MEASURES OF FUZZY SEMICOMPACTNESS IN L-FUZZY TOPOLOGICAL SPACES

W. H. YANG, S. G. LI AND H. ZHAO

Abstract. In this paper, the notion of fuzzy semicompactness degrees is introduced in L-fuzzy topological spaces by means of the implication operation of L. Characterizations of fuzzy semicompactness degrees in L-fuzzy topological spaces are obtained, and some properties of fuzzy semicompactness degrees are researched.

1. Introduction

In 1968, Chang [3] introduced fuzzy theory into topology. In Chang’s fuzzy topology, open sets are fuzzy, but the topology comprising those open sets is a crisp subset of I-power set I^X. The notion of Chang’s fuzzy topology was extended by Goguen to L-topology. Later many other authors gave more results and notions concerning fuzzy topology (see [1], [2], [5]-[9], [11]-[34]).

Especially, the notion of fuzzy compactness degrees and L-fuzzy semicompactness are introduced in L-fuzzy topological spaces in [14] and [29], respectively. Based on the idea of [14], a natural problem is: Can the degrees of fuzzy semicompactness be defined in an L-fuzzy topological space?

The aim of this paper is to present a new notion of fuzzy semicompactness degrees in L-fuzzy topological spaces by means of the implication operation of L. We will also characterize the fuzzy semicompactness degrees in L-fuzzy topological spaces, and research some properties of fuzzy semicompactness degrees.

2. Preliminaries

Throughout this paper, (L, \lor, \land, \top) is a complete DeMorgan frame (i.e., a complete lattice with order-reversing involution satisfying joint-infinite distributive law) [10, 21]. By \bot and \top we denote the smallest element and the largest element in L, respectively. The set of non-unit prime elements in L is denoted by $P(L)$. The set of non-zero coprime elements in L is denoted by $M(L)$. We say that a is wedge below b in L, denoted by $a \prec b$, if for every subset $D \subseteq L$, $\lor D \geq b$ implies $d \geq a$ for some $d \in D$ [4]. $\beta(b)$ is the greatest minimal family of b, $\beta^*(b) = \beta(b) \cap M(L)$. $\alpha(b)$ is the greatest maximal family of b, $\alpha^*(b) = \alpha(b) \cap P(L)$.

Received: December 2011; Revised: November 2012; Accepted: March 2013

Key words and phrases: L-fuzzy topology, Implication operation, Fuzzy semicompactness, Fuzzy semicompactness degree.

2010 AMS Classification: 54A40, 54D30, 03E72.
In a complete DeMorgan frame L, there exists a binary operation \rightarrow. Explicitly the implication is given by $a \rightarrow b = \bigvee \{ c \in L : a \land c \leq b \}$.

It is easy to check the following properties of \rightarrow.

1. $(a \rightarrow b) \geq c \iff a \land c \leq b$.
2. $a \rightarrow b = \top \iff a \leq b$.
3. $a \rightarrow \bigwedge_i b_i = \bigwedge_i (a \rightarrow b_i)$.
4. $(\bigvee_i a_i) \rightarrow b = \bigwedge_i (a_i \rightarrow b)$.
5. $a \leq b \Rightarrow a \rightarrow c \geq b \rightarrow c, \ c \rightarrow a \leq c \rightarrow b$.
6. $(a \land b) \rightarrow c = a \rightarrow (b \rightarrow c)$.

We interpret $[a \leq b]$ as the degree to which $a \leq b$, then $[a \leq b] = a \rightarrow b$.

Let X be a nonempty set, L^X the set of all L-subsets on X, \bot the smallest element of L^X and \top the largest element of L^X. Then, L-fuzzy topology on a set X is a mapping $T : L^X \rightarrow L$ which satisfies the following conditions:

1. $T(\bot) = T(\top) = \top$.
2. $T(U \lor V) \geq T(U) \land T(V) \ (\forall U, V \in L^X)$.
3. $T \left(\bigvee_{j \in J} U_j \right) \geq \bigwedge_{j \in J} T(U_j) \ (\forall \{U_j\}_{j \in J} \subseteq L^X)$.

The pair (X, T) is called an L-fuzzy topological space. $T(U)$ is called the degree of openness of U, $T^*(U) = T(U')$ is called the degree of closedness of U, where U' is the L-complement of U. For any family $U \subseteq L^X$, $T(U) = \bigwedge_{A \in U} T(A)$ is called the degree of openness of U.

For a subfamily $\Phi \subseteq L^X$, $\{A, B\}$ denotes the set of all finite subfamilies of Φ. For any $a \in L$, a denotes a constant value mapping from X to L, its value is a.

Definition 2.1. [31] An L-fuzzy inclusion on X is a mapping $\tilde{\subset} : L^X \times L^X \rightarrow L$ defined by the equality $\tilde{\subset}(A, B) = \bigwedge_{x \in X} (A'(x) \lor B(x))$.

In this paper, we will write $[A \tilde{\subset} B]$, instead of $\tilde{\subset}(A, B)$.

Definition 2.2. [25] Let $a \in L \setminus \{\top\}$ and $G \in L^X$. A subfamily \mathcal{U} in L^X is said to be

1. an a-shading of G if for any $x \in X$, it follows that $G'(x) \lor \bigwedge_{A \in \mathcal{U}} A(x) \not\leq a$.
2. a strong a-shading of G if $\bigwedge_{x \in X} (G'(x) \lor \bigwedge_{A \in \mathcal{U}} A(x)) \not\leq a$.

Definition 2.3. [25] Let $a \in L \setminus \{\bot\}$ and $G \in L^X$. A subfamily \mathcal{P} in L^X is said to be

1. an a-remote family of G if for any $x \in X$, it follows that $G(x) \land \bigwedge_{B \in \mathcal{P}} B(x) \not\geq a$.
2. a strong a-remote family of G if $\bigvee_{x \in X} (G(x) \land \bigwedge_{B \in \mathcal{P}} B(x)) \not\geq a$.
3. a β_a-cover of G if for any $x \in X$, it follows that $a \in \beta(G'(x) \lor \bigvee_{A \in \mathcal{P}} A(x))$.
4. a strong β_a-cover of G if for any $x \in X$, it follows that $a \in \beta(\bigwedge_{x \in X} (G'(x) \lor \bigvee_{A \in \mathcal{P}} A(x)))$.
5. a Q_a-cover of G if $a \leq \bigwedge_{x \in X} (G'(x) \lor \bigvee_{A \in \mathcal{P}} A(x))$.
Definition 2.4. [28] Let \mathcal{T} be an L-fuzzy topology on X. For any $A \in L^X$, define a mapping $\mathcal{T}_s : L^X \rightarrow L$ by

$$\mathcal{T}_s(A) = \bigvee_{B \leq A} (\mathcal{T}(B) \wedge \bigwedge_{x \in A} \bigwedge_{y \geq B} (\mathcal{T}(D))' \wedge x \wedge y).$$

Then \mathcal{T}_s is called the L-fuzzy semiopen operator induced by \mathcal{T}, where $\mathcal{T}_s(A)$ can be regarded as the degree to which A is semiopen and $\mathcal{T}_s(B) = \mathcal{T}_s(B')$ can be regarded as the degree to which B is semiclosed. For any family $U \subseteq L^X$, $\mathcal{T}_s(U) = \bigwedge_{A \in U} \mathcal{T}_s(A)$ is called the degree of semiopenness of U.

Theorem 2.5. [28] Let \mathcal{T} be an L-fuzzy topology on X and let \mathcal{T}_s be the L-fuzzy semiopen operator induced by \mathcal{T}. Then $\mathcal{T}(A) \leq \mathcal{T}_s(A)$ for any $A \in L^X$.

Definition 2.6. [28, 29] A mapping $f : X \rightarrow Y$ between two L-fuzzy topological spaces (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) is called

1. (1) semicontinuous if $\mathcal{T}_1(U) \subseteq (\mathcal{T}_1)_s(f^{-1}_L(U))$ holds for any $U \subseteq Y$.
2. irresolute if $(\mathcal{T}_1)_s(U) \subseteq (\mathcal{T}_1)_s(f^{-1}_L(U))$ holds for any $U \subseteq Y$.
3. strongly irresolute if $(\mathcal{T}_1)_s(U) \subseteq (\mathcal{T}_1)(f^{-1}_L(U))$ holds for any $U \subseteq Y$.

Definition 2.7. [29] Let (X, \mathcal{T}) be an L-fuzzy topological space. $G \in L^X$ is said to be L-fuzzy semicompact if for every family $U \subseteq L^X$, it follows that

$$\bigwedge_{A \in U} \mathcal{T}_s(A) \wedge \bigwedge_{x \in X} (G'(x) \vee \bigvee_{A \in U} A(x)) \leq \bigvee_{V \in 2^U} \bigwedge_{x \in X} (G'(x) \vee \bigvee_{A \in V} A(x)).$$

Definition 2.8. [14] Let (X, \mathcal{T}) be an L-fuzzy topological space and $G \in L^X$. The fuzzy compactness degree $cd_\mathcal{T}$ of G is defined as

$$cd_\mathcal{T}(G) = \bigwedge_{U \subseteq L^X} (\mathcal{T}(U) \rightarrow (\bigwedge_{x \in X} (G'(x) \vee \bigvee_{A \in U} A(x)) \rightarrow \bigvee_{V \in 2^U} \bigwedge_{x \in X} (G'(x) \vee \bigvee_{A \in V} A(x)))).$$

Theorem 2.9. [21, 25] Let $f : X \rightarrow Y$ be a set mapping and $f^*_L : L^X \rightarrow L^Y$ is induced by f. Then for any $\mathcal{P} \subseteq L^X$, we have that

$$\bigwedge_{y \in Y} (f^*_L(G)'(y) \vee \bigvee_{B \in \mathcal{P}} B(y)) = \bigwedge_{x \in X} (G'(x) \vee \bigvee_{B \in \mathcal{P}} f^*_L(B)(x)).$$

3. Measures of Fuzzy Semicompactness

In [14], Li and Shi generalized the notion of fuzzy compactness to L-fuzzy topological spaces, and gave the definition of fuzzy compactness degrees in L-fuzzy topological spaces. Based on [14], we will generalize the notion of fuzzy semicompactness to L-fuzzy topological spaces. In order to do this, let us recall fuzzy semicompactness in L-topology [23].

Let (X, \mathcal{T}) be an L-topological space and $G \in L^X$. G is fuzzy semicompact if and only if for every family \mathcal{U} of semiopen L-sets, it follows that

$$\bigwedge_{x \in X} (G'(x) \vee \bigvee_{A \in \mathcal{U}} A(x)) \leq \bigvee_{V \in 2^\mathcal{U}} \bigwedge_{x \in X} (G'(x) \vee \bigvee_{A \in V} A(x)).$$
This implies that for every family \mathcal{U} of semiopen L-sets,

$$
\left[[G \bar{\cup} \mathcal{U}] \leq \bigvee_{\mathcal{V} \in 2^{|\mathcal{U}|}} [G \bar{\cup} \mathcal{V}] \right] = \top.
$$

We know that an L-topology \mathcal{T} can be looked as a special L-fuzzy topology. Therefore, $A \in L^X$ is a semiopen set if and only if $\mathcal{T}_s(A) = \top$ [28]. Thus G is fuzzy semicompactness if and only if for every family $\mathcal{U} \subseteq L^X$, it follows that

$$
\mathcal{T}_s(\mathcal{U}) \leq \left[[G \bar{\cup} \mathcal{U}] \leq \bigvee_{\mathcal{V} \in 2^{|\mathcal{U}|}} [G \bar{\cup} \mathcal{V}] \right].
$$

Therefore we can naturally generalize the notion of fuzzy semicompactness degrees to L-fuzzy topological spaces as follows:

Definition 3.1. Let (X, \mathcal{T}) be an L-fuzzy topological space and $G \in L^X$. The fuzzy semicompactness degree $scd_{\mathcal{T}}(G)$ is defined as

$$
scd_{\mathcal{T}}(G) = \bigwedge_{U \subseteq L^X} (\mathcal{T}_s(U) \to (\bigvee_{\mathcal{V} \in 2^{|U|}} [G \bar{\cup} \mathcal{V}] \to \bigvee_{\mathcal{V} \in 2^{|U|}} [G \bar{\cup} \mathcal{V}] \to \bigvee_{\mathcal{V} \in 2^{|U|}} [G \bar{\cup} \mathcal{V} \to \bigvee_{\mathcal{V} \in 2^{|U|}} [G \bar{\cup} \mathcal{V} \to \bigvee_{\mathcal{V} \in 2^{|U|}} [G \bar{\cup} \mathcal{V} \to \bigvee_{\mathcal{V} \in 2^{|U|}} [G \bar{\cup} \mathcal{V}]).
$$

Theorem 3.2. Let (X, \mathcal{T}) be an L-fuzzy topological space and $G \in L^X$. Then

$$
scd_{\mathcal{T}}(G) \leq cd_{\mathcal{T}}(G).
$$

Proof. Straightforward. \(\square\)

Theorem 3.3. Let (X, \mathcal{T}) be an L-topological space and $G \in L^X$. G is fuzzy semicompactness in (X, \mathcal{T}) if and only if $scd_{\chi_{\mathcal{T}}}(G) = \top$.

Proof. Let (X, \mathcal{T}) be an L-topological space. The mapping $\chi_{\mathcal{T}} : L^X \to L$ defined by

$$
\chi_{\mathcal{T}}(A) = \left\{ \begin{array}{ll}
\top, & A \in \mathcal{T}, \\
\bot, & A \notin \mathcal{T}.
\end{array} \right.
$$

is a special L-fuzzy topology. Then $A \in L^X$ is a semiopen set in L-topology \mathcal{T} if and only if $(\chi_{\mathcal{T}})_s(A) = \top$. Thus by the definition of fuzzy semicompactness and the properties of \to, we know that G is fuzzy semicompactness if and only if for every family $\mathcal{U} \subseteq L^X$, it follows that

$$
(\chi_{\mathcal{T}})_s(\mathcal{U}) \leq \left[[G \bar{\cup} \mathcal{U}] \leq \bigvee_{\mathcal{V} \in 2^{|\mathcal{U}|}} [G \bar{\cup} \mathcal{V}] \right].
$$

This implies that G is fuzzy semicompactness if and only if for every family $\mathcal{U} \subseteq L^X$, it follows that

$$
(\chi_{\mathcal{T}})_s(\mathcal{U}) \to (\bigvee_{\mathcal{V} \in 2^{|\mathcal{U}|}} [G \bar{\cup} \mathcal{V}] = \top.
$$

By the definition of $scd_{\chi_{\mathcal{T}}}$, the conclusion is hold. \(\square\)

Theorem 3.4. Let (X, \mathcal{T}) be an L-fuzzy topological space and $G \in L^X$. G is L-fuzzy semicompactness in (X, \mathcal{T}) if and only if $scd_{\mathcal{T}}(G) = \top$.
Proof. By the definition of \(L \)-fuzzy semicompactness, we know that \(G \) is \(L \)-fuzzy semicompactness in \((X, T)\) if and only if for every family \(U \subseteq L^X \), it follows that
\[
(T_s(U) \land [G \tilde{c} \lor u]) \leq \bigvee_{V \in 2^U} [G \tilde{c} \lor V].
\]
By the properties of \(\rightarrow \), we obtain that \(G \) is \(L \)-fuzzy semicompactness in \((X, T)\) if and only if for every family \(U \subseteq L^X \), it follows that
\[
T_s(U) \rightarrow ([G \tilde{c} \lor u] \rightarrow \bigvee_{V \in 2^U} [G \tilde{c} \lor V]) = \top.
\]
By the definition of \(scd_T \), the conclusion is hold. \(\square \)

Lemma 3.5. Let \((X, T)\) be an \(L \)-fuzzy topological space and \(G \in L^X \). Then \(\text{scd}_T(G) \geq a \) if and only if for any \(U \subseteq L^X \),
\[
\bigwedge_{U \subseteq L^X} (T_s(U) \land [G \tilde{c} \lor u] \land a) \leq \bigvee_{V \in 2^U} [G \tilde{c} \lor V].
\]

Proof. For any \(a \in L \), \(\text{scd}_T(G) \geq a \), i.e.,
\[
\bigwedge_{U \subseteq L^X} (T_s(U) \rightarrow ([G \tilde{c} \lor u] \rightarrow \bigvee_{V \in 2^U} [G \tilde{c} \lor V])) \geq a
\]
if and only if for any \(U \subseteq L^X \),
\[
T_s(U) \rightarrow ([G \tilde{c} \lor u] \rightarrow \bigvee_{V \in 2^U} [G \tilde{c} \lor V]) \geq a
\]
if and only if (by the property (6) of \(\rightarrow \)) for any \(U \subseteq L^X \),
\[
(T_s(U) \land [G \tilde{c} \lor u]) \rightarrow \bigvee_{V \in 2^U} [G \tilde{c} \lor V] \geq a
\]
if and only if (by the property (1) of \(\rightarrow \)) for any \(U \subseteq L^X \),
\[
T_s(U) \land [G \tilde{c} \lor u] \land a \leq \bigvee_{V \in 2^U} [G \tilde{c} \lor V].
\]

Theorem 3.6. Let \((X, T)\) be an \(L \)-fuzzy topological space and \(G \in L^X \). Then \(\text{scd}_T(G) \geq a \) if and only if for any \(P \subseteq L^X \),
\[
\bigvee_{F \in P} T_s^r(F) \lor \bigvee_{x \in X} \left(G(x) \land \bigwedge_{F \in P} F(x) \right) \lor a \geq \bigwedge_{U \subseteq L^X} \bigvee_{x \in X} \left(G(x) \land \bigwedge_{F \in H} F(x) \right).
\]

Proof. It can be easily obtained by Lemma 3.5 and the definition of \(T_s^r \). \(\square \)

Theorem 3.7. Let \((X, T)\) be an \(L \)-fuzzy topological space and \(G \in L^X \). Then
\[
\text{scd}_T(G) = \bigvee \{ a \in L : T_s(U) \land [G \tilde{c} \lor u] \land a \leq \bigvee_{V \in 2^U} [G \tilde{c} \lor V], \forall U \subseteq L^X \}.
\]
Proof. By Lemma 3.5, we know that \(\text{scd}_T(G) \) is an upper bound of
\[
\{ a \in L : T_s(\mathcal{U}) \land |G\setminus \mathcal{U}| \land a \leq \bigvee_{V \in \mathcal{U}^2} |G\setminus V|, \forall \mathcal{U} \subseteq L^X \}.
\]
Since
\[
\text{scd}_T(G) = \bigwedge_{U \subseteq L^X} (T_s(\mathcal{U}) \rightarrow (|G\setminus \mathcal{U}| \rightarrow \bigvee_{V \in \mathcal{U}^2} [G\setminus V])),
\]
then for every family \(\mathcal{U} \subseteq L^X \), we have
\[
\text{scd}_T(G) \leq T_s(\mathcal{U}) \rightarrow (|G\setminus \mathcal{U}| \rightarrow \bigvee_{V \in \mathcal{U}^2} [G\setminus V])
\]
\[
= (T_s(\mathcal{U}) \land |G\setminus \mathcal{U}|) \rightarrow \bigvee_{V \in \mathcal{U}^2} [G\setminus V].
\]
By the property (1) of \(\rightarrow \), we obtain that for every family \(\mathcal{U} \subseteq L^X \),
\[
T_s(\mathcal{U}) \land |G\setminus \mathcal{U}| \land \text{scl}_T(G) \leq \bigvee_{V \in \mathcal{U}^2} [G\setminus V],
\]
thus
\[
\text{scl}_T(G) \in \{ a \in L : T_s(\mathcal{U}) \land |G\setminus \mathcal{U}| \land a \leq \bigvee_{V \in \mathcal{U}^2} [G\setminus V], \forall \mathcal{U} \subseteq L^X \}.
\]
Therefore, the conclusion is hold. \(\square \)

In order to write simply, for any mapping \(T : L^X \rightarrow L \), denote \(T_b = \{ a \in L^X : T(a) \geq b \} \).

Theorem 3.8. Let \((X, T)\) be an L-fuzzy topological space and \(G \in L^X, a \in L \{ \perp \} \).
The following conditions are equivalent:

1. \(\text{scl}_T(G) \geq a \).
2. For any \(b \in P(L) \), \(b \not\in a \), each strong b-shading \(\mathcal{U} \) of \(G \) with \(T_s(\mathcal{U}) \not\subseteq b \) has a finite subfamily \(\mathcal{V} \) which is a strong b-shading of \(G \).
3. For any \(b \in P(L) \), \(b \not\in a \), each strong b-shading \(\mathcal{U} \) of \(G \) with \(T_s(\mathcal{U}) \not\subseteq b \), there exists a finite subfamily \(\mathcal{V} \) of \(\mathcal{U} \) and \(r \in a^*(b) \) such that \(\mathcal{V} \) is an \(r \)-shading of \(G \).
4. For any \(b \in P(L) \), \(b \not\in a \), each strong b-shading \(\mathcal{U} \) of \(G \) with \(T_s(\mathcal{U}) \not\subseteq b \), there exists a finite subfamily \(\mathcal{V} \) of \(\mathcal{U} \) and \(r \in a^*(b) \) such that \(\mathcal{V} \) is a strong \(r \)-shading of \(G \).
5. For any \(b \in M(L) \), \(b \not\in a' \), each strong b-remote family \(\mathcal{P} \) of \(G \) with \(T^*_s(\mathcal{P}) \not\subseteq b' \) has a finite subfamily \(\mathcal{H} \) which is a strong b-remote family of \(G \).
6. For any \(b \in M(L) \), \(b \not\in a' \), each strong b-remote family \(\mathcal{P} \) of \(G \) with \(T^*_s(\mathcal{P}) \not\subseteq b' \), there exists a finite subfamily \(\mathcal{H} \) of \(\mathcal{P} \) and \(r \in \beta^*(b) \) such that \(\mathcal{H} \) is an \(r \)-remote family of \(G \).
7. For any \(b \in M(L) \), \(b \not\in a' \), each strong b-remote family \(\mathcal{P} \) of \(G \) with \(T^*_s(\mathcal{P}) \not\subseteq b' \), there exists a finite subfamily \(\mathcal{H} \) of \(\mathcal{P} \) and \(r \in \beta^*(b) \) such that \(\mathcal{H} \) is a strong \(r \)-remote family of \(G \).
8. For any \(b \leq a, r \in \beta(b) \), \(b, r \not\perp \), each \(Q_{b, r} \)-cover \(\mathcal{U} \subseteq (T_s)_b \) of \(G \) has a finite subfamily \(\mathcal{V} \) which is a \(Q_{b, r} \)-cover of \(G \).
9. For any \(b \leq a, r \in \beta(b) \), \(b, r \not\perp \), each \(Q_{b, r} \)-cover \(\mathcal{U} \subseteq (T_s)_b \) of \(G \) has a finite subfamily \(\mathcal{V} \) which is a strong \(\beta_{b, r} \)-cover of \(G \).
(10) For any \(b \leq a, r \in \beta(b), \) \(b, r \neq \bot \), each \(Q_b \)-cover \(U \subseteq (\mathcal{T}_s)_b \) of \(G \) has a finite subfamily \(V \) which is a \(\beta \)-cover of \(G \).

(11) For any \(b \leq a, r \in \beta(b), \) \(b, r \neq \bot \), each strong \(\beta_b \)-cover \(U \subseteq (\mathcal{T}_s)_b \) of \(G \) has a finite subfamily \(V \) which is a \(\beta \)-cover of \(G \).

(12) For any \(b \leq a, r \in \beta(b), \) \(b, r \neq \bot \), each strong \(\beta_b \)-cover \(U \subseteq (\mathcal{T}_s)_b \) of \(G \) has a finite subfamily \(V \) which is a \(\beta \)-cover of \(G \).

(13) For any \(b \leq a, r \in \beta(b), \) \(b, r \neq \bot \), each strong \(\beta_b \)-cover \(U \subseteq (\mathcal{T}_s)_b \) of \(G \) has a finite subfamily \(V \) which is a \(\beta \)-cover of \(G \).

In Theorem 3.8 (8)-(13), if we replace \(b, r \neq \bot \) and \(r \in \beta(b) \) with \(b \in M(L) \) and \(r \in \beta^*(b) \), then the conclusions are still right.

Theorem 3.9. Let \((X, \tau)\) be an \(L \)-fuzzy topological space and \(G \in L^X, a \in L \setminus \{ \bot \} \).

If for any \(c, d \in L \), \(\beta(c \land d) = \beta(c) \land \beta(d) \). Then the following conditions are equivalent:

1. \(scd_{\tau}(G) \geq a \).
2. For any \(b \in \beta(a), \) \(b \neq \bot \), each strong \(\beta_b \)-cover \(U \) of \(G \) with \(b \in \beta(\mathcal{T}_s(U)) \) has a finite subfamily \(V \) which is a \(Q_b \)-cover of \(G \).
3. For any \(b \in \beta(a), \) \(b \neq \bot \), each strong \(\beta_b \)-cover \(U \) of \(G \) with \(b \in \beta(\mathcal{T}_s(U)) \) has a finite subfamily \(V \) which is a strong \(\beta \)-cover of \(G \).
4. For any \(b \in \beta(a), \) \(b \neq \bot \), each strong \(\beta_b \)-cover \(U \) of \(G \) with \(b \in \beta(\mathcal{T}_s(U)) \) has a finite subfamily \(V \) which is a \(\beta \)-cover of \(G \).

4. **Properties of Fuzzy Semicompactness Degrees**

Theorem 4.1. Let \((X, \tau)\) be an \(L \)-fuzzy topological space and \(G, H \in L^X \). Then

\[
scd_{\tau}(G \cup H) \geq scd_{\tau}(G) \land scd_{\tau}(H).
\]

Proof. By Theorem 3.7 we have

\[
scd_{\tau}(G \cup H) = \bigvee_{V \in \mathcal{E}(\tau)} \{ a \in L : \mathcal{T}_s(U) \land [(G \cup H) \subset \bigvee V] \land a \}
\]
\[
\leq \bigvee_{V \in \mathcal{E}(\tau)} \{ a \in L : \mathcal{T}_s(U) \land [G \subset \bigvee V] \land [H \subset \bigvee V] \land a \}
\]
\[
= \bigvee_{V \in \mathcal{E}(\tau)} \{ a \in L : \mathcal{T}_s(U) \land [G \subset \bigvee V] \land [H \subset \bigvee V] \land a \}
\]
\[
\leq \bigvee_{V \in \mathcal{E}(\tau)} \{ a \in L : \mathcal{T}_s(U) \land [H \subset \bigvee V] \land a \}
\]
\[
\leq \bigvee_{V \in \mathcal{E}(\tau)} \{ a \in L : \mathcal{T}_s(U) \land [H \subset \bigvee V] \land a \}
\]
\[
= scd_{\tau}(G) \land scd_{\tau}(H).\]

Theorem 4.2. Let \((X, \tau)\) be an \(L \)-fuzzy topological space and \(G, H \in L^X \). Then

\[
scd_{\tau}(G \land H) \geq scd_{\tau}(G) \land \mathcal{T}_s^*(H).
\]
Proof. By Theorem 3.7 we have
\[
\text{scd}_T(G \land H) = \bigvee \{a \in L : T_0(U) \land [G \land H] \subseteq \bigcup U \land a \}
\]
\[
\leq \bigvee_{V \in 2(U)} [(G \land H) \subseteq \bigcup V] \forall U \subseteq L^X
\]
\[
= \bigvee_{V \in 2(U)} \{a \in L : T_0(U) \land [G \subseteq (H' \lor \bigcup U)] \land a \}
\]
\[
\leq \bigvee_{V \in 2(U)} [G \subseteq (H' \lor \bigcup U)] \forall U \subseteq L^X
\]
\[
\geq \bigvee_{V \in 2(U)} \{a \land T_0' (H) : T_0(U) \land [G \subseteq \bigcup U] \land a \}
\]
\[
\leq \bigvee_{V \in 2(U)} [G \subseteq \bigcup U] \forall U \subseteq L^X = \text{scd}_T(G) \land T_0' (H).
\]
\[\square\]

Corollary 4.3. Let \((X, T)\) be an \(L\)-fuzzy topological space and \(G \in L^X\). Then \(\text{scd}_T (G) \geq \text{scd}_T (\bot) \land T_0^* (G)\).

Theorem 4.4. Let \((X, T_1), (X, T_2)\) be two \(L\)-fuzzy topological spaces and satisfy \(T_1 \leq T_2\), \(G \in L^X\). Then \(\text{scd}_{T_1} (G) \leq \text{scd}_{T_2} (G)\).

Corollary 4.5. Let \((X, T)\) be an \(L\)-fuzzy topological space and let \(B\) be a base or subbase \([7, 8, 34]\) of \(T\), \(G \in L^X\). Then \(\text{scd}_G (G) \leq \text{scd}_B (G)\).

Theorem 4.6. Let \(f : X \rightarrow Y\) be a set mapping, \(T_1\) be an \(L\)-fuzzy topology on \(X\), \(T_2\) be an \(L\)-fuzzy topology on \(Y\), and \(f : (X, T_1) \rightarrow (Y, T_2)\) be an \(L\)-fuzzy strong irresolute mapping. Then for any \(G \in L^X\), \(\text{cd}_{T_1} (G) \leq \text{scd}_{T_2} (f_{L^+} (G))\).

Proof. For any \(G \in L^X\), we have
\[
\text{scd}_{T_2} (f_{L^+} (G)) = \bigvee \{a \in L : (T_2)_a \land [f_{L^+} (G) \subseteq \bigcup V] \land a \}
\]
\[
\leq \bigvee_{V \in 2(U)} [f_{L^+} (G) \subseteq \bigcup V] \forall U \subseteq L^X
\]
\[
\geq \bigvee_{V \in 2(U)} \{a \in L : T_1 (f_{L^+} (U)) \land [G \subseteq \bigcup f_{L^+} (V)] \land a \}
\]
\[
\leq \bigvee_{V \in 2(U)} [G \subseteq \bigcup f_{L^+} (V)] \forall U \subseteq L^X \geq \text{cd}_{T_1} (G).
\]
\[\square\]

Theorem 4.7. Let \(f : X \rightarrow Y\) be a set mapping, \(T_1\) be an \(L\)-fuzzy topology on \(X\), \(T_2\) be an \(L\)-fuzzy topology on \(Y\), and \(f : (X, T_1) \rightarrow (Y, T_2)\) be an \(L\)-fuzzy irresolute mapping. Then for any \(G \in L^X\), \(\text{scd}_{T_1} (G) \leq \text{scd}_{T_2} (f_{L^+} (G))\).

Proof. For any \(G \in L^X\), we have
\[
\text{scd}_{T_2} (f_{L^+} (G)) = \bigvee \{a \in L : (T_2)_a \land [f_{L^+} (G) \subseteq \bigcup V] \land a \}
\]
\[
\leq \bigvee_{V \in 2(U)} [f_{L^+} (G) \subseteq \bigcup V] \forall U \subseteq L^X
\]
\[
\geq \bigvee_{V \in 2(U)} \{a \in L : (T_2)_a \land [G \subseteq \bigcup f_{L^+} (U)] \land a \}
\]
\[
\leq \bigvee_{V \in 2(U)} [G \subseteq \bigcup f_{L^+} (U)] \forall U \subseteq L^X \geq \text{scd}_{T_1} (G).
\]
\[\square\]
Theorem 4.8. Let \(f : X \rightarrow Y \) be a set mapping, \(T_1 \) be an \(L \)-fuzzy topology on \(X \), \(T_2 \) be an \(L \)-fuzzy topology on \(Y \), and \(f : (X, T_1) \rightarrow (Y, T_2) \) be an \(L \)-fuzzy semicontinuous mapping. Then for any \(G \in L_X \), \(\text{scd}_{T_1}(G) \leq \text{cd}_{T_2}(f \rightarrow L(G)) \).

Proof. For any \(G \in L_X \), we have
\[
\text{cd}_{T_2}(f \rightarrow L(G)) = \bigvee \{a \in L : T_2(U) \land [f \rightarrow L(G) \in U] \land a \}
\leq \bigvee_{V \in \mathcal{I}(U)} [f \rightarrow L(G) \in V] \land a
\geq \bigvee \{a \in L : \langle T_1 \rangle(f \rightarrow L(U)) \land [G \in f \rightarrow L(V)] \land a \}
\leq \bigvee_{V \in \mathcal{I}(U)} [G \in f \rightarrow L(V)] \land a
\geq \text{scd}_{T_1}(G).
\]

\(\square \)

Acknowledgements. This article is supported by the National Natural Science Foundation of P.R. China (Grant No. 11071151) and the Natural Science Foundation of Shaanxi Province, P.R. China (Grant No. 2010JM1005).

References

WEN-HUA YANG*, COLLEGE OF MATHEMATICS AND INFORMATION SCIENCE, SHANXI NORMAL UNIVERSITY, 710062, XI’AN, P. R. CHINA
E-mail address: huawenyangq126.com

SHENG-GANG LI, COLLEGE OF MATHEMATICS AND INFORMATION SCIENCE, SHANXI NORMAL UNIVERSITY, 710062, XI’AN, P. R. CHINA
E-mail address: shenggangli@yahoo.com.cn

HU ZHAO, COLLEGE OF MATHEMATICS AND INFORMATION SCIENCE, SHANXI NORMAL UNIVERSITY, 710062, XI’AN, P. R. CHINA
E-mail address: zhaohu2007@yeah.net

*Corresponding author