \). For each \(g \in H(L^Y) \), from the definition of \(\mathcal{U}^\Delta \), we have
\[
\mathcal{U}^\Delta(g) = \bigvee \{ \land_i^n \delta_1(C_i, D_i) \mid g \geq \land_i^n f_{D_i, C_i}, n \in N \}
\leq \bigvee \{ \land_i^n \delta_1(F^-_L(C_i), F^-_L(D_i)) \mid g \geq \land_i^n f_{D_i, C_i}, n \in N \}
\leq \bigvee \{ \land_i^n \delta(F^-_L(C_i), F^-_L(D_i)) \mid F^\infty(g) \geq \land_i^n f_{D_i, C_i}, n \in N \}
\leq \bigvee \{ \land_i^n \delta(A_i, B_i) \mid F^\infty(g) \geq \land_i^n f_{B_i, A_i}, n \in N \}
= \mathcal{U}^\Delta(F^\infty(g)),
\]
as desired. \(\square \)

We summarize the results of this paper as follows.

Theorem 5.8. (1) \(L\text{-FCTOP} \) can be embedded in \(L\text{-FQProX} \) as a bireflective full subcategory.

(2) \(L\text{-FProX} \) is isomorphic to \(L\text{-FTopO} \).

(3) \(L\text{-FProX} \) can be embedded in \(L\text{-FHuUnif} \) as a bireflective full subcategory.

Acknowledgements. Authors would like to express their sincere thanks to the referees for their valuable comments and suggestions, which helped us to improve the final version of this paper.

References

The Relationship Between L-fuzzy Proximities and L-fuzzy Quasi-uniformities

EUN-SOOK KIM*, DEPARTMENT OF MATHEMATICS, CHONNAM NATIONAL UNIVERSITY, 300 YONGBONG-DONG, BUKGU, 500-757, GWANGJU, KOREA
E-mail address: manmunje@hanmail.net

SEUNG-HO AHN, DEPARTMENT OF MATHEMATICS, CHONNAM NATIONAL UNIVERSITY, 300 YONGBONG-DONG, BUKGU, 500-757, GWANGJU, KOREA
E-mail address: shahn@chonnam.ac.kr

DAE HEUI PARK, DEPARTMENT OF MATHEMATICS, CHONNAM NATIONAL UNIVERSITY, 300 YONGBONG-DONG, BUKGU, 500-757, GWANGJU, KOREA
E-mail address: dhpark3331@chonnam.ac.kr

*Corresponding author