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MEASURES OF FUZZY SEMICOMPACTNESS IN L-FUZZY

TOPOLOGICAL SPACES

W. H. YANG, S. G. LI AND H. ZHAO

Abstract. In this paper, the notion of fuzzy semicompactness degrees is in-
troduced in L-fuzzy topological spaces by means of the implication operation

of L. Characterizations of fuzzy semicompactness degrees in L-fuzzy topologi-

cal spaces are obtained, and some properties of fuzzy semicompactness degrees
are researched.

1. Introduction

In 1968, Chang [3] introduced fuzzy theory into topology. In Chang’s fuzzy
topology, open sets are fuzzy, but the topology comprising those open sets is a crisp
subset of I-power set IX . The notion of Chang’s fuzzy topology was extended by
Goguen to L-topology. Later many other authors gave more results and notions
concerning fuzzy topology (see [1], [2], [5]- [9], [11]- [34]).

Especially, the notion of fuzzy compactness degrees and L-fuzzy semicompact-
ness are introduced in L-fuzzy topological spaces in [14] and [29], respectively.
Based on the idea of [14], a natural problem is: Can the degrees of fuzzy semicom-
pactness be defined in an L-fuzzy topological space?

The aim of this paper is to present a new notion of fuzzy semicompactness
degrees in L-fuzzy topological spaces by means of the implication operation of L.
We will also characterize the fuzzy semicompactness degrees in L-fuzzy topological
spaces, and research some properties of fuzzy semicompactness degrees.

2. Preliminaries

Throughout this paper, (L,
∨
,
∧
, ′) is a complete DeMorgan frame (i.e., a com-

plete lattice with order-reversing involution satisfying joint-infinite distributive law)
[10, 21]. By ⊥ and > we denote the smallest element and the largest element in
L, respectively. The set of non-unit prime elements in L is denoted by P (L). The
set of non-zero coprime elements in L is denoted by M(L). We say that a is wedge
below b in L, denoted by a ≺ b, if for every subset D ⊆ L,

∨
D ≥ b implies d ≥ a

for some d ∈ D [4]. β(b) is the greatest minimal family of b, β∗(b) = β(b) ∩M(L).
α(b) is the greatest maximal family of b, α∗(b) = α(b) ∩ P (L).
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In a complete DeMorgan frame L, there exists a binary operation →. Explicitly
the implication is given by a→ b =

∨
{c ∈ L : a ∧ c ≤ b}.

It is easy to check the following properties of →.

(1) (a→ b) ≥ c⇔ a ∧ c ≤ b.
(2) a→ b = > ⇔ a ≤ b.
(3) a→

∧
i bi =

∧
i(a→ bi).

(4) (
∨
i ai)→ b =

∧
i(ai → b).

(5) a ≤ b⇒ a→ c ≥ b→ c, c→ a ≤ c→ b.
(6) (a ∧ b)→ c = a→ (b→ c).

We interpret [a ≤ b] as the degree to which a ≤ b, then [a ≤ b] = a→ b.
Let X be a nonempty set, LX the set of all L-subsets on X, ⊥ the smallest

element of LX and > the largest element of LX . Then, L-fuzzy topology on a set
X is a mapping T : LX −→ L which satisfies the following conditions:

(1) T (>) = T (⊥) = >.
(2) T (U ∧ V ) ≥ T (U) ∧ T (V ) (∀ U, V ∈ LX).

(3) T
(∨

j∈J Uj

)
≥
∧
j∈J T (Uj) (∀ {Uj}j∈J ⊆ LX).

The pair (X, T ) is called an L-fuzzy topological space. T (U) is called the degree
of openness of U , T ∗(U) = T (U ′) is called the degree of closedness of U , where U ′

is the L-complement of U . For any family U ⊆ LX , T (U) =
∧
A∈U T (A) is called

the degree of openness of U .
For a subfamily Φ ⊆ LX , 2(Φ) denotes the set of all finite subfamilies of Φ. For

any a ∈ L, a denotes a constant value mapping from X to L, its value is a.

Definition 2.1. [31] An L-fuzzy inclusion on X is a mapping ⊂̃ : LX ×LX −→ L
defined by the equality ⊂̃(A,B) =

∧
x∈X

(A′(x) ∨B(x)).

In this paper, we will write [A⊂̃B] instead of ⊂̃(A,B).

Definition 2.2. [25] Let a ∈ L\{>} and G ∈ LX . A subfamily U in LX is said
to be

(1) an a-shading of G if for any x ∈ X, it follows that G′(x) ∨
∨
A∈U

A(x) � a.

(2) a strong a-shading of G if
∧
x∈X

(G′(x) ∨
∨
A∈U

A(x)) � a.

Definition 2.3. [25] Let a ∈ L\{⊥} and G ∈ LX . A subfamily P in LX is said
to be

(1) an a-remote family of G if for any x ∈ X, it follows that G(x)∧
∧
B∈P

B(x) � a.

(2) a strong a-remote family of G if
∨
x∈X

(G(x) ∧
∧
B∈P

B(x)) � a.

(3) a βa-cover of G if for any x ∈ X, it follows that a ∈ β(G′(x) ∨
∨
A∈P

A(x)).

(4) a strong βa-cover of G if for any x ∈ X, it follows that

a ∈ β(
∧
x∈X

(G′(x) ∨
∨
A∈P

A(x))).

(5) a Qa-cover of G if a ≤
∧
x∈X

(G′(x) ∨
∨
A∈P

A(x)).
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Definition 2.4. [28] Let T be an L-fuzzy topology on X. For any A ∈ LX , define
a mapping Ts : LX −→ L by

Ts(A) =
∨
B≤A

(T (B) ∧
∧
xλ≺A

∧
xλ�D≥B

(T (D′))′).

Then Ts is called the L-fuzzy semiopen operator induced by T , where Ts(A) can
be regarded as the degree to which A is semiopen and T ∗s (B) = Ts(B′) can be
regarded as the degree to which B is semiclosed. For any family U ⊆ LX , Ts(U) =∧
A∈U Ts(A) is called the degree of semiopenness of U .

Theorem 2.5. [28] Let T be an L-fuzzy topology on X and let Ts be the L-fuzzy
semiopen operator induced by T . Then T (A) ≤ Ts(A) for any A ∈ LX .

Definition 2.6. [28, 29] A mapping f : X −→ Y between two L-fuzzy topological
spaces (X, T1) and (Y, T2) is called

(1) semicontinuous if T2(U) ≤ (T1)s(f
←
L (U)) holds for any U ∈ LY .

(2) irresolute if (T2)s(U) ≤ (T1)s(f
←
L (U)) holds for any U ∈ LY .

(3) strongly irresolute if (T2)s(U) ≤ T1(f←L (U)) holds for any U ∈ LY .

Definition 2.7. [29] Let (X, T ) be an L-fuzzy topological space. G ∈ LX is said
to be L-fuzzy semicompact if for every family U ⊆ LX , it follows that∧

A∈U
Ts(A) ∧

∧
x∈X

(G′(x) ∨
∨
A∈U

A(x)) ≤
∨
V∈2(U)

∧
x∈X

(G′(x) ∨
∨
A∈V

A(x)).

Definition 2.8. [14] Let (X, T ) be an L-fuzzy topological space and G ∈ LX .The
fuzzy compactness degree cdT of G is defined as

cdT (G) =
∧
U⊆LX

(T (U)→ (
∧
x∈X

(G′(x)∨
∨
A∈U

A(x))→
∨
V∈2(U)

∧
x∈X

(G′(x)∨
∨
A∈V

A(x)))).

Theorem 2.9. [21, 25] Let f : X −→ Y be a set mapping and f→L : LX −→ LY

is induced by f . Then for any P ⊆ LX , we have that∧
y∈Y

(f→L (G)′(y) ∨
∨
B∈P

B(y)) =
∧
x∈X

(G′(x) ∨
∨
B∈P

f←L (B)(x)).

3. Measures of Fuzzy Semicompactness

In [14], Li and Shi generalized the notion of fuzzy compactness to L-fuzzy topo-
logical spaces, and gave the definition of fuzzy compactness degrees in L-fuzzy
topological spaces. Based on [14], we will generalize the notion of fuzzy semicom-
pactness to L-fuzzy topological spaces. In order to do this, let us recall fuzzy
semicompactness in L-topology [23].

Let (X, T ) be an L-topological space and G ∈ LX . G is fuzzy semicompactness
if and only if for every family U of semiopen L-sets, it follows that∧

x∈X
(G′(x) ∨

∨
A∈U

A(x)) ≤
∨
V∈2(U)

∧
x∈X

(G′(x) ∨
∨
A∈V

A(x)).
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This implies that for every family U of semiopen L-sets,[[
G⊂̃

∨
U
]
≤

∨
V∈2(U)

[
G⊂̃

∨
V
]]

= >.

We know that an L-topology T can be looked as a special L-fuzzy topology.
Therefore, A ∈ LX is a semiopen set if and only if Ts(A) = > [28]. Thus G is fuzzy
semicompactness if and only if for every family U ⊆ LX , it follows that

Ts(U) ≤
[[
G⊂̃

∨
U
]
≤

∨
V∈2(U)

[
G⊂̃

∨
V
]]
.

Therefore we can naturally generalize the notion of fuzzy semicompactness de-
grees to L-fuzzy topological spaces as follows:

Definition 3.1. Let (X, T ) be an L-fuzzy topological space and G ∈ LX . The
fuzzy semicompactness degree scdT of G is defined as

scdT (G) =
∧
U⊆LX

(Ts(U)→ ([G⊂̃
∨
U ]→

∨
V∈2(U)

[G⊂̃
∨
V]))

=
∧
U⊆LX

(Ts(U)→ (
∧
x∈X

(G′(x) ∨
∨
A∈U

A(x))→
∨
V∈2(U)

∧
x∈X

(G′(x) ∨
∨
A∈V

A(x)))).

Theorem 3.2. Let (X, T ) be an L-fuzzy topological space and G ∈ LX . Then
scdT (G) ≤ cdT (G).

Proof. Straightforward. �

Theorem 3.3. Let (X, T ) be an L-topological space and G ∈ LX . G is fuzzy
semicompactness in (X, T ) if and only if scdχT (G) = >.

Proof. Let (X, T ) be an L-topological space. The mapping χT : LX −→ L defined
by

χT (A) =

{
>, A ∈ T ,
⊥, A /∈ T .

is a special L-fuzzy topology. Then A ∈ LX is a semiopen set in L-topology T if
and only if (χT )s(A) = >. Thus by the definition of fuzzy semicompactness and
the properties of →, we know that G is fuzzy semicompactness if and only if for
every family U ⊆ LX , it follows that

(χT )s(U) ≤
[[
G⊂̃

∨
U
]
≤

∨
V∈2(U)

[
G⊂̃

∨
V
]]
.

This implies thatG is fuzzy semicompactness if and only if for every family U ⊆ LX ,
it follows that

(χT )s(U)→ ([G⊂̃
∨
U ]→

∨
V∈2(U)

[G⊂̃
∨
V]) = >.

By the definition of scdχT , the conclusion is hold. �

Theorem 3.4. Let (X, T ) be an L-fuzzy topological space and G ∈ LX . G is
L-fuzzy semicompactness in (X, T ) if and only if scdT (G) = >.
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Proof. By the definition of L-fuzzy semicompactness, we know that G is L-fuzzy
semicompactness in (X, T ) if and only if for every family U ⊆ LX , it follows that

(Ts(U) ∧ [G⊂̃
∨
U ]) ≤

∨
V∈2(U)

[G⊂̃
∨
V].

By the properties of →, we obtain that G is L-fuzzy semicompactness in (X, T ) if
and only if for every family U ⊆ LX , it follows that

Ts(U)→ ([G⊂̃
∨
U ]→

∨
V∈2(U)

[G⊂̃
∨
V]) = >.

By the definition of scdT , the conclusion is hold. �

Lemma 3.5. Let (X, T ) be an L-fuzzy topological space and G ∈ LX . Then
scdT (G) ≥ a if and only if for any U ⊆ LX ,

Ts(U) ∧ [G⊂̃
∨
U ] ∧ a ≤

∨
V∈2(U)

[G⊂̃
∨
V].

Proof. For any a ∈ L, scdT (G) ≥ a, i.e.,∧
U⊆LX

(Ts(U)→ ([G⊂̃
∨
U ]→

∨
V∈2(U)

[G⊂̃
∨
V])) ≥ a

if and only if for any U ⊆ LX ,

Ts(U)→ ([G⊂̃
∨
U ]→

∨
V∈2(U)

[G⊂̃
∨
V]) ≥ a

if and only if (by the property (6) of →) for any U ⊆ LX ,

(Ts(U) ∧ [G⊂̃
∨
U ])→

∨
V∈2(U)

[G⊂̃
∨
V] ≥ a

if and only if (by the property (1) of →) for any U ⊆ LX ,

Ts(U) ∧ [G⊂̃
∨
U ] ∧ a ≤

∨
V∈2(U)

[G⊂̃
∨
V].

�
Theorem 3.6. Let (X, T ) be an L-fuzzy topological space and G ∈ LX . Then
scdT (G) ≥ a if and only if for any P ⊆ LX ,∨

F∈P
T ∗s (F )′ ∨ (

∨
x∈X

(G(x) ∧
∧
F∈P

F (x))) ∨ a′ ≥
∧

H∈2(P)

∨
x∈X

(G(x) ∧
∧
F∈H

F (x)).

Proof. It can be easily obtained by Lemma 3.5 and the definition of T ∗s . �

Theorem 3.7. Let (X, T ) be an L-fuzzy topological space and G ∈ LX . Then

scdT (G) =
∨
{a ∈ L : Ts(U) ∧ [G⊂̃

∨
U ] ∧ a ≤

∨
V∈2(U)

[G⊂̃
∨
V],∀U ⊆ LX}.
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Proof. By Lemma 3.5, we know that scdT (G) is an upper bound of

{a ∈ L : Ts(U) ∧ [G⊂̃
∨
U ] ∧ a ≤

∨
V∈2(U)

[G⊂̃
∨
V],∀U ⊆ LX}.

Since
scdT (G) =

∧
U⊆LX

(Ts(U)→ ([G⊂̃
∨
U ]→

∨
V∈2(U)

[
G⊂̃

∨
V])),

then for every family U ⊆ LX , we have

scdT (G) ≤ Ts(U)→ ([G⊂̃
∨
U ]→

∨
V∈2(U)

[G⊂̃
∨
V])

= (Ts(U) ∧ [G⊂̃
∨
U ])→

∨
V∈2(U)

[G⊂̃
∨
V].

By the property (1) of →, we obtain that for every family U ⊆ LX ,

Ts(U) ∧ [G⊂̃
∨
U ] ∧ scdT (G) ≤

∨
V∈2(U)

[G⊂̃
∨
V],

thus

scdT (G) ∈ {a ∈ L : Ts(U) ∧ [G⊂̃
∨
U ] ∧ a ≤

∨
V∈2(U)

[G⊂̃
∨
V],∀U ⊆ LX}.

Therefore, the conclusion is hold. �

In order to write simply, for any mapping T : LX −→ L, denote Tb = {A ∈ LX :
T (A) ≥ b}.

Theorem 3.8. Let (X, T ) be an L-fuzzy topological space and G ∈ LX , a ∈ L\{⊥}.
The following conditions are equivalent:

(1) scdT (G) ≥ a.
(2) For any b ∈ P (L) , b � a,each strong b-shading U of G with Ts(U) � b has

a finite subfamily V which is a strong b-shading of G.
(3) For any b ∈ P (L) , b � a,each strong b-shading U of G with Ts(U) � b ,there

exists a finite subfamily V of U and r ∈ α∗(b) such that V is an r-shading of G.
(4) For any b ∈ P (L) , b � a,each strong b-shading U of G with Ts(U) � b ,there

exists a finite subfamily V of U and r ∈ α∗(b) such that V is a strong r-shading of
G.

(5) For any b ∈M(L) , b � a′,each strong b-remote family P of G with T ∗s (P) �
b′ has a finite subfamily H which is a strong b-remote family of G.

(6) For any b ∈M(L) , b � a′,each strong b-remote family P of G with T ∗s (P) �
b′, there exists a finite subfamily H of P and r ∈ β∗(b) such that H is an r-remote
family of G.

(7) For any b ∈M(L) , b � a′,each strong b-remote family P of G with T ∗s (P) �
b′, there exists a finite subfamily H of P and r ∈ β∗(b) such that H is a strong
r-remote family of G.

(8) For any b ≤ a,r ∈ β(b), b, r 6= ⊥,each Qb-cover U ⊆ (Ts)b of G has a finite
subfamily V which is a Qr-cover of G.

(9) For any b ≤ a,r ∈ β(b), b, r 6= ⊥,each Qb-cover U ⊆ (Ts)b of G has a finite
subfamily V which is a strong βr-cover of G.
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(10) For any b ≤ a,r ∈ β(b), b, r 6= ⊥,each Qb-cover U ⊆ (Ts)b of G has a finite
subfamily V which is a βr-cover of G.

(11) For any b ≤ a,r ∈ β(b), b, r 6= ⊥,each strong βb-cover U ⊆ (Ts)b of G has a
finite subfamily V which is a Qr-cover of G.

(12) For any b ≤ a,r ∈ β(b), b, r 6= ⊥,each strong βb-cover U ⊆ (Ts)b of G has a
finite subfamily V which is a strong βr-cover of G.

(13) For any b ≤ a,r ∈ β(b), b, r 6= ⊥,each strong βb-cover U ⊆ (Ts)b of G has a
finite subfamily V which is a βr-cover of G.

In Theorem 3.8 (8)-(13), if we replace b, r 6= ⊥ and r ∈ β(b) with b ∈M(L) and
r ∈ β∗(b), then the conclusions are still right.

Theorem 3.9. Let (X, T ) be an L-fuzzy topological space and G ∈ LX , a ∈ L\{⊥}.
If for any c, d ∈ L, β(c ∧ d) = β(c) ∧ β(d). Then the following conditions are
equivalent:

(1) scdT (G) ≥ a.
(2) For any b ∈ β(a), b 6= ⊥, each strong βb-cover U of G with b ∈ β(Ts(U)) has

a finite subfamily V which is a Qb-cover of G.
(3) For any b ∈ β(a), b 6= ⊥, each strong βb-cover U of G with b ∈ β(Ts(U)) has

a finite subfamily V which is a strong βb-cover of G.
(4) For any b ∈ β(a), b 6= ⊥, each strong βb-cover U of G with b ∈ β(Ts(U)) has

a finite subfamily V which is a βb-cover of G.

4. Properties of Fuzzy Semicompactness Degrees

Theorem 4.1. Let (X, T ) be an L-fuzzy topological space and G,H ∈ LX . Then
scdT (G ∨H) ≥ scdT (G) ∧ scdT (H).

Proof. By Theorem 3.7 we have

scdT (G ∨H) =
∨
{a ∈ L : Ts(U) ∧ [(G ∨H)⊂̃

∨
U ] ∧ a

≤
∨
V∈2(U)

[(G ∨H)⊂̃
∨
V],∀U ⊆ LX}

=
∨
{a ∈ L : Ts(U) ∧ [G⊂̃

∨
U ] ∧ [H⊂̃

∨
U ] ∧ a

≤
∨
V∈2(U)

([G⊂̃
∨
V] ∧ [H⊂̃

∨
V]),∀U ⊆ LX}

≥
∨
{a ∈ L : Ts(U) ∧ [G⊂̃

∨
U ] ∧ a

≤
∨
V∈2(U)

[G⊂̃
∨
V],∀U ⊆ LX} ∧

∨
{a ∈ L : Ts(U) ∧ [H⊂̃

∨
U ] ∧ a

≤
∨
V∈2(U)

[H⊂̃
∨
V],∀U ⊆ LX} = scdT (G) ∧ scdT (H).

�

Theorem 4.2. Let (X, T ) be an L-fuzzy topological space and G,H ∈ LX . Then
scdT (G ∧H) ≥ scdT (G) ∧ T ∗s (H).
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Proof. By Theorem 3.7 we have

scdT (G ∧H) =
∨
{a ∈ L : Ts(U) ∧ [(G ∧H)⊂̃

∨
U ] ∧ a

≤
∨
V∈2(U)

[(G ∧H)⊂̃
∨
V], ∀U ⊆ LX}

=
∨
{a ∈ L : Ts(U) ∧ [G⊂̃(H ′ ∨

∨
U)] ∧ a

≤
∨
V∈2(U)

[G⊂̃(H ′ ∨
∨
V)],∀U ⊆ LX}

≥
∨
{a ∧ T ∗s (H) : Ts(U) ∧ [G⊂̃

∨
U ] ∧ a

≤
∨
V∈2(U)

[G⊂̃
∨
V],∀U ⊆ LX} = scdT (G) ∧ T ∗s (H).

�

Corollary 4.3. Let (X, T ) be an L-fuzzy topological space and G ∈ LX . Then
scdT (G) ≥ scdT (>) ∧ T ∗s (G).

Theorem 4.4. Let (X, T1), (X, T2) be two L-fuzzy topological spaces and satisfy
T1 ≤ T2, G ∈ LX . Then scdT2(G) ≤ scdT1(G).

Corollary 4.5. Let (X, T ) be an L-fuzzy topological space and let B be a base or
subbase [7, 8, 34] of T , G ∈ LX . Then scdT (G) ≤ scdB(G).

Theorem 4.6. Let f : X −→ Y be a set mapping, T1 be an L-fuzzy topology on
X, T2 be an L-fuzzy topology on Y , and f : (X, T1) −→ (Y, T2) be an L-fuzzy strong
irresolute mapping. Then for any G ∈ LX , cdT1(G) ≤ scdT2(f→L (G)).

Proof. For any G ∈ LX , we have

scdT2(f
→
L (G)) =

∨
{a ∈ L : (T2)s(U) ∧ [f→L (G)⊂̃

∨
U ] ∧ a

≤
∨
V∈2(U)

[f→L (G)⊂̃
∨
V],∀U ⊆ LX}

≥
∨
{a ∈ L : T1(f←L (U)) ∧ [G⊂̃

∨
f←L (U)] ∧ a

≤
∨
V∈2(U)

[G⊂̃
∨
f←L (V)],∀U ⊆ LX} ≥ cdT1(G).

�

Theorem 4.7. Let f : X −→ Y be a set mapping, T1 be an L-fuzzy topology on X,
T2 be an L-fuzzy topology on Y , and f : (X, T1) −→ (Y, T2) be an L-fuzzy irresolute
mapping. Then for any G ∈ LX , scdT1(G) ≤ scdT2(f→L (G)).

Proof. For any G ∈ LX , we have

scdT2(f
→
L (G)) =

∨
{a ∈ L : (T2)s(U) ∧ [f→L (G)⊂̃

∨
U ] ∧ a

≤
∨
V∈2(U)

[f→L (G)⊂̃
∨
V],∀U ⊆ LX}

≥
∨
{a ∈ L : (T1)s(f←L (U)) ∧ [G⊂̃

∨
f←L (U)] ∧ a

≤
∨
V∈2(U)

[G⊂̃
∨
f←L (V)], ∀U ⊆ LX} ≥ scdT1(G).

�
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Theorem 4.8. Let f : X −→ Y be a set mapping, T1 be an L-fuzzy topology
on X, T2 be an L-fuzzy topology on Y , and f : (X, T1) −→ (Y, T2) be an L-fuzzy
semicontinuous mapping. Then for any G ∈ LX , scdT1(G) ≤ cdT2(f→L (G)).

Proof. For any G ∈ LX , we have

cdT2(f
→
L (G)) =

∨
{a ∈ L : T2(U) ∧ [f→L (G)⊂̃

∨
U ] ∧ a

≤
∨
V∈2(U)

[f→L (G)⊂̃
∨
V], ∀U ⊆ LX}

≥
∨
{a ∈ L : (T1)s(f←L (U)) ∧ [G⊂̃

∨
f←L (U)] ∧ a

≤
∨
V∈2(U)

[G⊂̃
∨
f←L (V)], ∀U ⊆ LX} ≥ scdT1(G).

�
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