Categories isomorphic to the category of $L$-fuzzy closure system spaces

Document Type: Research Paper

Authors

School of Mathematics, Beijing Institute of Technology, 5 South Zhong- guancun Street, Haidian District, 100081 Beijing, P.R. China

Abstract

In this paper, new definitions of $L$-fuzzy closure
 operator, $L$-fuzzy interior operator, $L$-fuzzy remote neighborhood
 system, $L$-fuzzy neighborhood system and $L$-fuzzy quasi-coincident neighborhood system
 are proposed. It is proved that the category of $L$-fuzzy closure spaces, the category of $L$-fuzzy interior spaces, the category of $L$-fuzzy remote neighborhood
 spaces, the category of $L$-fuzzy quasi-coincident neighborhood spaces, the category of $L$-fuzzy
 neighborhood spaces are all isomorphic to the category
 $L$-{\bf FCS} of $L$-fuzzy closure system spaces.

Keywords


bibitem{bel} R. Bv{e}lohl'{a}vek, {it Fuzzy closure operators}, J. Math. Anal. Appl., {bf 262} (2001), 473--489.

 bibitem{bia1} L. Biacino and G. Gerla, {it Closure systems and
  $L$-subalgebras}, Information Sciences, {bf 33} (1984), 181--195.

 bibitem{bia2} L. Biacino and G. Gerla, {it An extension principle for
  closure operators}, J. Math. Anal. Appl., {bf 198} (1996), 1--24.

 bibitem{bir} G. Birkhoff, {it Lattice theory}, 3rd Edition, Amer. Math.
  Soc., Rhode Island, 1967.

 bibitem{cha} M. K. Chakraborty and J. Sen, {it MV-algebras embedded in
  a CL-algebra}, Int. J. Approximate Reasoning, {bf 18} (1998), 217--229.

  bibitem{chat} K. C. Chattopadhyay and S. K. Samanta, {it Fuzzy topology: fuzzy closure operator, fuzzy compactness and fuzzy connectedness}, Fuzzy Sets and Systems, {bf 54} (1993), 207--212.

 bibitem{fang1} J. M. Fang, {it Categories isomorphic to $L$-bf{FTOP}}, Fuzzy Sets and Systems, {bf 157} (2006), 820--831.

 bibitem{fang} J. M. Fang and Y. L. Yue, {it $L$-fuzzy closure systems}, Fuzzy Sets and Systems, {bf 161} (2010), 1242--1252.

 bibitem{ger1} G. Gerla,  {it An extension principle for fuzzy logics},
  Math. Logic Quart., {bf 40} (1994), 357--380.

 bibitem{ger2} G. Gerla, {it Graded consequence relations and fuzzy
  closure operators}, J. Appl. Non-Classical Logics, {bf 6} (1996), 369--379.


 bibitem{gha}M. H. Ghanim, O. A. Tantawy and F. M. Selin, {it Gradation of
  supra-openness}, Fuzzy Sets and Systems, {bf 109} (2000), 245--250.

  bibitem{goe} R. Goetschel and W. Voxman, {it Spanning properties for fuzzy matroids}, Fuzzy Sets and Systems, {bf 51} (1992), 313--321.

 bibitem{hoh} U. H"ohle and S. E. Rodabaugh, et al., (eds), {it Mathematics of fuzzy sets: logic, topology and measure theory}, The Handbooks of Fuzzy Sets Series, Kluwer Academic Publishers, Boston, Dordrecht, London, {bf 3} (1999).

 bibitem{hoh2}U. H"{o}hle and A. P. v{S}ostak, {it Axiomatic  foundations of fixed-basis fuzzy topology}, In cite{hoh}, 123--173.

 bibitem{kim1} Y. C. Kim, {it Initial $L$-fuzzy closure spaces}, Fuzzy Sets and Systems, {bf 133} (2003), 277--297.

 bibitem{kim} Y. C. Kim and J. M. Ko, {it Fuzzy closure systems and fuzzy
 closure operators}, Commun. Korean Math. Soc., {textbf 19}{bf(1)} (2004), 35--51.

 bibitem{Kubiak} T. Kubiak, {it On fuzzy topologies}, Ph. D. Thesis, Adam Mickiewicz, Poznan, Poland, 1985.

 bibitem{kub} T. Kubiak and A. P. v{S}ostak, {it Foundations of the theory of $(L,M)$-fuzzy topological spaces}, Abstracts of the 30th Linz Seminar on Fuzzy Set Theory (U. Bodenhofer, B. De Bates, E. P. Klement, and S. Saminger-Platz, eds.), {Johannes} Kepler University, Linz, (2009), 70--73.

  bibitem{li} S. G.  Li, X. Xin and Y. L. Li, {it Closure axioms for a class of fuzzy matroids and co-towers of matroids},
 Fuzzy Sets and Systems, {bf 158} (2007), 1246--1257.

 bibitem{luo} X. L. Luo and J. M. Fang, {it Fuzzifying closure systems and
  closure operators}, Iranian Journal of Fuzzy Systems, {textbf 8}{bf(1)} (2011), 77--94.

 bibitem{mas} A. S. Mashhour and M. H. Ghanim, {it Fuzzy closure spaces}, J. Math. Anal. Appl., {bf 106} (1985), 154--170.

 bibitem{rod1} S. E. Rodabaugh, {it Powerset operator foundations for poslat fuzzy set theories and topologies}, in cite{hoh}, 91--116.

bibitem{rod2} S. E. Rodabaugh, {it Categorical foundations of variable-basis fuzzy topology}, in cite{hoh}, 273--388.

{bibitem{rod3} S. E. Rodabaugh, {it Relationship of algebraic theories to powerset theories and fuzzy topological theories for lattice-valued mathematics}, Int. J. Math. Math. Sci., {bf 2007(3)} (2007), 1--71.}

 bibitem{shi} F. G. Shi, {it $L$-fuzzy interiors and $L$-fuzzy
  closures}, Fuzzy Sets and Systems, {bf 160} (2009), 1218--1232.

 bibitem{Shi2} F. G. Shi, {it Regularity and normality of $(L,M)$-fuzzy topological spaces}, Fuzzy Sets and Systems, {bf 182} (2011), 37--52.

 bibitem{sos} A. P. v{S}ostak, {it On a fuzzy topological structure},
  Rend. Circ. Mat. Palermo, (Supp. Ser. II), {bf 11} (1985), 83--103 .

 bibitem{sri1} R. Srivastava, A. K. Srivastava and A. Choubey, {it Fuzzy closure
  spaces}, J. Fuzzy Math., {bf 2} (1994), 525--534.

bibitem{wang} G. J. Wang, {it Theory of topological molecular
  lattices}, Fuzzy Sets and Systems, {bf 47}{bf(3)} (1992), 351--376.

  bibitem{wangl} L. Wang and F. G. Shi,  {it Charaterization of $L$-fuzzifying matroids by $L$-fuzzifying closure operators},
  Iranian Journal of Fuzzy Systems, {bf 7} (2010), 47--58.

 bibitem{yue} Y. L. Yue and J. M. Fang, {it Categories isomorphic to the Kubiak-u{S}ostak extension of
  TML}, Fuzzy Sets and Systems, {bf 157} (2006), 832--842.

 bibitem{zhou} W. Zhou, {it  Generalization of $L$-closure spaces}, Fuzzy Sets and Systems, {bf 149} (2005), 415--432.