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SOME (FUZZY) TOPOLOGIES ON GENERAL

FUZZY AUTOMATA

M. HORRY AND M. M. ZAHEDI

Abstract. In this paper, by presenting some notions and theorems, we obtain

different types of fuzzy topologies. In fact, we obtain some Lowen-type and

Chang-type fuzzy topologies on general fuzzy automata. To this end, first we
define a Kuratowski fuzzy interior operator which induces a Lowen-type fuzzy

topology on the set of states of a max- min general fuzzy automaton. Also by
proving some theorems, we can define two fuzzy closure (two fuzzy interior)

operators on the certain sets related to a general fuzzy automaton and then

according to these notions we give some theorems and obtain some different
Chang-type fuzzy topologies.

1. Introduction and preliminaries

The theory of fuzzy sets was introduced by Zadeh [22]. Wee [20] introduced the
idea of fuzzy automata. Automata have a long history both in theory and appli-
cation [1, 2]. Automata are the prime example of general computational systems
over discrete spaces [8]. Among the conventional spectrum of automata (i.e. deter-
ministic finite-state automata, non-deterministic finite-state automata, probabilis-
tic automata and fuzzy finite-state automata), deterministic finite-state automata
have been the most applied automata to different areas [3, 14, 15]. See [18] for more
applications. Fuzzy automata not only provide a systematic approach to handle
uncertainty in such systems, but also are able to handle continuous spaces [19].
In general, fuzzy automata provide an attractive systematic way for generalizing
discrete applications [5]. Moreover, fuzzy automata are able to create capabilities
which are hardly achievable by other tools [21].
Let X be a set. A word on X is the product of a finite sequence of elements in
X, Λ is empty word and X∗ is the set of all words on X. In fact, X∗ is the free
monoid on X. For a nonempty set X, P̃(X) denots the set of all fuzzy subsets on
X and P (X) denots the set of all subsets on X.
A deterministic finite-state automaton is a five-tuple denoted as A = (Q,X, f, T, s),
where Q is a finite set of states, X is a finite set of input symbols, the function f
from Q × X into Q is the state transition, T is a subset of Q of accepting states
and s ∈ Q is the initial state.
A word x = x1x2 . . . xn ∈ X∗ is said to be accepted by A if there exist states
q0, q1, . . . , qn satisfying
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(1) q0 = s
(2) f(qi−1, xi) = qi for i = 1, 2, . . . , n,
(3) qn ∈ T .

The empty word is accepted by A if and only if s ∈ T .
A nondeterministic finite-state automaton is a five-tuple denoted as A = (Q,X, f, T,
s), where Q is a finite set of states, X is a finite set of input symbols, the function
f from Q × X into P (Q) is the state transition, T is a subset of Q of accepting
states and s ∈ Q is the initial state.
A fuzzy finite-state automaton (FFA) is a six-tuple denoted as F̃= (Q,Σ, R, Z, δ, ω),
where Q is a finite set of states, Σ is a finite set of input symbols, R is the start
state of F̃, Z is a finite set of output symbols, δ : Q× Σ×Q −→ [0, 1] is the fuzzy
transition function which is used to map a state (current state) into another state
(next state) upon an input symbol, attributing a value in the interval [0,1] and
ω : Q −→ Z is the output function. In an FFA, as can be seen, associated with
each fuzzy transition, there is a membership value in [0,1]. We call this membership
value the weight of the transition. The transition from state qi (current state) to
state qj(next state) upon input ak is denoted as δ(qi, ak, qj). We use this notation
to refer both to a transition and its weight. Whenever δ(qi, ak, qj) is used as a
value, it refers to the weight of the transition, otherwise, it specifies the transition
itself. Also, the set of all transitions of F̃ is denoted as ∆.
The above definition is generally accepted as a formal definition for FFA [13, 16,
17]. There is an important problem which should be clarified in the definition of
FFA. It is the assignment of membership values to the next states. There are two
issues within state membership assignment. The first one is how to assign a mem-
bership value to a next state upon the completion of a transition. Secondly, how
should we deal with the cases where a state is forced to take several membership
values simultaneously via overlapping transition?
In 2004, M. Doostfatemeh and S.C. Kremer extended the notion of fuzzy automata
and gave the notion of general fuzzy automata [7]. Then we followed it in [23] and
now we follow [7,23] and give some new notions and results as mentioned in the
abstract.

Definition 1.1. [7] A general fuzzy automaton (GFA) F̃ is an eight-tuple machine

denoted as F̃ = (Q,Σ, R̃, Z, ω, δ̃, F1, F2), where

(i) Q is a finite set of states, Q = {q1, q2, . . . , qn},
(ii) Σ is a finite set of input symbols, Σ = {a1, a2, . . . , am},
(iii) R̃ is the set of fuzzy start states, R̃ ⊂ P̃ (Q) ,

(iv) Z is a finite set of output symbols, Z = {b1, b2, . . . , bk},
(v) ω : Q −→ Z is the output function,

(vi) δ̃ : (Q× [0, 1])× Σ×Q −→ [0, 1] is the augmented transition function,

(vii) F1 : [0, 1]× [0, 1] −→ [0, 1] is called membership assignment function.

Function F1(µ, δ) as is seen, is motivated by two parameters µ and δ, where µ is
the membership value of a predecessor and δ is the weight of a transition.



Some (Fuzzy) Topologies on General Fuzzy Automata 75

In this definition, the process that takes place upon the transition from state qi to
qj on input ak is represented as:

µt+1(qj) = δ̃((qi, µ
t(qi)), ak, qj) = F1(µt(qi), δ(qi, ak, qj)),

which means that the membership value (mv) of the state qj at time t + 1 is
computed by function F1 by using both the membership value of qi at time t and
the weight of the transition.
There are many options which can be used for the function F1(µ, δ), for example
max{µ, δ}, min{µ, δ} or (µ+ δ)/2.

(viii) F2 : [0, 1]∗ −→ [0, 1] is called multi-membership resolution function.

The multi-membership resolution function resolves the multi-membership active
states and assigns a single membership value to them.
Let Qact(ti) be the set of all active states at time ti, ∀i ≥ 0. We have Qact(t0) = R̃,
Qact(ti) = {(q, µti(q)) : ∃q′ ∈ Qact(ti−1), ∃a ∈ Σ, δ(q′, a, q) ∈ ∆}, ∀i ≥ 1.
Since Qact(ti) is a fuzzy set, in order to show that a state q belongs to Qact(ti)
and T is a subset of Qact(ti), we should write: q ∈ Domain(Qact(ti)) and T ⊂
Domain(Qact(ti)). Hereafter, we simply denote them as: q ∈ Qact(ti) and T ⊂
Qact(ti).
The combination of the operations of functions F1 and F2 on a multi-membership
state qj will lead to the multi-membership resolution algorithm.

Algorithm 1.2. [7] (Multi-membership resolution) If there are several simultane-
ous transitions to the active state qj at time t + 1, the following algorithm will
assign a unified membership value to that:

(1) Each transition weight δ(qi, ak, qj) together with µt(qi), will be processed by the
membership assignment function F1, and will produce a membership value. Call
this vi,

vi = δ̃((qi, µ
t(qi)), ak, qj) = F1(µt(qi), δ(qi, ak, qj)).

(2) These membership values are not necessarily equal. Hence, they will be pro-
cessed by another function F2, called the multi-membership resolution function.

(3) The result produced by F2 will be assigned as the instantaneous membership
value of the active state qj ,

µt+1(qj) =
n

F2
i=1

[vi] =
n

F2
i=1

[F1(µt(qi), δ(qi, ak, qj))].

Where

• n : is the number of simultaneous transitions to the active state qj at time t+ 1.
• δ(qi, ak, qj) : is the weight of the transition from qi to qj upon input ak.
• µt(qi) : is the membership value of qi at time t.
• µt+1(qj) : is the final membership value of qj at time t+ 1.

Example 1.3. [7] Consider the GFA in Fig.1 with several transition overlaps.

It is specified as: F̃ = (Q,Σ, R̃, Z, ω, δ̃, F1, F2), where Q = {q0, q1, q2, q3, q4} is
the set of states, Σ = {a, b} is the set of input symbols, Z = ∅ and ω is not

applicable, R̃ = Qact(t0) = {(q0, µ
t0(q0))} = {(q0, 1)} , vi = δ̃((qi, µ

t(qi)), ak, qj) =
F1(µt(qi), δ(qi, ak, qj)) and
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Figure 1. The GFA of Example 1.3

1F1(µ, δ) = δ,
n
F2
i=1

[vi] = µt+1(qm) =

n∧
i=1

(F1(µt(qi), δ(q1, ak, qm))),

2F1(µ, δ) = min(µ, δ),
n
F2
i=1

[vi] = µt+1(qm) =

n∧
i=1

(F1(µt(qi), δ(q1, ak, qm))),

3F1(µ, δ) = min(µ, δ),
n
F2
i=1

[vi] = µt+1(qm) =

n∨
i=1

(F1(µt(qi), δ(q1, ak, qm))),

4F1(µ, δ) = max(µ, δ),
n
F2
i=1

[vi] = µt+1(qm) =

n∧
i=1

(F1(µt(qi), δ(q1, ak, qm))),

5F1(µ, δ) = max(µ, δ),
n
F2
i=1

[vi] = µt+1(qm) =

n∨
i=1

(F1(µt(qi), δ(q1, ak, qm))),

6F1(µ, δ) = min(µ, δ),
n
F2
i=1

[vi] = µi+1(qm) =

n∑
i=1

F1(µt(qi), δ(q1, ak, qm))/n,

7F1(µ, δ) =
µ+ δ

2
,

n
F2
i=1

[vi] = µt+1(qm) =

n∨
i=1

(F1(µt(qi), δ(q1, ak, qm))),

Where n is the number of simultaneous transitions to the active state qm at time
t+ 1. If we choose

1F1(µ, δ) = δ,
n
F2
i=1

[vi] = µt+1(qm) =

n∧
i=1

(F1(µt(qi), δ(q1, ak, qm))),

then we have :

µt0 (q0) = 1, µt1 (q1) = F1(µt0 (q0), δ(q0, a, q1)) = F1(1, 0.4) = 0.4,

µt1 (q4) = F1(µt0 (q0), δ(q0, a, q4)) = F1(1, 0.5) = 0.5,

µt2 (q1) = F1(µt1 (q4), δ(q4, a, q1)) = F1(0.5, 0.4) = 0.4,

µt2 (q2) = F1(µt1 (q1), δ(q1, a, q2)) = F1(0.4, 0.8) = 0.8,

µt2 (q4) = F1(µt1 (q1), δ(q1, a, q4)) = F1(0.4, 0.35) = 0.35,

µt3 (q2) = F1(µt2 (q4), δ(q4, b, q2)) ∧ F1(µt2 (q2), δ(q2, b, q2))

= F1(0.4, 0.1) ∧ F1(0.8, 0.6) = 0.1 ∧ 0.6 = 0.1,

µt3 (q3) = F1(µt2 (q1), δ(q1, b, q3)) ∧ F1(µt2 (q2), δ(q2, b, q3))

∧F1(µt2 (q4), δ(q4, b, q3))

= F1(0.4, 0.3) ∧ F1(0.8, 0.45) ∧ F1(0.35, 0.7) = 0.3 ∧ 0.45 ∧ 0.7 = 0.3,
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which there are two simultaneous transitions to the active state q2 at time t3 and
there are three simultaneous transitions to the active state q3 at time t3. So we can
draw the Table 1.
The operation of this fuzzy automaton upon input string a2b2 is shown in Table
1 for different membership assignment functions and multi-membership resolution
strategies. In this table, we have considered different cases for combining functions
F1 and F2.

time t0 t1 t2 t3 t4
input Λ a a b b

Qact(ti) q0 q1 q4 q1 q2 q4 q2 q3 q2 q3 q4
mv1 1.0 0.4 0.5 0.4 0.8 0.35 0.1 0.3 0.6 0.45 0.9

mv2 1.0 0.4 0.5 0.4 0.4 0.35 0.1 0.3 0.1 0.1 0.3

mv3 1.0 0.4 0.5 0.4 0.4 0.35 0.4 0.4 0.4 0.4 0.4

mv4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

mv5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

mv6 1.0 0.4 0.5 0.4 0.4 0.35 0.25 0.35 0.25 0.25 0.35

mv7 1.0 0.7 0.75 0.575 0.75 0.525 0.763 0.613 0.682 0.607 0.756

Table 1. Active States and Their Membership Values (mv) at

Different Times in Example 1.3

Definition 1.4. [23] Let F̃ = (Q,Σ, R̃, Z, ω, δ̃, F1, F2) be a general fuzzy automa-
ton, which is defined in Definition 1.1. We defined max-min general fuzzy automata
of the form:

F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2)

such that :

δ̃∗ : Qact × Σ∗ ×Q −→ [0, 1]

where Qact = {Qact(t0), Qact(t1), Qact(t2), . . . } and let for every i, i ≥ 0

δ̃∗((q, µti(q)),Λ, p) =

{
1, q = p
0, otherwise,

and for every i, i ≥ 1

δ̃∗((q, µti−1(q)), ui, p) = δ̃((q, µti−1(q)), ui, p),

δ̃∗((q, µti−1(q)), uiui+1, p) =
∨

q′∈Qact(ti)

(δ̃((q, µti−1(q)), ui, q
′)

∧δ̃((q′, µti(q′)), ui+1, p)),

and recursively

δ̃∗((q, µt0(q)), u1u2 . . . un, p) = ∨{δ̃((q, µt0(q)), u1, p1) ∧ δ̃((p1, µ
t1(p1)), u2, p2)

∧ · · · ∧ δ̃((pn−1, µ
tn−1(pn−1)), un, p)|p1 ∈ Qact(t1), p2 ∈ Qact(t2), . . . , pn−1

∈ Qact(tn−1)},
in which ui ∈ Σ, ∀1 ≤ i ≤ n and assuming that the entered input at time ti be ui,
∀1 ≤ i ≤ n− 1.
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Definition 1.5. [23] Let F̃ ∗ be a max-min general fuzzy automaton. The response

function rF̃
∗

: Σ∗ ×Q→ [0, 1] of F̃ ∗, for any x ∈ Σ∗, q ∈ Q, is defined by

rF̃
∗
(x, q) =

∨
q′∈Qact(t0)

δ̃∗((q′, µt0(q′)), x, q).

Definition 1.6. [23] Let q ∈ Q and 0 ≤ c < 1. Then q is called an accessible state

of F̃ ∗ with threshold c if there exists x ∈ Σ∗ such that rF̃
∗
(x, q) > c.

Definition 1.7. [23] Let A ⊆ Q. Then F̃ ∗ is said to be connected with threshold
c on A, if A = Q̄c, where Q̄c is the set of all accessible states with threshold c.

Definition 1.8. [12] Let X be an arbitrary set. The function ψ : P̃ (X) −→ P̃ (X)
is called a Kuratowski fuzzy interior operator if for any two elements λ and γ of
P̃ (X), we have

(i) ψ(k) = k, ∀k constant,
(ii)ψ(λ) ≤ λ,
(iii)ψ(λ

∧
γ) = ψ(λ)

∧
ψ(γ),

(iv) ψ(ψ(λ)) = ψ(λ).

Definition 1.9. [12] A subset τ of P̃ (X) is called a Lowen -type fuzzy topology
on X if

(i) ∀k constant, k ∈ τ ,
(ii) If λ1, λ2 ∈ τ , then λ1

∧
λ2 ∈ τ ,

(iii) If λi ∈ τ , ∀i ∈ I, then
∨

i∈I
λi ∈ τ .

Remark 1.10. [12] Let τ be a Lowen-type fuzzy topology on a set X. Then for
any α ∈ [0, 1), `α(τ) = {λ−1(α, 1] : λ ∈ τ} is a topology on X, referred to as the
α-level topology of τ .

Remark 1.11. [12] Let ψ be a Kuratowski fuzzy interior operator.Then ψ induces
a Lowen-type fuzzy topology of the form τ(ψ) = {λ : ψ(λ) = λ}.
Definition 1.12. [11] Let X be an arbitrary set. The function ψ : P (X) −→ P (X)
is called a closure operator on X, if for any two elements A and B of P (X), we
have

(i) ψ(∅) = ∅,
(ii) A ⊆ ψ(A),
(iii) ψ(A

⋃
B) = ψ(A)

⋃
ψ(B),

(iv) ψ(ψ(A)) = ψ(A).

Definition 1.13. [11] Let X be an arbitrary set. The function ψ : P̃ (X) −→ P̃ (X)

is called a fuzzy closure operator if for any two elements λ and γ of P̃ (X), we have

(i) ψ(0) = 0,
(ii) ψ(λ) ≥ λ,
(iii) ψ(λ

∨
γ) = ψ(λ)

∨
ψ(γ),

(iv) ψ(ψ(λ)) = ψ(λ).

Also, a fuzzy closure operator ψ is called saturation if for any family {λi}i∈I of

elements of P̃ (X), we have ψ(
∨
i∈I λi) =

∨
i∈I ψ(λi).
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Definition 1.14. [11] Let X be an arbitrary set. The function ψ : P̃ (X) −→ P̃ (X)

is called a fuzzy interior operator if for any two elements λ and γ of P̃ (X), we have

(i) ψ(1) = 1,
(ii) ψ(λ) ≤ λ,
(iii) ψ(λ

∧
γ) = ψ(λ)

∧
ψ(γ),

(iv) ψ(ψ(λ)) = ψ(λ).

Definition 1.15. [4] A subset τ of P̃ (X) is called a Chang-type fuzzy topology on
X if

(i) 0, 1 ∈ τ ,
(ii) If λ1, λ2 ∈ τ , then λ1

∧
λ2 ∈ τ ,

(iii) If λi ∈ τ , ∀i ∈ I, then
∨

i∈I
λi ∈ τ .

Remark 1.16. [12] Let ψ be a fuzzy closure operator. Then ψ induces a Chang-
type fuzzy topology of the form τ(ψ) = {λC : ψ(λ) = λ}, where λC = 1− λ.
Let ψ be a fuzzy interior operator. Then ψ induces a Chang-type fuzzy topology
of the form τ(ψ) = {λ : ψ(λ) = λ}.

2. Some Lowen-type Fuzzy Topologies on General Fuzzy Automata

Theorem 2.1. Let F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2) be a max-min general fuzzy
automaton, λ be a fuzzy subset on Q and for any p ∈ Q, consider D̄(λ)(p) =∨
{λ(p) ∧ rF̃∗(x, p) : x ∈ Σ∗}. Define

S̄λ : P (Q) −→ P (Q)
A −→ S̄λ(A)

where

S̄λ(q) = {p ∈ Q : D̄(λ)(p) = D̄(λ)(q)}, S̄λ(A) =
⋃
q∈A

S̄λ(q).

Then S̄λ is a closure operator on Q.

Proof. (i) S̄λ(∅) = ∅ is obvious.

(ii) Let q ∈ A. Since q ∈ S̄λ(q) and S̄λ(q) ⊆ S̄λ(A), we get that A ⊆ S̄λ(A).

(iii) S̄λ(A
⋃
B) =

⋃
q∈A

⋃
B S̄λ(q) = (

⋃
q∈A S̄λ(q))

⋃
(
⋃
q∈B S̄λ(q)) = S̄λ(A)

⋃
S̄λ(B).

(iv) By (ii), we have S̄λ(A) ⊆ S̄λ(S̄λ(A)). Conversely, let q ∈ S̄λ(S̄λ(A)). Then
there exists q′ ∈ S̄λ(A) such that q ∈ S̄λ(q′). Thus q′ ∈ S̄λ(q′′), for some q′′ ∈ A.
Consequently, we have

D̄(λ)(q) = D̄(λ)(q′), D̄(λ)(q′) = D̄(λ)(q′′).

So D̄(λ)(q) = D̄(λ)(q′′). Hence, q ∈ S̄λ(q′′) ⊆ S̄λ(A). Therefore S̄λ(S̄λ(A)) ⊆
S̄λ(A). �

Theorem 2.2. Let F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2) be a max-min general fuzzy
automaton, λ be a fuzzy subset on Q and S̄λ(A) =

⋃
q∈A S̄λ(q). Then T̄ (Q) =

{AC : A ⊆ Q, S̄λ(A) = A} is a topology on Q.
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Proof. (i) Since S̄λ(∅) = ∅, then Q = (∅)C ∈ T̄ (Q).
(ii) Since S̄λ is a closure operator on Q, we have Q ⊆ S̄λ(Q). On the other hand,
since S̄λ(Q) ∈ P (Q), we have S̄λ(Q) ⊆ Q. Thus, S̄λ(Q) = Q. Therefore we
conclude that ∅ = (Q)C ∈ T̄ (Q).
(iii) Let AC1 and AC2 belong to T̄ (Q). Then S̄λ(A1) = A1 and S̄λ(A2) = A2. Thus,
we have

S̄λ(A1

⋃
A2) = S̄λ(A1)

⋃
S̄λ(A2) = A1

⋃
A1.

That is, AC1
⋂
AC2 = (A1

⋃
A2)C ∈ T̄ (Q).

(iv) Let ACi ∈ T̄ (Q), ∀i ∈ I. Then S̄λ(Ai) = Ai, ∀i ∈ I. Since S̄λ is a
closure operator on Q, we have

⋂
i∈I Ai ⊆ S̄λ(

⋂
i∈I Ai). On the other hand,

since Ai
⋃

(
⋂
i∈I Ai) = Ai, we get that S̄λ(Ai)

⋃
(S̄λ(

⋂
i∈I Ai)) = S̄λ(Ai). Then

S̄λ(
⋂
i∈I Ai) ⊆ S̄λ(Ai) = Ai. Thus S̄λ(

⋂
i∈I Ai) ⊆

⋂
i∈I Ai. Hence, S̄λ(

⋂
i∈I Ai) =⋂

i∈I Ai . That is,
⋃
i∈I A

C
i = (

⋂
i∈I Ai)

C ∈ T̄ (Q). �

Theorem 2.3. Let F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2) be a max-min general fuzzy
automaton. Define

C : P̃ (Q) −→ P̃ (Q)
λ −→ C(λ)

where
C(λ)(p) =

∧
{λ(q) : q ∈ S̄λ(p)}.

Then C is a Kuratowski fuzzy interior operator.

Proof. (i) C(k) = k, ∀k constant.

(ii) Since p ∈ S̄λ(p) = {q ∈ Q : D̄(λ)(q) = D̄(λ)(p)}, we have

C(λ)(p) =
∧
{λ(q) : q ∈ S̄λ(p)} ≤ λ(p).

(iii) C(λ1

∧
λ2)(p) =

∧
{λ1(q)

∧
λ2(q) : q ∈ S̄λ(p)} = (

∧
{λ1(q) : q ∈ S̄λ(p)})

∧
(
∧
{λ2(q) : q ∈ S̄λ(p)}) = C(λ1(p))

∧
C(λ2)(p).

(iv) By (ii), we have C(C(λ))(p) ≤ C(λ)(p). For the reverse inequality, we have
C(C(λ))(p) =

∧
{C(λ)(q) : q ∈ S̄λ(p)} =

∧
{
∧
{λ(r) : r ∈ S̄λ(q)} : q ∈ S̄λ(p)}.

Since for any r ∈ S̄λ(q) and q ∈ S̄λ(p), we have D̄(λ)(r) = D̄(λ)(q) and D̄(λ)(q) =
D̄(λ)(p). Then D̄(λ)(r) = D̄(λ)(p). Thus r ∈ S̄λ(p). Therefore we have C(C(λ))(p)
≥
∧
{λ(r) : r ∈ S̄λ(p)} = C(λ)(p). Consequently, C(C(λ)) = C(λ). �

Now, by Remark 1.11, we conclude that :

Corollary 2.4. Let F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2) be a max-min general fuzzy

automata and τ(C) = {λ ∈ P̃ (Q) : C(λ) = λ}. Then τ(C) is a Lowen-type fuzzy
topology on Q.

Theorem 2.5. Let F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2) be a max-min general fuzzy
automaton. Then

`α(τ(C)) = {A : A ⊆ Q,AC ∈ T̄ (Q)},∀α ∈ [0, 1).
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Proof. Let α ∈ [0, 1). By Remark 1.10, we have :

`α(τ(C)) = {λ−1(α, 1] : λ ∈ τ(C)} = {λ−1(α, 1] : λ ∈ P̃ (Q) : C(λ) = λ}.
Let A = λ−1(α, 1] ∈ `α(τ(C)). Then C(λ) = λ. Since S̄λ is a closure operator
on Q, thus A ⊆ S̄λ(A). On the other hand, let p ∈ S̄λ(A). Then p ∈ S̄λ(q), for
some q ∈ A. Thus D̄(λ)(p) = D̄(λ)(q) and λ(q) > α. So q ∈ S̄λ(p). Now, we have
λ(p) = C(λ)(p) =

∧
{λ(q) : q ∈ S̄λ(p)} > α. Hence, p ∈ A . Therefore S̄λ(A) ⊆ A.

So we get that AC ∈ T̄ (Q). Consequently, `α(τ(C)) ⊆ {A : A ⊆ Q,AC ∈ T̄ (Q)}.
Conversely, let AC ∈ T̄ (Q). Then S̄λ(A) = A. To prove A ∈ `α(τ(C)), it is enough
to show that

(i) A = 1−1
A (α, 1],

(ii) C(1A) = 1A.
(i) is true. To show part (ii), let p ∈ Q. If C(1A)(p) = 1, then (ii) follows
obviously. If C(1A)(p) < 1, then there exists q ∈ S̄λ(p) such that 1A(q) < 1. Thus
q 6∈ A = S̄λ(A). Since q ∈ S̄λ(p), then p 6∈ A. Hence 1A(p) = 0. Therefore
C(1A)(p) =

∧
{1A(q) : q ∈ S̄λ(p)} ≥ 1A(p). On the other hand, since C is a

Kuratowski fuzzy interior operator, we have C(1A)(p) ≤ 1A(p). Consequently,
C(1A) = 1A. Thus `α(τ(C)) ⊇ {A : A ⊆ Q,AC ∈ T̄ (Q)}. �

Definition 2.6. Let F̃ ∗ be a max-min general fuzzy automaton, p ∈ Q, q ∈
Qact(ti), i ≥ 0 and 0 ≤ c < 1. Then p is called a successor of q with threshold

c if there exists x ∈ Σ∗ such that δ̃∗((q, µti(q)), x, p) > c.

Definition 2.7. Let F̃ ∗ be a max-min general fuzzy automaton, q ∈ Qact(ti), i ≥ 0
and 0 ≤ c < 1. Also let Sc(q) denote the set of all successors of q with threshold c.
If T ⊆ Q, then Sc(T ) the set of all successors of T with threshold c is defined by

Sc(T ) =
⋃
{Sc(q) : q ∈ T}.

Theorem 2.8. Let F̃ ∗ be a max-min general fuzzy automaton and 0 ≤ c < 1. Then
(i) q ∈ Sc(q),∀q ∈ Q.
(ii) If r ∈ Sc(p), p ∈ Sc(q), then r ∈ Sc(q).

Proof. (i) Since for all q ∈ Q, there exists i ≥ 0 such that q ∈ Qact(ti) and

δ̃∗((q, µti(q)),Λ, q) = 1 > c, then q ∈ Sc(q).
(ii) Since p ∈ Sc(q), then q ∈ Qact(ti) and there exists x ∈ Σ∗ such that δ̃∗((q, µti(q)),
x, p) > c. Also, r ∈ Sc(p) implies p ∈ Qact(tj) and there exists y ∈ Σ∗ such that

δ̃∗((p, µtj (p)), y, r) > c. Thus, we have

δ̃∗((q, µti(q)), xy, r) =
∨
q′∈Qact(tj)[δ̃

∗((q, µti(q)), x, q′)
∧
δ̃∗((q′, µtj (q′)), y, r)] ≥

δ̃∗((q, µti(q)), x, p)
∧
δ̃∗((p, µtj (p)), y, r) > c.

So we get that r ∈ Sc(q). �

Example 2.9. Let F̃ ∗ be a max-min general fuzzy automaton in Example 1.3. If we

choose 5F1(µ, δ) = max(µ, δ),
n

F2
i=1

[vi] = µt+1(qm) =

n∨
i=1

(F1(µt(qi), δ(q1, ak, qm))),
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then we have :

δ̃∗((q0, µ
t0(q0)), a2, q1) =

∨
q′∈Qact(t1)

[δ̃∗((q0, µ
t0(q0)), a, q′)

∧
δ̃∗((q′, µt1(q′)), a, q1)] = [δ̃((q0, µ

t0(q0)), a, q1)∧
δ̃((q1, µ

t1(q1)), a, q1)]
∨

[δ̃((q0, µ
t0(q0)), a, q4)∧

δ̃((q4, µ
t1(q4)), a, q1)] = [F1(µt0(q0), δ(q0, a, q1))∧

F1(µt1(q1), δ(q1, a, q1))]
∨

[F1(µt0(q0), δ(q0, a, q4))∧
F1(µt1(q4), δ(q4, a, q1))]

= [F1(1, 0.4)
∧
F1(1, 0)]

∨
[F1(1, 0.5)

∧
F1(1, 0.4)]

= [1
∧

1]
∨

[1
∧

1] = 1
∨

1 = 1.

Thus δ̃∗((q0, µ
t0(q0)), a2, q1) = 1. Similarly, we have :

δ̃∗((q0, µ
t0(q0)), a2, q2) = 1,

δ̃∗((q0, µ
t0(q0)), a2, q3) = 1,

δ̃∗((q0, µ
t0(q0)), a2, q4) = 1.

Also, we have δ̃∗((q0, µ
t0(q0)),Λ, q0) = 1. Thus Sc(q0) = Q, ∀c, 0 ≤ c < 1.

Theorem 2.10. Let F̃ ∗ be a max-min general fuzzy automaton, 0 ≤ c < 1 and

Sc : P (Q) −→ P (Q)
A −→ Sc(A).

Then Sc is a closure operator on Q.

Proof. (i) Sc(∅) = ∅.
(ii) Let q ∈ A ⊆ Q. By Theorem 2.8, q ∈ Sc(q). Then q ∈ Sc(q) ⊆ Sc(A), Thus,
A ⊆ Sc(A).
(iii)Sc(A

⋃
B) =

⋃
q∈A

⋃
B Sc(q) = (

⋃
q∈A Sc(q))

⋃
(
⋃
q∈B Sc(q)) = Sc(A)

⋃
Sc(B).

(iv) By (ii), we have Sc(A) ⊆ Sc(Sc(A)). Conversely, let p ∈ Sc(Sc(A)). Then
there exists q′ ∈ Sc(A) such that p ∈ Sc(q

′). Thus q′ ∈ Sc(q
′′), for some q′′ ∈

A. Consequently, by Theorem 2.8, p ∈ Sc(q
′′). Hence, p ∈ Sc(A). Therefore

Sc(Sc(A)) ⊆ Sc(A). �

Theorem 2.11. Let F̃ ∗ be a max-min general fuzzy automaton. Then τ = {AC :
A ⊆ Q,Sc(A) = A} is a topology on Q.

Proof. The proof is similar to that of Theorem 2.2, by using suitable modification.
�

Definition 2.12. Let F̃ ∗ be a max-min general fuzzy automaton and 0 ≤ c < 1.
Then we say that F̃ ∗ is good with threshold c, if ∀q ∈ Q, ∃q′ ∈ Qact(t0) : q ∈ Sc(q′).

Example 2.13. Let F̃ ∗ be the max-min general fuzzy automaton in Example 2.
9 and 0 ≤ c < 1. Since Sc(q0) = Q, then F̃ ∗ is good with threshold c.
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Theorem 2.14. Let F̃ ∗ be a max-min general fuzzy automaton and 0 ≤ c < 1.
Then F̃ ∗ is good with threshold c if and only if F̃ ∗ is connected with threshold c on Q.

Proof. Let F̃ ∗ be good with threshold c and q ∈ Q . Then there exists q′ ∈ Qact(t0)

such that q ∈ Sc(q′). Thus, there exists x ∈ Σ∗ such that δ̃∗((q′, µt0(q′)), x, q) > c.
So

rF̃
∗
(x, q) =

∨
q′∈Qact(t0)

δ̃∗((q′, µt0(q′)), x, q) > c.

Consequently, by Definitions 1.6 and 1.7, F̃ ∗ is connected with threshold c on Q.
Conversely, let F̃ ∗ be connected with threshold c on Q and q ∈ Q. Then there

exists x ∈ Σ∗ such that rF̃
∗
(x, q) =

∨
q′∈Qact(t0)

δ̃∗((q′, µt0(q′)), x, q) > c.

Hence, there exists q′ ∈ Qact(t0) such that δ̃∗((q′, µt0(q′)), x, q) > c. So q ∈ Sc(q′).
Therefore F̃ ∗ is good with threshold c. �

Theorem 2.15. Let F̃ ∗ be a max-min general fuzzy automaton, 0 ≤ c < 1 and
suppose that pRcq ⇔ p ∈ Sc(q), q ∈ Sc(p).
Then Rc is an equivalence relation on Q.

Proof. By Theorem 2.8 the proof is obvious. �

Theorem 2.16. Let F̃ ∗ be a max-min general fuzzy automaton, 0 ≤ c < 1, A ⊆ Q,
Bc(q) = {p ∈ Q : pRcq} and Bc(A) =

⋃
q∈ABc(q). Define

Bc : P (Q) −→ P (Q)
A −→ Bc(A).

Then Bc is a closure operator on Q.

Proof. (i) Bc(∅) = ∅.
(ii) Let q ∈ A. Since qRcq, then q ∈ Bc(q) ⊆ Bc(A). Thus, A ⊆ Bc(A).

(iii)Bc(A
⋃
D) =

⋃
q∈A

⋃
D Bc(q) = (

⋃
q∈ABc(q))

⋃
(
⋃
q∈D Bc(q)) = Bc(A)

⋃
Bc(D).

(iv) By (ii), we have Bc(A) ⊆ Bc(Bc(A)). Conversely, let q ∈ Bc(Bc(A)). Then
there exists q′ ∈ Bc(A) such that q ∈ Bc(q

′). Thus q′ ∈ Bc(q
′′), for some

q′′ ∈ A. Consequently, qRcq
′ and q′Rcq

′′. By Theorem 2.15, qRcq
′′. Thus

q ∈ Bc(q′′) ⊆ Bc(A). Therefore Bc(Bc(A)) ⊆ Bc(A). �

Theorem 2.17. Let F̃ ∗ be a max-min general fuzzy automaton, 0 ≤ c < 1 and
p, q ∈ Q. Then p ∈ Bc(q) if and only if Bc(p) = Bc(q).

Proof. Let p ∈ Bc(q). If q′ ∈ Bc(q) , then q′Rcp and pRcq. Thus, q′Rcq. Therefore
we get that q′ ∈ Bc(q). So Bc(p) ⊆ Bc(q). On the other hand, if q′ ∈ Bc(q),
then q′Rcq and pRcq. Thus, q′Rcp. So we get that q′ ∈ Bc(q). Consequently,
Bc(q) ⊆ Bc(p). Conversely, let Bc(p) = Bc(q). Since pRcp, then p ∈ Bc(p). Thus,
p ∈ Bc(q). �

3. Some Chang-type Fuzzy Topologies on General Fuzzy Automata

Theorem 3.1. Let F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2) be a max-min general fuzzy
automaton and λ be a fuzzy subset on Q. Define
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D̄ : P̃ (Qact(t0)) −→ P̃ (Qact(t0))
λ −→ D̄(λ)

where
D̄(λ)(p) = ∨{λ(p) ∧ rF̃

∗
(x, p) : x ∈ Σ∗}

and

rF̃
∗
(x, p) = ∨q′∈Qact(t0)δ̃

∗((q′, µt0(q′)), x, p).

Then D̄ is a saturation fuzzy closure operator.

Proof. (i) D̄(0) = 0 is obvious.

(ii) D̄(λ)(p) =
∨
{λ(p) ∧ rF̃∗(x, p) : x ∈ Σ∗} ≥ λ(p) ∧ rF̃∗(Λ, p) = λ(p) ∧ 1 = λ(p).

(iii)D̄(
∨
i∈I λi)(p) =

∨
{(
∨
i∈I λi(p)) ∧ rF̃

∗
(x, p) : x ∈ Σ∗}

=
∨
i∈I

(
∨
{λi(p) ∧ rF̃

∗
(x, p) : x ∈ Σ∗}) =

∨
i∈I

D̄(λi)(p).

(iv) By (ii), we have D̄(D̄(λ))(p) ≥ D̄(λ)(p). For the reverse inequality, let x, x′ be
fixed and x 6= x′. Then we have

λ(p) ∧ rF̃∗(x′, p) ∧ rF̃∗(x, p) ≤ λ(p) ∧ rF̃∗(x, p)

≤
∨
{λ(p) ∧ rF̃

∗
(z, p) : z ∈ Σ∗} = D̄(λ)(p).

Then
D̄(D̄(λ))(p) =

∨
{D̄(λ)(p) ∧ rF̃∗(x, p) : x ∈ Σ∗}

=
∨
x∈Σ∗

∨
x′∈Σ∗

{λ(p) ∧ rF̃
∗
(x′, p) ∧ rF̃

∗
(x, p)} ≤ D̄(λ)(p).

Thus, D̄(D̄(λ)) = D̄(λ).
Now, by Remark 1.16, we conclude that: �

Corollary 3.2. In Theorem 3.1, let T1 = {λ ∈ P̃ (Qact(t0)) : D̄(λ) = λ}. Then
τ(D̄) = {λC : λ ∈ T1} is a Chang-type fuzzy topology on Qact(t0).

Theorem 3.3. Let F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2) be a max-min general fuzzy
automaton, λ be a fuzzy subset on Q and 0 ≤ c < 1. Then D̄(λ) > c if and only if

F̃ ∗ is connected with threshold c on Qact(t0), and λ(p) > c, ∀p ∈ Qact(t0).

Proof. Let F̃ ∗ be connected with threshold c on Qact(t0) and λ(p) > c, ∀p ∈
Qact(t0) . Then for any p ∈ Qact(t0), there exists x ∈ Σ∗ such that rF̃

∗
(x, p) > c.

Thus λ(p)
∧
rF̃
∗
(x, p) > c which implies that

D̄(λ)(p) =
∨
{λ(p) ∧ rF̃

∗
(x, p) : x ∈ Σ∗} > c.

Conversely, let D̄(λ) > c. Then we have

D̄(λ)(p) =
∨
{λ(p) ∧ rF̃

∗
(x, p) : x ∈ Σ∗} > c.

Thus, for p ∈ Qact(t0), there exists x ∈ Σ∗ such that rF̃
∗
(x, p) > c and λ(p) > c.

So F̃ ∗ is connected with threshold c on Qact(t0) and λ(p) > c, ∀p ∈ Qact(t0). �
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Definition 3.4. Let F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2) be a max-min general fuzzy
automaton, λ be a fuzzy subset on Q and A ⊆ Q. Then we say that λ is normal
on A if

λ(p) ≤ rF̃
∗
(x, p),∀p ∈ A,∀x ∈ Σ∗.

Theorem 3.5. Let F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2) be a max-min general fuzzy
automaton, λ be a fuzzy subset on Q. If λ is normal on Qact(t0), then λC ∈ τ(D̄).
Proof. Let λ be normal on Qact(t0). Then we have

λ(p) ≤ rF̃
∗
(x, p),∀p ∈ Qact(t0),∀x ∈ Σ∗

⇒ λ(p)
∧
rF̃
∗
(x, p) = λ(p),∀x ∈ Σ∗

⇒ D̄(λ)(p) =
∨
{λ(p) ∧ rF̃

∗
(x, p) : x ∈ Σ∗} = λ(p)

⇒ D̄(λ) = λ.
Therefore λC ∈ τ(D̄). �

Theorem 3.6. Let F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2) be a max-min general fuzzy
automaton, λ be a fuzzy subset on Q and Q′ = Q−Qact(t0). Suppose

D : P̃ (Q′) −→ P̃ (Q′)
λ −→ D(λ)

where
D(λ)(p) =

∧
{λ(p)

∨
RF̃

∗
(x, p) : x ∈ Σ∗}

and

RF̃
∗
(x, p) =

∧
q∈Qact(t0)

δ̃∗((q, µt0(q)), x, p).

Then D is a fuzzy interior operator.

Proof. (i) D(1) = 1 is obvious.

(ii) D(λ)(p) = ∧{λ(p)∨RF̃∗(x, p) : x ∈ Σ∗} ≤ λ(p)
∨
RF̃

∗
(Λ, p) = λ(p)

∨
0 = λ(p).

(iii)D(λ1 ∧ λ2)(p) = ∧{(λ1(p) ∧ λ2(p)) ∨RF̃∗(x, p) : x ∈ Σ∗}

= (∧{(λ1(p) ∨RF̃
∗
(x, p) : x ∈ Σ∗}) ∧ (∧{(λ2(p) ∨RF̃

∗
(x, p) : x ∈ Σ∗})

= D(λ1)(p) ∧D(λ2)(p).

(iv) By (ii), we have D(D(λ))(p) ≤ D(λ)(p).
For the reverse inequality, let x, x′ be fixed and x 6= x′. Then we have

λ(p)
∨
RF̃

∗
(x′, p)

∨
RF̃

∗
(x, p) ≥ λ(p)

∨
RF̃

∗
(x, p)

≥ ∧{λ(p) ∨RF̃
∗
(z, p) : z ∈ Σ∗} = D(λ)(p).

Then
D(D(λ))(p) = ∧{D(λ)(p) ∨RF̃

∗
(x, p) : x ∈ Σ∗}

= ∧x∈Σ∗ ∧x′∈Σ∗ {λ(p) ∨RF̃
∗
(x′, p) ∨RF̃

∗
(x, p)} ≥ D(λ)(p).

Thus, D(D(λ)) = D(λ). �

Now, by Remark 1.16, we conclude that:
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Corollary 3.7. In Theorem 3.6, let τ(D) = {λ ∈ P̃ (Q′) : D(λ) = λ}. Then τ(D)
is a Chang-type fuzzy topology on Q′.

Definition 3.8. Let F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2) be a max-min general fuzzy
automaton, λ be a fuzzy subset on Q and A ⊆ Q. Then we say that λ is subnormal
on A if

λ(p) ≥ RF̃
∗
(x, p),∀p ∈ A,∀x ∈ Σ∗.

Theorem 3.9. Let F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2) be a max-min general fuzzy
automaton, λ be a fuzzy subset on Q and Q′ = Q−Qact(t0). If λ is subnormal on
Q′, then λ ∈ τ(D).

Proof. Let λ be subnormal on Q′. Then we have

λ(p) ≥ RF̃
∗
(x, p),∀p ∈ Q′,∀x ∈ Σ∗

⇒ λ(p) ∨RF̃
∗
(x, p) = λ(p),∀x ∈ Σ∗

⇒ D(λ)(p) = ∧{λ(p) ∨RF̃
∗
(x, p) : x ∈ Σ∗} = λ(p)

⇒ D(λ) = λ.
Therefore λ ∈ τ(D). �

Theorem 3.10. Let F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2) be a max-min general fuzzy

automaton, λ be a fuzzy subset on Σ∗ and Σ′ = {x ∈ Σ∗ : rF̃
∗
(x, p) = 1,∀p ∈

Qact(t0)}. Consider
B̄ : P̃ (Σ′) −→ P̃ (Σ′)

λ −→ B̄(λ)
where

B̄(λ)(x) = ∨{λ(x) ∧ rF̃
∗
(x, p) : p ∈ Q}

and

rF̃
∗
(x, p) = ∨q′∈Qact(t0)δ̃

∗((q′, µt0(q′)), x, p).

Then B̄ is a saturation fuzzy closure operator.

Proof. (i) B̄(0) = 0 is obvious.

(ii) B̄(λ)(x) = ∨{λ(x) ∧ rF̃∗(x, p) : p ∈ Q} ≥ λ(x) ∧ rF̃∗(Λ, p0) = λ(x) ∧ 1 = λ(x),
where p0 ∈ Qact(t0).

(iii)B̄(∨i∈Iλi)(x) = ∨{(∨i∈Iλi(x)) ∧ rF̃∗(x, p) : p ∈ Q}

= ∨i∈I(∨{λi(x) ∧ rF̃
∗
(x, p) : p ∈ Q}) = ∨i∈IB̄(λi)(x).

(iv) By (ii), we have B̄(B̄(λ))(x) ≥ B̄(λ)(x). For the reverse inequality, let p, q ∈ Q
be fixed and p 6= q. Then we have

λ(x) ∧ rF̃
∗
(x, q) ∧ rF̃

∗
(x, p) ≤ λ(x) ∧ rF̃

∗
(x, p)

≤ ∨{λ(x) ∧ rF̃
∗
(x, r) : r ∈ Q} = B̄(λ)(x).

Then

B̄(B̄(λ))(x) = ∨{B̄(λ)(x) ∧ rF̃
∗
(x, p) : p ∈ Q}

= ∨p∈Q ∨q∈Q {λ(x) ∧ rF̃
∗
(x, q) ∧ rF̃

∗
(x, p)} ≤ B̄(λ)(x).
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Thus, B̄(B̄(λ)) = B̄(λ).
Now, by Remark 1.16, we conclude that: �

Corollary 3.11. In Theorem 3.10, let T2 = {λ ∈ P̃ (Σ′) : B̄(λ) = λ}. Then
τ(B̄) = {λC : λ ∈ T2} is a Chang-type fuzzy topology on Σ′.

Theorem 3.12. Let F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2) be a max-min general fuzzy
automaton, λ be a fuzzy subset on Σ∗, Q′ = Q − Qact(t0) and Σ′′ = {x ∈ Σ∗ :

RF̃
∗
(x, p) = 0,∀p ∈ Q′}. Define

B : P̃ (Σ′′) −→ P̃ (Σ′′)
λ −→ B(λ)

where
B(λ)(x) = ∧{λ(x) ∨RF̃∗(x, p) : p ∈ Q}

and

RF̃∗(x, p) = ∧q∈Qact(t0)δ̃
∗((q, µt0(q)), x, p).

Then B is a fuzzy interior operator.

Proof. (i) B(1) = 1 is obvious.

(ii) B(λ)(x) = ∧{λ(x)∨RF̃∗(x, p) : p ∈ Q} ≤ λ(x)
∨
RF̃

∗
(x, p0) = λ(x)∨ 0 = λ(x),

where p0 ∈ Q′.
(iii)B(λ1 ∧ λ2)(x) = ∧{(λ1(x) ∧ λ2(x)) ∨RF̃∗(x, p) : p ∈ Q}

= (∧{(λ1(x) ∨RF̃
∗
(x, p) : p ∈ Q}) ∧ (∧{(λ2(x) ∨RF̃

∗
(x, p) : p ∈ Q})

= B(λ1)(x) ∧B(λ2)(x).

(iv) By (ii), we have B(B(λ))(p) ≤ B(λ)(p).

For the reverse inequality, let p, q ∈ Q be fixed and p 6= q. Then we have

λ(x) ∨RF̃∗(x, p) ∨RF̃∗(x, q) ≥ λ(x) ∨RF̃∗(x, p)

≥ ∧{λ(x) ∨RF̃∗(x, r) : r ∈ Q} = B(λ)(x).
Then

B(B(λ))(x) = ∧{B(λ)(x) ∨RF̃∗(x, p) : p ∈ Q}
= ∧p∈Q ∧q∈Q {λ(x) ∨RF̃∗(x, p) ∨RF̃∗(x, q)} ≥ B(λ)(x).

Thus, B(B(λ)) = B(λ). �

Now, by Remark 1.16, we conclude that

Corollary 3.13. In Theorem 3.12, let τ(B) = {λ ∈ P̃ (Σ′′) : B(λ) = λ}. Then
τ(B) is a Chang-type fuzzy topology on Σ′′.

4. Conclusions

As it is shown, in this manuscript by considering (in fact proving) some fuzzy
interior (closure) operators, we have introduced some Lowen-type and Chang-type
fuzzy topology structures on general fuzzy automata. So these results open a way
to study deeply the properties of these structures in future, for example to discuss
open sets, closed sets, Hausdorff spaces and compact spaces.
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