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CATEGORIES ISOMORPHIC TO THE CATEGORY OF L-FUZZY
CLOSURE SYSTEM SPACES

F. G. SHI AND B. PANG

ABSTRACT. In this paper, new definitions of L-fuzzy closure operator, L-fuzzy
interior operator, L-fuzzy remote neighborhood system, L-fuzzy neighborhood
system and L-fuzzy quasi-coincident neighborhood system are proposed. It is
proved that the category of L-fuzzy closure spaces, the category of L-fuzzy
interior spaces, the category of L-fuzzy remote neighborhood spaces, the cate-
gory of L-fuzzy quasi-coincident neighborhood spaces, the category of L-fuzzy
neighborhood spaces are all isomorphic to the category L-FCS of L-fuzzy
closure system spaces.

1. Introduction

Closure operators and closure systems are very useful tools in several areas of
classical mathematics, involving the realm of topology, algebra, analysis, matroid
theory, etc. In fuzzy set theory, different kinds of fuzzy closure operators and fuzzy
closure systems are studied as extensions of closure operators and closure systems
[1,2,3,5,6,9, 10, 12, 15, 19, 21, 25, 26, 28, 30, 32].

In [4], Birkhoff introduced classical closure systems as a subset of the power-
set 2%. Later on, Biacino and Gerla [3] defined a kind of fuzzy closure system
extending 2% to IX. Kim [16] proved that the lattice of fuzzy closure systems is
isomorphic to the lattice of fuzzy closure operators for the respective notions defined
in [3]. Bélohldvek [1] outlined a general theory of fuzzy closure operators and fuzzy
closure systems (Lg-closure systems). He showed the existence of a one-to-one
correspondence between his fuzzy closure operators and fuzzy closure systems.

However, the above-mentioned fuzzy closure systems are crisp families of fuzzy
subsets on a universe set X. Following the idea of [13, 17, 27], Fang [8] proposed the
concept of L-fuzzy closure system. Unluckily, L-fuzzy closure operators in [8] are
not equivalent to L-fuzzy closure systems. Later on, Luo and Fang [20] introduced
the concepts of fuzzifying closure system and fuzzifying closure operator as a gen-
eralization of Birkhoff’s closure operator. Moreover, a one-to-one correspondence
between the notions was established.

In [25], Shi proposed the concept of L-fuzzy closure operators based on Ku-
ratowski’s closure operators and showed an equivalence between L-fuzzy closure
operators and their respective L-fuzzy topologies.
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In this paper, we shall give a new definition of L-fuzzy closure operators as
extensions of Birkhoff’s closure operators, in order to characterize L-fuzzy closure
systems. Moreover, some other characterizations of L-fuzzy closure systems will be
also presented.

The structure of this paper is as follows. In Section 2, we provide some pre-
liminary concepts and results. In Section 3, characterizations of L-fuzzy closure
operators and L-fuzzy interior operators in the sense of Shi are given. In Section
4, we shall introduce the new notion of L-fuzzy closure operators as extensions of
Birkhoff’s closure operators. We prove that the category L-FCS of L-fuzzy closure
system spaces and the category L-FC of L-fuzzy closure spaces are isomorphic.
In Section 5, L-fuzzy remote neighborhood system and L-fuzzy quasi-coincident
neighborhood system of an L-fuzzy closure system space are presented and it is
shown that the category L-FRN of L-fuzzy remote neighborhood spaces and the
category L-FQN of L-fuzzy quasi-coincident neighborhood spaces are both isomor-
phic to L-FCS. In Section 6, the concepts of L-fuzzy interior operator and L-fuzzy
neighborhood system of an L-fuzzy closure system space are introduced, and it is
shown that the category L-FI of L-fuzzy interior spaces and the category L-FN of
L-fuzzy neighborhood spaces are isomorphic to the category L-FCS.

2. Preliminaries

Throughout this paper, (L,\/, A\, ) denotes a completely distributive De Morgan
algebra. The smallest element and the largest element in L are denoted 1 and T,
respectively. The set of non-zero coprimes in L is denoted J(L). For a, b € L, we say
“a is wedge below b”, in symbols a < b, if for every subset D C L, \/ D > b implies
a < d for some d € D. We denote (a) ={be€ L|b<a} and 8*(a) = f(a) N J(L)
for each a € L. For a, b € L, a <°? b means that if for every subset D C L, A D < a
implies d < b for some d € D. We denote a(a) = {b € L | a <°? b}. A complete
lattice L is completely distributive if and only if @ = \/ 8*(a) = V B(a) = A\ a(a)
for each a € L [29]. The wedge below relation in a completely distributive lattice
has the interpolation property, i.e., if a < b, then there exists ¢ € L such that
a < ¢ < b. Moreover, it is easy to see that a < A,.;b; implies a < b; for every
i € I, whereas a < \/,.; b; is equivalent to a < b; for some i € I.

For a completely distributive De Morgan algebra L and a non-empty set X, LX
denotes the set of all L-fuzzy subsets on X. L¥ is also a completely distributive
De Morgan algebra, when it inherits the structure of the lattice L in a natural
way, by defining \/, A, < and ’ pointwise. The set of non-zero coprimes in L is
denoted J(LX). It is easy to see that J(LX) is precisely the set of all fuzzy points
zx (A € J(L)). The smallest element and the largest element in L* are denoted
L and T, respectively. For every L-fuzzy subset A € L, and every a € L, we use
the following notations:

Ag={z e X|A@@) >a}, AW ={zecX|A@)La}.

Let f: X — Y be a set mapping. Define f~ : LX — LY and f< : LY — LX by
F7A)Y) =V )=y Alz) for every A € L¥X and every y € Y, f<(B) = Bo f for
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every B € LY, respectively. Moreover, (f<(B))" = f<(B’). For more details, we
refer to [22, 23, 24].

Definition 2.1. [8] A mapping ¢ : L* — L is called an L-fuzzy closure system on
X provided that it satisfies the following conditions:
(LFCS) (p(/\ AZ) N o(Ay), V{A; |ieI} CLX.
icl i€l
A pair (X, ) is called an L-fuzzy closure system space provided that ¢ is an

L-fuzzy closure system on X.

A mapping f : X — Y between two L-fuzzy closure system spaces (X, ¢x) and
(Y, py) is called continuous if px (f(A)) = ¢y (A) for every A € LY. The category
of L-fuzzy closure system spaces and continuous mappings is denoted L-FCS.

Remark 2.2. In [8], the definition of L-fuzzy closure system requires that ¢ satisfy
(LFCS) and another axiom (LFCS’) o(T) = T. Howerer, it is usually assumed that
A D =T for the empty set ) in lattice theory. Therefore, (LFCS) implies (LFCS’).

Definition 2.3. [11] A mapping 7 : LX — L is called an L-fuzzy pretopology on
X provided that it satisfies the following conditions:

(LFPT1) (1) =T;

(LFPT2) <\/ A; ) N\ (A, V{A; |ie I} C LX.
i€l i€l
A pair (X, 7) is called an L-fuzzy pretopological space provided that 7 is an

L-fuzzy pretopology on X.

A mapping f : X — Y between two L-fuzzy pretopological spaces (X, 7x) and
(Y, 1y) is called continuous if 7x (f<(A4)) > 7y (A) for every A € LY. The category
of L-fuzzy pretopological spaces and continuous mappings is denoted L-FPTOP.

Theorem 2.4. The category L-FPTOP is a full subcategory of the category L-
FCS.

Proof. Given an L-fuzzy pretopological space (X, 7), define a mapping ¢, : LX — L
by

VAe LX, o (A)=1(4A").
Then (X, ;) is an L-fuzzy closure system space. Since ' is an order-reversing
involution on L, it can be easily checked that the category L-FPTOP is a full
subcategory of the category L-FCS. ([

/

Definition 2.5. [25] An L-fuzzy closure operator on X is a mapping CI : X -
AT satisfying the following conditions:

(LFC1) (Ci(A))(zx) = A (Cl(A))(z,) for every =) € J(LX);

=X

(LFC2) (Cl(L))(wy) = L for every zy € J(L¥);
(LFC3) (Cl(A))(xx) =T for every z) < 4;
(LFC4) CIl(AvV B)=_CI(A)V Cl(B);
(LECE) Ya.e VL), (CUVICIA o € (CLAD

Cl(A))(zy) is called the degree to which x belongs to the closure of A.
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Definition 2.6. [25] An L-fuzzy interior operator on X is a mapping Int : LX —
LI satisfying the following conditions:

(LFI1) (Int(A))(zx) = A (Int(A))(z,) for every zy € J(LX);

ITEON

(LFI2) (Int(T))(zy) = T for every xy € J(LY);
(LFI3) (Int(A))(zy) = L for every z) & A;
(LFI4) Int(AA B) = Int(A) A Int(B);
(LFI5) Va e L\{T}, (Int(A))@ C (Int(\/(Int(A))®))),
(Int(A))(zy) is called the degree to which x) belongs to the interior of A.

Definition 2.7. [25] An L-fuzzy neighborhood system on X is a set N' = {N,, |
xx € J(LX)} of mappings NV, : LX — L satisfying the following conditions:
(LEN1) N, (T) = T, Moy (L) = L
(LFN2) N, (A) = L for every x) £ A4;
(LFN3) N, (AAB) =N, (A) AN, (B);
(LEND) N (A) = VA Nip(B).
)

z3<B<Ay,<B
is called the degree to which A is a neighborhood of x .

N, (A

Definition 2.8. [7] An L-fuzzy quasi-coincident neighborhood system on X is a
set Q = {Q., | zx € J(LX)} of mappings Q,, : LX — L satisfying the following
conditions:

(LFQl) A(I) =T, Qm; (é) =1
(LFQ2) Q,,(A) # L= ay £ A

(LFQ3) Qqu, (AN B) = Qu, (A) A Qu, (B);
(LFQ4) (A= V. A 2, (D).

exg{ DAy, LD

Definition 2.9. [31] An L-fuzzy remote neighborhood system on X is a set n =
{ney | 2 € J(LX)} of mappings 7., : LX — L satisfying the following conditions:
(LFR1) 74 (1) = T, 2 (T) = s
(LFR2) n,,(4) £ L = 23 £ 4;
(LFR3) 12, (AV B) = 12, (A) Az, (B);
(LFRA) () =\ Ay, (B).
eAgB>Ay, B

3. Characterizations of L-fuzzy Closure Operators and L-fuzzy Interior
Operators in the Sense of Shi

In [25], Shi introduced the notions of L-fuzzy closure operator and L-fuzzy inte-
rior operator, which are equivalent to L-fuzzy topologies. In this section, we shall
give their characterizations.

Theorem 3.1. If a mapping Cl : LX — LI s order-preserving and satisfies
(LFC3), then (LFC1) and (LFC5) together are equivalent to the following condition:
(LFC) (Cl(A))(zx) = AV (CUB))(yu)-

mA;(B>A yM;(B
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Proof. Sufficiency. (LFC1) (CIl(A))(zx) < A (Cl(A))(z,) is obvious. In or-
B=<A
der to prove (Cl(A))(xzx) = C\A(CZ(A))(x#), we have to show ((Cl(A))(xy)) <

V ((Cl(A))(z,))". Let o € J(M) be such that

<(CcuA@)' =\ A (cus

oA€B>Ay,&B

Then there exists B, such that 2y € B, = A and Yy, £ Ba,a < ((CU(Ba))(yu))'-
By A =V 8*(\), we know that there exists u € 8*(\) such that 2, € B,. Further,
we have

a < ((CUBa))(xu))" < (CUA))(4))"-
This shows that o < \{/}\((CZ(A))(Q:M)’. So, ((C1(A))(zy))" < \<//\ ((CL(A)) ()
(LFC5) Let xx ¢ (CI(A))[q- Then a £ CI(A)(xy). This implies that

VoA (@B wa) £ o

z;;{B>A Yu 7{\B

Hence, there exists B, such that zy € B, > A and A ((ClU(B,))(yu)) & d'.
yLL?(Ba
This shows that y, ¢ (Cl(B,))[q for every y,, & Ba. Then we have

zy & By > \/(Cl(Ba))[a] > \/(CZ(A))[ ]

Thus, we obtain that

Cl(\/(CU(A)) ) (xn) = \/ /\ (CUD))(yu)) & d'.
AL D2V (CU(A)) (o) Yu&D

So, @ & (CUV/(CUA))(a))ja. This proves that (CUV(CI(A))w))w) € (CUA)w

Necessity. It is obvious that (Cl(A))(zx) < A \V (ClU(B))(y,)- In order
IA;(BQA y#;(B
to show that (Cl1(A))(zx) = A \/ (ClU(B))(y,), we only need to show that
oA g B2Ay. B
(CrA) ()< V. A (CUB))(yu))"
exgB>Ay, B

Let b € L with ((Cl(A))(zy)) & b. Then there exists a € «(b) such that

((Cl(A))(zy))" & a. This implies that (CI(A))(xy) # a’. By (LFC5), we have

3 & (CUA) ) 2 (CUN (CUA)) ()

Let D = \/(CI(A)){a). We will check that z) £ D > A.
In fact, if z) < D then zy < 2)\ < V(CI(A))[q for every v < A. Further, there
exists x, € (C’l(A))[a such that z, < z,,. By (LFCI) we know that (Cl(A))(x,) >
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(Cl(A)(zy) = d'. So, (Cl(A)(zx) = A (Ci(A))(zy) > o, that contradicts the
Y=<
aforesaid. By (LFC3) and the following fact

Vz, <A, (Cl(A)(z,) =T >d = 2, € (Cl(A))a) = 2, < D,

we can obtain that A < D. Therefore, zy £ D > A
Since

(CUA)) @) 2 (CUN(CUA)) @)y = (CUD))ar,

we have that ((CU1(D))(y,))" & afor every y,, £ D. Therefore, A ((CU(D))(y,)) &
kD
b. This shows that ’

\/ /\ yu ) %\ b.
rA;(D>AyH;{D

From the arbitrariness of b, we obtain that

(iA@' <\ A\ (CiuB) )

ex€B>Ay,.{B

Corollary 3.2. L-fuzzy closure operators in the sense of Shi are precisely the map-
pings Cl: LX — LI&Y) satisfying the following conditions:
(LFC2) (CU(L))(xx) = L for every xy € J(LYX);
(LFC3) (Ci(A))(xx) =T for every xy < A;
(LFC4) CI(AV B) =CI(A) Vv Cl(B);
LFC) (Cl(A)(xx) = AV (CUB))(yu)-

oL B>Ay, LB

Theorem 3.3. If a mapping Int : LX — L7EY) s order-preserving and satisfies
(LFI3), then (LFI1) and (LFI5) together are equivalent to the following condition:

(LED)  (Int(A))(xzx) = VA (Int(B))(Yp)-

zA<B<Ay,<B

Proof. Sufficiency. (LFI1) By (LFI), we have (Int(A))(zx) < A (Int(A))(z.),

JTEON
and
/\(Int /\ \/ /\ (Int(B
pH=<A <Az, <BLAy, <B
Now, we check that (Int(A))(xzx) = A (Int(A))(x,).
B=AX
Ifa < A (Int(A))(z,), then o <V N (Int(B))(y,) for every u < A.
<A z, <B<Ay,<B
Further, there exists B, € LX suchthatz, < B, < Aanda < A (Int(B,))(y).
¥, =B,

Let W = \/ B,. Then we have the following inequality,

pn=A
T\ = \/xué \/BM:W<A
=X =X
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This implies that

o < N A UInBHw) < AN (W) w)

u=<Ay,<B, H=Xy, =B,
= A UntW))(w) = N Unt(W) ()
Yo < V B, Yy <W

N

Vo A Unt(V)(w) = (Int(A))(x).

zASV<A Yy, <V

By the arbitrariness of a, (Int(A))(xzx) = A (Int(A))(x,) holds.

B=X

(LFI5) For every z € (Int(A))(®), we have
(Int(A)@) =\ N\ UInt(B))(yu) £ a.
@ <B<Ay,<B

Hence, there exists U € LX such that zy < U < A and A (Int(U))(y,) % a.
yu<U

This implies that y,, € (Int(U))(® for every y,, < U. Since Int is order-preserving,
we obtain that

A< U=V Ly < UF <V (@)@ < \/(nt(4)©).
Therefore,

Int(\/ (Int(A))@)(zx) = \V N\ (Int(C))(yu) £ a

2A<COKV (Int(A)) (@) y, <C
As a result, zy € (Int(\/(Int(A))®))@ . Therefore, we have that
(Int(A))®) € (Int(\/ (Int(4))@))@.
Necessity. Firstly, we check that (Int(4))(zx) < V N (Int(B))(yu)-
eA<B<Ay,<B

Let b € L be such that (Int(A4))(zx) £ b. Then there exists a € «(b) such that
(Int(A))(zx) £ a. By (LFI5), it follows that

zx € (Int(A)™ € (Int(\/(Int(A))@)) .

Let V = \/(Int(A)). Then, by (LFI3), zx < V < A holds obviously. Further,
there exists y,, € (Int(A))® such that Yu = Yo for every y, < V. So, we have that

€ (Int(A)@ < (Int(\/(Int(4)) )@ = (Int(V)).

This implies that (Int(V))(y,) £ a. By (LFI1), we know that (Int(V))(y,) £ a
Therefore, A (Int(V))(y,) £ b. As a consequence, we obtain that

yu=<V
Voo A Unt(B)(a) £b.

rA<B<Ay,<B
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From the arbitrariness of b, (Int(A4))(xzy) < V A (Int(B))(y,) holds.

2A<B<Ay,<B

Secondly, we check that (Int(A))(xy) = A (Int(B))(yu)-
@ <B<Ay,<B

Let b € L be such that '/ A (Int(B))(y.) & b. Then there exists a € «(b)
rA<B<Ay,<B

such that '/ A (Int(B))(y.) % a. Further, there exists V € LX such that
@ <B<Ay,<B

zy<V<Aand A (Int(V))(yu) £ a. Hence, (Int(V))(z,) £ a for every v < .
Y=V
By (LFI1), we obtain that

(Int(A))(zx) = A\ Unt(A)(x,) = N Int(V))(z,) £ b.
V<A v=<A

By the arbitrariness of b, (Int(A))(xzy) = AN (Int(B))(yu) is proved. O
rA<B<Ay,<B

Corollary 3.4. L-fuzzy interior operators in the sense of Shi are precisely the
mappings Int : LX — L7E) satisfying the following conditions:
(LFI2) (Int(T))(z) =T for every xx € J(LX);
(LFI3) (Int(A))(zx) = L for every xy £ A;
(LFI4) Int(A A B) = Int(A) A Int(B);
(LFD) (Int(A))(zx) =V A (Int(B))(Yp)-

2 <B<Ay,<B

4. L-fuzzy Closure Systems Characterized by L-fuzzy Closure
Operators

In this section, we will introduce a new definition of L-fuzzy closure operator,
which is a generalization of Birkhoff’s closure operator and L-fuzzy closure operator
in the sense of Definition 2.5. Moreover, the relations between this kind of L-fuzzy
closure operators and L-fuzzy closure systems are discussed.

Definition 4.1. An L-fuzzy closure operator on X is a mapping C : LX — L7
satisfying the following conditions:
(C1) (C(A))(xn) =T for every z) < A4;
(C2) A< B=C(A) <C(B);
(C3) C(A))(x) = AV (C(B))(yy)-
exgB>Ay, LB

A set X equipped with an L-fuzzy closure operator C, denoted (X,C), is called
an L-fuzzy closure space.

A mapping f : X — Y between two L-fuzzy closure spaces (X,Cx) and (Y,Cy ) is
called continuous if (Cx (A))(zy) < (Cy (f7(A)))(f(z)x) for every zy € J(LX) and
every A € LX. The category of L-fuzzy closure spaces and continuous mappings is
denoted L-FC.

The next theorem is obvious.
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Theorem 4.2. A mapping f : X — Y between two L-fuzzy closure spaces (X,Cx)
and (Y,Cy) is continuous if and only if V) € J(LX), VB € LY,

(Cx(f(B)(xr) < (Cy(B))(f(z)r)-

With the help of an L-fuzzy closure system ¢, we can obtain a mapping C, :
LX — L7 which is defined by

Vay € J(LY), VA€ LY, (Co(A)(@r) = N «(B).
zAgB>A

Lemma 4.3. If ¢ is an L-fuzzy closure system, then \/ (C,(A))(xx) = ¢(A)" for
T\ %A
all A e LX.

Proof. In fact, it is enough to prove that \/ (C,(A4))(xx) = ¢(A)". By the defini-
ZE,\%\A
tion of C,, we have

V@) = VA em'=( A\ V e®)
a:)\;(A zA;(AzA;(B2A IA%AI)\%BZA

= V N\ ef(@n)

fe TI1 Bz)\ I)\\;{A
mk;{A

/

> Ve A S@) | =y,
fe 11 By zALA
zyELA
where B,, = {B|z\ £ B> A}. O

Theorem 4.4. If ¢ is an L-fuzzy closure system, then C, is an L-fuzzy closure
operator.

Proof. (C1) and (C2) are trivial. By Lemma 4.3, (C3) follows from
AV CB)y)= N @B) =(ColA) (@)
zky(\B}Ay“;(B m»;(B)A

(]
Theorem 4.5. If f : (X,px) — (Y,py) is continuous with respect to L-fuzzy
closure systems ¢x and @y, then f : (X,Cpy) — (Y,Cy,) is continuous with
respect to L-fuzzy closure operators Cy,, and Cy,, .

Proof. Since f: (X,px) — (Y, py) is continuous, it follows that

VBe LY, ¢x(f7(B)) > ¢y (B)
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This implies that Vo, € J(LX),
(Coy (B)(f(x)n) = N ev(a)
f@)ALAZB
A ex (F(4)
AL (A)2F(B)
A ex(C) = (Cox (J7(B)))(mr)-

2 LC2f* (B)
Therefore, f: (X,Cyy, ) — (Y,Cy, ) is continuous. O

On the one hand, an L-fuzzy closure operator can be induced by an L-fuzzy
closure system. On the other hand, an L-fuzzy closure operator induces an L-fuzzy
closure system as follows.

Theorem 4.6. Let (X,C) be an L-fuzzy closure space. Define pc : LX — L by
VAeLX, pc(A) = /\ (C(A) (=)
’E)\%A

Then ¢ is an L-fuzzy closure system on X.
Proof. Tt is enough to show that ¢¢ satisfies (LFCS).

V{A;}ier € LY, we have that

ec (/\ Az‘) A (C (/\ Ai) (“"*)>
iel zk;{\é\IAi iel

p L))
i€l 3¢ A, iel

A N @)@ = N el

i€l py £ A, il

WV

WV

Vv

O
Theorem 4.7. If f : (X,Cx) — (Y,Cy) is continuous with respect to L-fuzzy
closure operators Cx and Cy, then f : (X,pcy) = (Y, ¢y ) is continuous with
respect to L-fuzzy closure systems wc, and pc, .

Proof. Since f: (X,Cx) — (Y,Cy) is continuous, it follows that
Vay € J(LY), VB e LY, (Cx(f7(B)))(x2) < (Cy(B))(f(2)x)-
This implies that

vex (fT(B) = N (Cx(F7(B)(xa))
oAk fe(B)
> N\ (Cr(B)(f(x)r)
(@) £B
> A\ (CrBYm) = pen(B).
y;ﬁ{\B

Therefore, f: (X, pcy) = (Y, ¢c, ) is continuous. d
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The following theorem shows that there is a one-to-one correspondence between
L-fuzzy closure systems and L-fuzzy closure operators.

Theorem 4.8. IfC is an L-fuzzy closure operator on X and o is an L-fuzzy closure
system on X, then C,. = C and ¢c, = 4.

Proof. By (C3), the equality C,, = C is shown by
Coc(@) = NV €CB) () = (C(A) ().

rA;(B>A yM;(B

By Lemma 4.3, ¢c, = ¢ follows from

v (A) = N\ (Co(A))(2r)) = ( V (Cw(A))(x/\)> = ¢(A).

zALA zALA

The next result follows from Theorems 4.4, 4.5, 4.6, 4.7 and 4.8.
Theorem 4.9. The category L-FCS 1is isomorphic to the category L-FC.

5. L-fuzzy Remote Neighborhood Systems and L-fuzzy
Quasi-coincident Neighborhood Systems

In this section, we will introduce new definitions of L-fuzzy remote neighborhood
system and L-fuzzy quasi-coincident neighborhood system, in order to characterize
L-fuzzy closure systems.

Definition 5.1. An L-fuzzy remote neighborhood system on X is a set n = {n, |
x) € J(LX)} of mappings 7., : L — L satisfying the following conditions:
(RN1) 17, (A) £ L = 23 £ 4
(RN2) A< B = 12,(A) 2 12, (B);
(RN3) 1y (A) = VA 1, (B).
axg{B>Ay, LB
A set X equipped with an L-fuzzy remote neighborhood system n = {n,, | zx €
J(LX)}, denoted (X,n), is called an L-fuzzy remote neighborhood space.
A mapping f : X — Y between two L-fuzzy remote neighborhood spaces (X, 7x)
and (Y, ny) is called continuous if Yz, € J(LX), VB € LY,

(1x)ar (fT(B)) Z (1) g1 (B)-

The category of L-fuzzy remote neighborhood spaces and continuous mappings
is denoted L-FRN.

Definition 5.2. An L-fuzzy quasi-coincident neighborhood system on X is a set
Q = {Q., | zx» € J(LX)} of mappings Q,, : L* — L satisfying the following
conditions:

(QN1) Qg (A) # L = zx £ A';

(QN2) A< B= Q,, (4) < Q,, (B);

QN3) Q,(A)= VA 9, (B

z;;{B}A’ yu%\B
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A set X equipped with an L-fuzzy quasi-coincident neighborhood system Q =
{Q., | xx € J(LX)}, denoted (X, Q), is called an L-fuzzy quasi-coincident neigh-

borhood space.
A mapping f : X — Y between two L-fuzzy quasi-coincident neighborhood
spaces (X, Qx) and (Y, Qy) is called continuous if Vx, € J(LX), VB € LY,

(Qx)ax (fT(B) 2 (Qv) f(a), (B).

The category of L-fuzzy quasi-coincident neighborhood spaces and continuous
mappings is denoted L-FQN.
Theorem 5.3. The category L-FRN is isomorphic to the category L-FQN.

Proof. Given an L-fuzzy remote neighborhood space (X,n), define a set Q7 =
{97 zx € J(LX)} of mappings . :LX — L by

VAeL®, QI (A)=rns,(A").

Then (X, Q") is an L-fuzzy quasi-coincident neighborhood space. Similarly, given
an L-fuzzy quasi-coincident neighborhood space (X, Q), define a set n¢ = {n$ |
xx € J(LX)} of mappings ng : LX — L by

vAE LY, 3 (A) = Qay(4).

Then (X,n<) is an L-fuzzy remote neighborhood space. Since ’ is an order-
reversing involution on L, it can be easily checked that the category L-FRN is
isomorphic to the category L-FQN. ([l

Next, we will discuss the relations between L-fuzzy closure systems and L-fuzzy
remote neighborhood systems.
Let ¢ : L*X — L be an L-fuzzy closure system on X. For every z, € J(LX),
define a mapping 7y, : LX — L by
g (A= \/ oB).
zALB>A

Then we have the following lemma.

Lemma 5.4. If ¢ is an L-fuzzy closure system on X, then o(A) = A n¥ (4).

w)\f(A
Proof. Tt is obvious that A nf (4)= A \V  p(B) = ¢(A). Now, we show
I)\%\A I)\%\AI)\%BZA
that A 7¥ (4) < o(A4). By the completely distributive law, we can obtain the
w)\f(A
following.
Ang@ = AV e

2:')\%\.4 a:A;{AxxﬁBéA

= \ /\ #(f(@r)
fe’ liiAsz zALA

\/ «p( A f(:m) = @A),

f€ Il Bay zALA
zyLA

/&
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where B, = {B | z\ £ B> A}. O

Theorem 5.5. If ¢ is an L-fuzzy closure system on X, then n¥ = {nf | x\ €
J(LX)} is an L-fuzzy remote neighborhood system, which is called the L-fuzzy re-
mote neighborhood system induced by .

Proof. We check that n¥ satisfies (RN1)—(RN3).
(RN1) and (RN2) are trivial.
(RN3) By Lemma 5.4, it follows that

Vo A B = eB) =ng, (A).

zA\LB>Ay, LB zAEB>A O

Theorem 5.6. If f : (X,¢ox) — (Y,py) is continuous with respect to L-fuzzy
closure systems px and @y, then f : (X,n®*) — (Y,n®Y) is continuous with
respect to L-fuzzy remote neighborhood systems n%X and n¥Y .

Proof. Since f: (X,px) — (Y, py) is continuous, it follows that
VBe LY, ox(fT(B)) = ¢y (B).
This implies that Vo, € J(LX),

W B =\ ev(©)
f(z)ALC2B
< \/ ox (F(C)
AL fE(C)2f(B)
< V  ex(A) = nfE(UB).

exg{AZf(B)
Therefore, f: (X, n%*) — (Y,n¥Y) is continuous. O
Conversely, we can construct an L-fuzzy closure system from an L-fuzzy remote
neighborhood system as follows.

Theorem 5.7. Let (X,n) be an L-fuzzy remote neighborhood space. Define ¢" :
LX — L by ¥ )
vAe LX, oA = N ney(A).
oagA
Then " is an L-fuzzy closure system on X, which is called the L-fuzzy closure
system induced by 1.

Proof. We check that ¢" satisfies (LFCS) as follows.

V{A;}ier € LX, by the definition of ¢, we have

iel “%/\, A; iel

ANANC (/\Az‘)

ie]wx;{Ai el

A A ma() = A,

i€l gy LA, il

Vv
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Hence, ¢" is an L-fuzzy closure system. O

Theorem 5.8. If f : (X,nx) — (Y,ny) is continuous with respect to L-fuzzy re-
mote neighborhood systems nx and ny, then f: (X, "%) — (Y, ") is continuous
with respect to L-fuzzy closure systems "% and @ .

Proof. Since f: (X,nx) — (Y,ny) is continuous, it follows that

Vay € J(LX), VBE LY, (0x)er(fT(B)) = (ny) (), (B).
This implies that

e = N\ (x)e (FT(B))
zx € f<(B)
> N )i, (B)
f(z)x&B
> A )y (B) = ¢™(B).
yuﬁB
Therefore, f: (X, ") — (Y, ¢™) is continuous. O

The following result shows that there exists a one-to-one correspondence between
L-fuzzy closure systems and L-fuzzy remote neighborhood systems.

Theorem 5.9. If p is an L-fuzzy closure system on X and n is an L-fuzzy remote
neighborhood system on X, then " = ¢ and n®" = 1.

Proof. By Lemma 5.4, ¢"” = ¢ follows from

" (A) = N\ 0% (A) = ¢(A).
w,\y(A
By (RN3), 7¥" = 7 is shown by

A=\ "B =\ N\ 0,8 =n.,(A).

zA;{BZA $>\§(B>Ay“;{3

The next result follows from Theorems 5.5, 5.6, 5.7, 5.8 and 5.9.
Theorem 5.10. The category L-FCS is isomorphic to the category L-FRN.

6. L-fuzzy Interior Operators and L-fuzzy Neighborhood Systems

In this section, we shall introduce new definitions of L-fuzzy interior operator
and L-fuzzy neighborhood system, in order to characterize L-fuzzy closure systems.

Definition 6.1. An L-fuzzy interior operator on X is a mapping Z : LX — L7
satisfying the following conditions:

(I1) (Z(A))(zx) = L for every ) £ A;

(I12) A< B=1I(A) < I(B);

B3) ZA)(xx) =V A (Z(B)(y)

zA<B<Ay,<B
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A set X equipped with an L-fuzzy interior operator Z, denoted (X,7), is called
an L-fuzzy interior space.

A mapping f : X — Y between two L-fuzzy interior spaces (X, Zx) and (Y, Zy ) is
called continuous if (Zx (f<(B)))(zx) = (Zy (B))(f(x),) for every z) € J(L¥) and
every B € LY. The category of L-fuzzy interior spaces and continuous mappings
is denoted L-FI.

Definition 6.2. An L-fuzzy neighborhood system on X is a set N' = {N,, |z €
J(LX)} of mappings N, : LX — L satisfying the following conditions:

(LN1) N, (A) = L for every xy £ 4;
(LNQ) A<B§Nx,\( )<Nm>\(B);
(LN3) Moy (A) =V A Ny, (B).

2A<B<Ay,<B

A set X equipped with an L-fuzzy neighborhood system N = {N,, | =) €
J(LX)}, denoted (X, N), is called an L-fuzzy neighborhood space.

A mapping f: X — Y between two L-fuzzy neighborhood spaces (X, Nx) and
(Y, Ny) is called continuous if Vz) € J(LX), VB € LY,

(Nx)ax (f7(B) 2 (My) (), (B)-

The category of L-fuzzy neighborhood spaces and their continuous mappings is
denoted L-FN.

Theorem 6.3. The category L-FI is isomorphic to the category L-FIN.

Proof. Given an L-fuzzy interior space (X,Z), define a set N7 = {./\/;{ | z\ €
J(L*)} of mappings N : L* — L by

vAE LY, NE(A) = (Z(4))(zs).

By Definition 6.1, (X, N7Z) is an L-fuzzy neighborhood space. Similarly, given an
L-fuzzy neighborhood space (X, N'), define a mapping N X 5 I by

vAE LY, (ZV(A)(@r) = Noy (A).

By Definition 6.2, (X,N7%) is an L-fuzzy interior space. Then it can be easily
checked that the category L-F1I is isomorphic to the category L-FIN. (|

Now, we establish a relation between L-fuzzy interior operators and L-fuzzy
closure systems.

Theorem 6.4. For an L-fuzzy interior space (X,T), define o : LX — L by

A = N\ Z(A)(xn).
TA<A’

Then @t is an L-fuzzy closure system on X .

Proof. We verify that 7 satisfies (LFCS) as follows.
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V{A;}ier € LY, we have that

“(0)

A @((A4)))e

gy

- A YA
M<i\e/1A; il

= A A (E(V4))@
i€l xy <A, icl

> AN\ @@ = (4.
i€l xy <A, i€l

Thus, ¢? is an L-fuzzy closure system on X. O

Theorem 6.5. If [ : (X, Zx) — (Y,Iy) is continuous with respect to L-fuzzy
interior operators Ix and Ty, then f : (X, px) — (Y, ©TY) is continuous with
respect to L-fuzzy closure systems @™ and pT .

Proof. Since f: (X,Zx) — (Y,Zy) is continuous, it follows that
Vay € J(LX), VB e LY, (Zx(f(B)))(xx) = (Zy (B))(f(x)x)-

This implies that

X (F(B))

2

2

A @B

zx=(f<(B))

N @x(F7(B)))(zn)

zA=f<(B’)

AN @y (B)(f@))

f(x)x=B’

A @ (B)Nw) = & (B).

Yyu<B’

Therefore, f: (X, ?x) — (Y, @) is continuous. O

Given a mapping ¢ : LX — L, define Z¥ : LX — L7L) by

VAe LX, zye J(LY), Z?(A)@)= \/ «B).

zA<B<KA

Then the following lemma holds.

Lemma 6.6. If ¢ is an L-fuzzy closure system on X, then N\ (Z¥(A))(z)) =

(A" for every A € LX.

TA<A
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Proof. Tt is enough to show that A (Z%(A))(zx) < p(A’). By the definition of
zA<A
7% and the completely distributive law, we have

A @@y = AV «B)

TA<A zx<Az\<B<KA

= VoA el

fe Il Bz, za<A

<A
< \V @( A f(m)'>
fe TI B., \za=A4
oA<A
!/
= VeV ) ) e
fEHHABz)\ A=A
where B, ={B | z), < B < A}. O

Theorem 6.7. If ¢ is an L-fuzzy closure system on X, then I¥ is an L-fuzzy
interior operator on X, which is called the L-fuzzy interior operator induced by .

Proof. (11)—(12) are trivial. By Lemma 6.6, (I3) follows from
V. A@®B)w) =\ eB)= T (A)).
ey <B<Ay,<B e <B<A

O
Theorem 6.8. If f : (X,px) — (Y,py) is continuous with respect to L-fuzzy

closure systems px and @y, then f : (X,Z9X) — (Y,Z¥Y) is continuous with
respect to L-fuzzy interior operators Z#X and Z¥Y .

Proof. Since f: (X, px) — (Y, py) is continuous, it follows that

VBe LY, ox(f7(B))=ey(B).
This implies that Vo, € J(LX),

(Z#(B)(f(x)x)

Vo oev(a)

f(z)A<ALB

V px(f7(A)

oA (A (B)

= V ex((f7(4))

oALF (A (B)
< Voo oex(@) = @(T(B)) ().
zALC<f(B)
Therefore, f: (X,Z%%) — (Y,Z¥Y) is continuous. O

N

The following result shows that there exists a one-to-one correspondence between
L-fuzzy interior operators and L-fuzzy closure systems.
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Theorem 6.9. If T is an L-fuzzy interior operator on X and ¢ is an L-fuzzy
closure system on X, then 7¢° =T and ot =¢.

Proof. By (13), 7¢" =T is shown by
T (AN =\ B = N\ @B = T(A)(xy).

zyx<B<A rA<B<Ay,<B

By Lemma 6.6, ¢** = ¢ follows from
eI (A) = N\ @A) = p(A).

TA<A’
The next results follow from Theorems 4.9, 5.3, 5.10, 6.3, 6.4, 6.5, 6.7, 6.8 an%
6.9.

Theorem 6.10. The category L-FCS is isomorphic to the category L-FI.

Corollary 6.11. The categories L-FCS, L-FC, L-FRN, L-FQN, L-FI, L-FN
are isomorphic.
7. Conclusion

In this paper, new characterizations of L-fuzzy closure operator and L-fuzzy
interior operator in the sense of Shi [25] are provided. Also, the definitions of
L-fuzzy closure operator, L-fuzzy interior operator, L-fuzzy remote neighborhood
system, L-fuzzy neighborhood system and L-fuzzy quasi-coincident neighborhood
system are generalized, and it is shown that the respective categories are isomorphic
to the category of L-fuzzy closure system spaces.

In fact, the notion of L-fuzzy closure system can be regarded as a generalization
of L-fuzzy pretopology [11]. Thus, L-fuzzy pretopologies can also be characterized
by means of the analogues of L-fuzzy closure operator, L-fuzzy interior operator,
L-fuzzy remote neighborhood system, L-fuzzy neighborhood system and L-fuzzy
quasi-coincident neighborhood system.

It is well known that the concept of (L, M )-fuzzy topology [18] is a generalization
of L-fuzzy topology (for M = L). Motivated by this, we can generalize L-fuzzy
closure system to (L, M)-fuzzy closure system. Analogously the other notions can
also be generalized, and we can obtain the same results as those in this paper.

The lattice-valued approach in this paper is fixed-basis [14], we think that this
approach can be generalized to the variable-basis setting [23], which can be the
subject of our future research.
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