Measures of fuzzy semicompactness in $L$-fuzzy topological spaces

Document Type: Research Paper

Authors

1 College of Mathematics and Information Science, Shaanxi Normal University, 710062, Xi'an, P. R. China

2 College of Mathematics and Information Science, Shaanxi Normal Univer- sity, 710062, Xi'an, P. R. China

Abstract

In this paper, the notion of fuzzy semicompactness degrees is
introduced in $L$-fuzzy topological spaces by means of the
implication operation of $L$. Characterizations of fuzzy
semicompactness degrees in $L$-fuzzy topological spaces  are
obtained, and some properties of fuzzy semicompactness degrees are
researched.

Keywords


bibitem{AyAb:Cscplftsss}
H. Ayg"{u}n and  S. E. Abbas, {it On characterization of some
covering properties in $L$-fuzzy topological spaces in Sostak
sense}, Information Sciences, {bf 165} (2004), 221-233.

bibitem{AyAb:Sgecslft}
H. Ayg"{u}n and  S. E. Abbas, {it Some good extensions of
compactness in v{S}ostak's $L$-fuzzy topology}, Hacett. J. Math.
Stat., textbf{36}textbf{(2)} (2007), 115-125.

bibitem{Cha:Fts} C. L. Chang, {it Fuzzy topological spaces}, J.
Math. Anal. Appl., {bf 24} (1968), 39-90.


bibitem{Dwi:CchicdclI}
P. Dwinger, {it Characterizations of the complete homomorphic
images of a completely distributive complete lattice I},
Indagationes Mathematicae (Proceedings), {bf 85} (1982), 403-414.

bibitem{ErDe:Cftsss}
R. Ert"{u}rk and  M. Demirci, {it On the compactness in fuzzy
topological spaces in v{S}ostak's sense}, Mat. Vesnik, {bf
50} (1998), 75-81.

bibitem{EsCo:Stdfc}
A. Es  and  D. Coker, {it On several types of degree of fuzzy
 compactness}, Fuzzy Sets and Systems, {bf 87} (1997), 349-359.

bibitem{Fan:CiLFTOP}
J. M. Fang, {it Categories isomorphic to $L$-FTOP}, Fuzzy Sets and
Systems, {bf 157} (2006), 820-831.

bibitem{FaYu:BsIfts}
J. M. Fang and Y. L. Yue, {it Base and subbase in $I$-fuzzy
topological spaces}, J. Math. Res. Expositon, {bf 26} (2006), 89-95.

bibitem{GaStWa:Cfts}
T. E. Gantner, R. C. Steinlage and R. H. Warren, {it Compactness in
fuzzy topological spaces}, J. Math. Anal. Appl., {bf 62} (1978),
547-562.

bibitem{GiHoKeLaMiSc:Ccl}
G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson,  M. W. Mislove and
D. S. Scott, {it A compendium of continuous lattices}, Springer
Verlag, Berlin, 1980.

bibitem{Hoh:Usfsa}
 U. H"{o}hle, {it Upper semicontinuous fuzzy sets and applications},
 J. Math. Anal. Appl., {bf 78} (1980), 659-673.

bibitem{HoRo:Mfsltmt}
U. H"{o}hle and S. E. Rodabaugh, {it Mathematics of fuzzy sets: logic,
topology, and measure theory}, The Handbooks of Fuzzy Sets Series,
Kluwer Academic Publishers, Boston/Dordrecht/ London, {bf 3}
(1999).

bibitem{Kub:Ft}
T. Kubiak, {it On fuzzy topologies}, Ph.D. Thesis, Adam Mickiewicz,
             Poznan, Poland, 1985.

bibitem{LiSh:Mfclfts}
H. Y. Li and F. G. Shi, {it Measures of fuzzy compactness in
$L$-fuzzy topological spaces}, Comput. Math. Appl., {bf 59} (2010),
941-947.

bibitem{Liu:CTtfts}
Y. M. Liu, {it Compactness and Tychonoff theorem in fuzzy
topological spaces}, Acta Math. Sinica, {bf 24} (1981), 260-268.

bibitem{LiLu:Ft}
Y. M. Liu and M. K. Luo, {it Fuzzy topology}, World Scientific
Publishing, Singapore, 1997.

bibitem{Low:Ftsfc}
R. Lowen, {it  Fuzzy topological spaces and fuzzy compactness}, J.
Math. Anal. Appl., {bf 56} (1976), 621-633.

bibitem{Low:Cdcnfts}
R. Lowen, {it A comparision of different compactness notions in
fuzzy topological spaces}, J. Math. Anal. Appl., {bf 64} (1978),
446-454.

bibitem{RaAb:Lsc}
A. A. Ramadan and S. E. Abbas, {it On L-smooth compactness}, J. Fuzzy
Math., {bf 9}textbf{(1)} (2001), 59-73.

bibitem{ Rod:SARTCC}
S. E. Rodabaugh, {it Separation axioms: representation theorem,
compactness, and compactifications}, In [3].

bibitem{Rod:Pofpfstt}
S. E. Rodabaugh, {it Powerset operator foundations for poslat fuzzy
set theories and topologies}, In [3].

bibitem{Shi:Cclplfs}
F. G. Shi, {it Countable compactness and the Lindel"{o}f property
of $L$-fuzzy sets}, Iranian Journal of Fuzzy Systems, {bf 1(1)} (2004),
79-88.

bibitem{Shi:Slts}
F. G. Shi, {it Semicompactness in $L$-topological spaces}, Int. J.
Math. Math. Sci., {bf 12} (2005), 1869-1878.

bibitem{Shi:Nnfclts}
F. G. Shi, {it A new notion of fuzzy compactness in $L$-topological
spaces}, Information Sciences, {bf 173} (2005), 35-48.

bibitem{Shi:Ndfc}
F. G. Shi, {it A new definition of fuzzy compactness}, Fuzzy Sets
and Systems, {bf 158} (2007), 1486-1495.

bibitem{Shi:Pclts}
F. G. Shi, {it $P$-compactness in $L$-topological spaces}, J.
Nonlinear Sci. Appl., {bf 2} (2009), 225-233.

bibitem{Shi:Mclts}
F. G. Shi, {it Measures of compactness in $L$-topological spaces},
Annals of Fuzzy Mathematics and Informatics, {bf 2} (2011), 183-192.

bibitem{Shi:Lfslfp}
F. G. Shi, {it $L$-fuzzy semiopenness and $L$-fuzzy preopenness},
J. Nonlinear Sci. Appl., in press.


bibitem{ShLi:Slfts}
F.G. Shi and R. X. Li, {it Semicompactness in $L$-fuzzy
topological spaces}, Annals of Fuzzy Mathematics and Informatics,
{bf 2} (2011), 163-169.

bibitem{Sos:Fts}
A. P. v{S}ostak, {it On a fuzzy topological structure}, Rend. Ciec.
Mat. Palermo, {bf 11}textbf{(2)} (1985), 89-103.

bibitem{Sos:Tdftbinr}
A. P. v{S}ostak, {it Two decades of fuzzy topology: Basic ideas,
notions and results}, Russian Math. Surveys, {bf 44} (1989),
125-186.

bibitem{Wan:Tlfts}
G. J. Wang, {it Theory of $L$-fuzzy topological spaces}, Shaanxi
Normal University Press, Xi'an, in Chinese, 1988.

bibitem{Yin:NaftI}
M. S. Ying, {it A new approach to fuzzy topology I}, Fuzzy Sets and
Systems, {bf 39}textbf{(3)} (1991), 303-321.

bibitem{YuFa:Gifts}
Y. L. Yue and J. M. Fang, {it Generated $I$-fuzzy topological
spaces}, Fuzzy Sets and Systems, {bf 154} (2005), 103-117.