Uniquely Remotal Sets in $c_0$-sums and $ell^infty$-sums of Fuzzy Normed Spaces

Document Type: Research Paper

Authors

1 Center of Excellence in Analysis on Algebraic Struc- tures, Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Mashhad, Iran

2 Center of Excellence in Analysis on Algebraic Structures, De- partment of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mash- had 91775, Mashhad, Iran

Abstract

Let $(X, N)$ be a fuzzy normed space and $A$ be a fuzzy bounded
subset of $X$.  We define fuzzy $ell^infty$-sums and fuzzy $c_0$-sums of
fuzzy normed spaces. Then we will show that in these spaces, all  fuzzy
uniquely remotal sets are singletons.

Keywords


bibitem{asplund} E. Asplund, {it Sets with unique farthest
points}, Israel J. Math., {bf5} (1967), 201-209.

bibitem{bs1} T. Bag and S. K. Samanta, textit{Finite dimensional fuzzy normed linear spaces},
J. Fuzzy Math., textbf{11(3)} (2003), 687-705.

bibitem{bs2} T. Bag and S. K. Samanta, textit{Fuzzy bounded linear operators},
Fuzzy Sets and Systems, textbf{151} (2005), 513-547.

bibitem{b}M. V. Balashov  and G. E. Ivanov, {it On farthest points of
sets}, Mathematical Notes, {bf80(1-2)} (2006), 159-166.

bibitem{pa}M. Baronti and P. L. Papini, textit{Remotal sets
revisited},  Taiwanese J. Math., {bf5(2)} (2001), 367-373.


 bibitem{blat} J. Blatter, {it Weiteste punkte und nachste
punkte},  Ren. Poum. Math. Pures Appl., {bf14} (1969), 615-621.


bibitem{bor} R. A. Borzooei and  M. Bakhshi, emph{T-fuzzy congruences and T-fuzzy filters of a BL-algebras,} Iranian Journal of Fuzzy Systems, {bf6(4)} (2009), 37-47.


bibitem{cm} S. C. Chang and J. N. Mordeson, {it Fuzzy linear
operators and fuzzy normed linear spaces}, Bull. Cal. Math. Soc.,
{bf86} (2004), 429-436.


bibitem{cob}S. Cobzas, {it Geometric properties of Banach
spaces and the existence of nearest and farthest points}, Abstr.
Appl. Anal., {bf3} (2005), 259-285.

bibitem{fb}C. Feblin, {it The completion of a fuzzy normed
space}, J. Math. Anal. Appl., {bf174} (1993), 428-440.

bibitem{h}S. B. Hosseini,  D. O�regan and  R. Saadati, emph{Some results on intuitonistic fuzzy spaces,} Iranian Journal of Fuzzy Systems, {bf4(1)} (2007), 53-64.

bibitem{Iv}G. E. Ivanov, emph{Farthest points and the strong convexity of sets,} (Russian) Mat. Zametki, {bf87(3)} (2010), 382-395.

bibitem{ka} A. K. Katsaras, {it Fuzzy topological vector space
II }, Fuzzy sets and Systems, {bf12} (1984), 143-154.

bibitem{klee} L. Klee, {it Convexity of Chebyshev sets}, Math.
Ann., {bf142} (1961), 292-304.

bibitem{kr} I. Kramosil and J. Michalek, {it Fuzzy metric and
statistical metric spaces}, Kybernetica, {bf11} (1975), 326-334.


bibitem{mir1} A. K. Mirmostafaee, emph{Perturbation of generalized derivations in fuzzy Menger normed algebras,} Fuzzy sets and systems,
doi:10.1016/j.fss.2011.10.015.


bibitem{mirmirza} A. K. Mirmostafaee and M. Mirzavaziri, emph{Closability of farthest point maps in fuzzy normed spaces}, Bull. Math. Anal., {bf2(4)} (2010), 140-145.


bibitem{mir} A. K. Mirmostafaee and A. Niknam, {it A remark on
uniquely remotal sets}, Indian J. Pure  Appl. Math., {bf 29(8)} (1998), 849-854.

bibitem{narang1}T. D. Narang, {it A study of farthest points},
Nieuw Arch. Wisk., {bf25} (1977), 54-79.

bibitem{narang3}T. D. Narang, {it On farthest points in metric
spaces}, J. Korea  Soc. Math. Educ. Ser B Pure Appl. Math., {bf9} (2002), 1-7.

bibitem{narang2}T. D. Narang, {it Uniquely remotal sets are sigletons},
Nieuw Arch. Wisk., {bf4(9)} (1991), 1-12.

bibitem{va} S. M. Vaezpour and  F. Karimi, emph{$t$-best approximation in fuzzy normed spaces}, Iranian Journal of Fuzzy Systems, {bf5(2)} (2008),  93-99.


bibitem{z} L. A. Zadeh, {it Fuzzy sets}, Information and
Control, {bf8} (1965), 338-353.