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MEASURES OF FUZZY SEMICOMPACTNESS IN L-FUZZY
TOPOLOGICAL SPACES

W. H. YANG, S. G. LI AND H. ZHAO

ABSTRACT. In this paper, the notion of fuzzy semicompactness degrees is in-
troduced in L-fuzzy topological spaces by means of the implication operation
of L. Characterizations of fuzzy semicompactness degrees in L-fuzzy topologi-
cal spaces are obtained, and some properties of fuzzy semicompactness degrees
are researched.

1. Introduction

In 1968, Chang [3] introduced fuzzy theory into topology. In Chang’s fuzzy
topology, open sets are fuzzy, but the topology comprising those open sets is a crisp
subset of I-power set IX . The notion of Chang’s fuzzy topology was extended by
Goguen to L-topology. Later many other authors gave more results and notions
concerning fuzzy topology (see [1], [2], [5]- [9], [11]- [34]).

Especially, the notion of fuzzy compactness degrees and L-fuzzy semicompact-
ness are introduced in L-fuzzy topological spaces in [14] and [29], respectively.
Based on the idea of [14], a natural problem is: Can the degrees of fuzzy semicom-
pactness be defined in an L-fuzzy topological space?

The aim of this paper is to present a new notion of fuzzy semicompactness
degrees in L-fuzzy topological spaces by means of the implication operation of L.
We will also characterize the fuzzy semicompactness degrees in L-fuzzy topological
spaces, and research some properties of fuzzy semicompactness degrees.

2. Preliminaries

Throughout this paper, (L, \/, A,/) is a complete DeMorgan frame (i.e., a com-
plete lattice with order-reversing involution satisfying joint-infinite distributive law)
[10, 21]. By L and T we denote the smallest element and the largest element in
L, respectively. The set of non-unit prime elements in L is denoted by P(L). The
set of non-zero coprime elements in L is denoted by M (L). We say that a is wedge
below b in L, denoted by a < b, if for every subset D C L, \/ D > b implies d > a
for some d € D [4]. 5(b) is the greatest minimal family of b, 5*(b) = 5(b) N M (L).
a(b) is the greatest maximal family of b, a*(b) = «(b) N P(L).
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In a complete DeMorgan frame L, there exists a binary operation —. Explicitly
the implication is given by a = b= \/{c € L:a Ac < b}.
It is easy to check the following properties of —.

(

(2)

(3) a—= A, bi = \,;(a—b).
4) (V;ai) = b= N\;(a; = b).
(5)
(6

a<b=a—c>b—c, c>a<c—b

We interpret [a < b] as the degree to which a < b, then [a <b] =a — b.

Let X be a nonempty set, L~ the set of all L-subsets on X, L the smallest
element of LX and T the largest element of LX. Then, L-fuzzy topology on a set
X is a mapping 7 : LX — L which satisfies the following conditions:

HT@M=TL)=T.

2) TWUAV)>TU)AT(V) (YU, V e LY).

@7 (vje‘] Uj) > Njes TW;) (Y {Uj}jes € LY).

The pair (X, 7)) is called an L-fuzzy topological space. T (U) is called the degree
of openness of U, T*(U) = T(U’) is called the degree of closedness of U, where U’
is the L-complement of U. For any family 4 C LX, T(U) = A 4, T (A) is called
the degree of openness of Y.

For a subfamily ® C L, 2(®) denotes the set of all finite subfamilies of ®. For
any a € L, a denotes a constant value mapping from X to L, its value is a.

Definition 2.1. [31] An L-fuzzy inclusion on X is a mapping C : LX x LX — L
defined by the equality C(A, B) = A (A'(x) V B(x)).
reX
In this paper, we will write [AC B] instead of C(A, B).

Definition 2.2. [25] Let a € L\{T} and G € LX. A subfamily I in LY is said
to be
(1) an a-shading of G if for any = € X, it follows that G'(z) vV '\ A(z) £ a.

Aeu
(2) a strong a-shading of G if A (G'(z)V V A(z)) £ a.
z€X AeU
Definition 2.3. [25] Let a € L\{L} and G € LX. A subfamily P in L is said
to be

(1) an a-remote family of G if for any = € X, it follows that G(z)A A\ B(z) # a.
BeP
2) a strong a-remote family of G if \/ (G(z) A A B(z)) # a.
zeX BeP

(2)
(3) a B4-cover of G if for any = € X, it follows that a € 8(G'(z) vV \ A(x)).
(4) a strong B,-cover of G if for any xz € X, it follows that A€P

ae BN\ (G'(@)v ] A@).

zeX AeP

(5) a Qq-cover of Gifa < A (G'(z)V \ A(x)).

ze€X AeP
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Definition 2.4. [28] Let 7 be an L-fuzzy topology on X. For any A € LX, define
a mapping T, : LX — L by

(A= \ T3 N N\ (TD))
B<A eAx<A gz £D>B
Then T is called the L-fuzzy semiopen operator induced by T , where T4(A) can
be regarded as the degree to which A is semiopen and 7. (B) = T4(B’) can be
regarded as the degree to which B is semiclosed. For any family & C LX, T,(U) =
Aacy Ts(A) is called the degree of semiopenness of U.

Theorem 2.5. [28] Let T be an L-fuzzy topology on X and let T, be the L-fuzzy
semiopen operator induced by T. Then T (A) < T,(A) for any A € LX.

Definition 2.6. [28, 29] A mapping f : X — Y between two L-fuzzy topological
spaces (X, 7T1) and (Y, 72) is called

(1) semicontinuous if 72(U) < (T1)s(fi (U)) holds for any U € LY.
(2) irresolute if (72)s(U) < (T1)s(ff (U)) holds for any U € LY.
(3) strongly irresolute if (73)s(U) < T1(ff (U)) holds for any U € LY.

Definition 2.7. [29] Let (X, 7) be an L-fuzzy topological space. G € L is said
to be L-fuzzy semicompact if for every family & C L~ it follows that

A TWOA NG @V Ae)<s \ A @@V AQ).

Aeu zeX Aeu Vea) zeX A€y

Definition 2.8. [14] Let (X, T) be an L-fuzzy topological space and G € L~ .The
fuzzy compactness degree cd of G is defined as

cdr(G)= N\ (T = (N (G@VvV A=) =\ A G @V A@)).

UCLX zeX AelUd ve2t) zeX AeyV
Theorem 2.9. [21, 25] Let f : X — Y be a set mapping and f;* : LX — LY
is induced by f. Then for any P C LX, we have that

AU @'wv \ Bw)= N\ (G @V \ 5 B)().

yey BeP reX BeP

3. Measures of Fuzzy Semicompactness

In [14], Li and Shi generalized the notion of fuzzy compactness to L-fuzzy topo-
logical spaces, and gave the definition of fuzzy compactness degrees in L-fuzzy
topological spaces. Based on [14], we will generalize the notion of fuzzy semicom-
pactness to L-fuzzy topological spaces. In order to do this, let us recall fuzzy
semicompactness in L-topology [23].

Let (X,7) be an L-topological space and G € LX. G is fuzzy semicompactness
if and only if for every family U of semiopen L-sets, it follows that

A& @v\ Axp< \/ NG @)V AQ).

zeX AelU vea) zeX AcV



94 W. H. Yang, S. G. Li and H. Zhao

This implies that for every family I/ of semiopen L-sets,
[[Ga Vul< [aa\/v]] =T
vea)

We know that an L-topology 7 can be looked as a special L-fuzzy topology.
Therefore, A € L is a semiopen set if and only if 75(A) = T [28]. Thus G is fuzzy
semicompactness if and only if for every family & C L¥, it follows that

TaU) < [[G&\/u} <V [GE\/VH.
ve2®)
Therefore we can naturally generalize the notion of fuzzy semicompactness de-
grees to L-fuzzy topological spaces as follows:

Definition 3.1. Let (X,7) be an L-fuzzy topological space and G € L*. The
fuzzy semicompactness degree scdr of G is defined as

sedr(G) = N () = ([GE\ul— \/ [GE\/ V)

UucLX vea®)
= AN W)= (NG @V YV A@)— \ AG @V A@)).
ucrLx zeX AeU vea) zeX Aev

Theorem 3.2. Let (X,T) be an L-fuzzy topological space and G € LX. Then
sedT(G) < edr(G).

Proof. Straightforward. O

Theorem 3.3. Let (X,T) be an L-topological space and G € LX. G is fuzzy
semicompactness in (X, T) if and only if scdy, (G) = T.

Proof. Let (X,T) be an L-topological space. The mapping x7 : LX — L defined
by

T, AeT,
xr(4) = { 1, A¢T.

is a special L-fuzzy topology. Then A € L¥X is a semiopen set in L-topology 7 if
and only if (x7),(4) = T. Thus by the definition of fuzzy semicompactness and
the properties of —, we know that G is fuzzy semicompactness if and only if for
every family U C L¥, it follows that

(x7)s W) < HGE\/L{] <V [G&\/VH.

veat)

This implies that G is fuzzy semicompactness if and only if for every family 4 C L,

it follows that _ _
(x7)s@) = (GE\ Ul — \/ [GE\/V)=T.
ve2)
By the definition of scd,., the conclusion is hold. O

Theorem 3.4. Let (X,T) be an L-fuzzy topological space and G € L*. G is
L-fuzzy semicompactness in (X, T) if and only if scdr(G) =T.



Measures of Fuzzy Semicompactness in L-fuzzy Topological Spaces 95

Proof. By the definition of L-fuzzy semicompactness, we know that G is L-fuzzy
semicompactness in (X, 7)) if and only if for every family & C L¥, it follows that

(T nce\up < \/ [Ge\/ V.
yea)

By the properties of —, we obtain that G is L-fuzzy semicompactness in (X, 7T) if
and only if for every family 4/ C L, it follows that

T.U) = ([GC \/L[] — \/ [GC \/V}) =T.
ve2)
By the definition of scdy, the conclusion is hold. ([

Lemma 3.5. Let (X,T) be an L-fuzzy topological space and G € LX. Then
scdr(G) > a if and only if for any U C LX,

T.W)AGE\Una< \[ [GE\/ VI
ve2t)
Proof. For any a € L, scdr(G) > a, ie.,

N\ (W)= (GE\ul— \/ [GS\/V]) >a
UCLX Veaw)
if and only if for any U C LX,
T.WU) = (GE\/ U] = \/ [GE\/V]) >a
ve2)
if and only if (by the property (6) of —) for any U C L,
(L) AlGeE\u) - \/ [GE\/V]>a
ve2)
if and only if (by the property (1) of —) for any U C L,
T.w)AGE\ U na< \/ [GE\/ V]
vea) O

Theorem 3.6. Let (X,T) be an L-fuzzy topological space and G € LX. Then
scd(G) > a if and only if for any P C LX,

V @)V (@Ga@n N\ F@)vd = N\ (G@)n )\ Fl).

FreP reX FeP He2P) xeX FeH

Proof. It can be easily obtained by Lemma 3.5 and the definition of 7. d
Theorem 3.7. Let (X, T) be an L-fuzzy topological space and G € L. Then

sedr(G) = \[lae L: TU)N[GE\/UIna< \/ [GE\/V],vu € L¥}.

ve2)
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Proof. By Lemma 3.5, we know that scd7(G) is an upper bound of
{aeL: T AGE\/UINa< \/ [GE\/ V], VU € LY.
ve2)

sedr(G) =\ (T.@) — (GE\Jul - \/ [cZ\/ V),

ucLx Veaw)

Since

then for every family & C L, we have

sedr(G) < T.U) = ([GE\/U) - \/ [GE\/ W)

ve2)

= (L. r[GE\U) - \/ [GS\/ V]
ve2)
By the property (1) of —, we obtain that for every family & C L,

T.U) N GEN U Asedr(G) <\ [GE\/ V],

thus veat
sedr(G) e{ae L: T,WU) AGE\/UIAa< \/ [GE\/ V], WU € LY.
ve2)
Therefore, the conclusion is hold. ([l

In order to write simply, for any mapping 7 : LX — L, denote T, = {A € LX :
T(A) > b}.

Theorem 3.8. Let (X, T) be an L-fuzzy topological space and G € LX ,a € L\{L}.
The following conditions are equivalent:

(1) scdr(G) > a.

(2) For any b € P(L) , b # a,each strong b-shading U of G with T,(U) % b has
a finite subfamily V which is a strong b-shading of G.

(3) For any b € P(L) , b # a,each strong b-shading U of G with T,(U) £ b ,there
exists a finite subfamily V of U and r € o*(b) such that V is an r-shading of G.

(4) For any b € P(L) , b # a,each strong b-shading U of G with T,(U) £ b ,there
exists a finite subfamily V of U and r € a*(b) such that V is a strong r-shading of
G.

(5) For anyb e M(L) , b £ a,each strong b-remote family P of G with T}*(P) £
b has a finite subfamily H which is a strong b-remote family of G.

(6) For anyb e M(L) , b £ d ,each strong b-remote family P of G with T} (P) £
b, there exists a finite subfamily H of P and r € 5*(b) such that H is an r-remote
family of G.

(7) For any b € M(L) , b £ a’,each strong b-remote family P of G with T}*(P) £
b, there exists a finite subfamily H of P and r € 5*(b) such that H is a strong
r-remote family of G.

(8) For any b < a,r € 5(b), b,r # L,each Qp-cover U C (T5)p of G has a finite
subfamily V which is a Q.-cover of G.

(9) For any b < a,r € 5(b), b,r # L,each Qp-cover U C (T5)p of G has a finite
subfamily V which is a strong B,-cover of G.



Measures of Fuzzy Semicompactness in L-fuzzy Topological Spaces 97

(10) For any b < a,r € 5(b), b,r # L,each Qp-cover U C (Ts)p of G has a finite
subfamily V which is a B,-cover of G.

(11) For any b < a,r € B(b), b,r # L each strong By-cover U C (T5)» of G has a
finite subfamily V which is a Q,-cover of G.

(12) For any b < a,r € B(b), b,r # L, each strong By-cover U C (T5)p of G has a
finite subfamily V which is a strong f,-cover of G.

(13) For any b < a,r € B(b), b,r # L each strong Bp-cover U C (T5)p of G has a
finite subfamily V which is a B,-cover of G.

In Theorem 3.8 (8)-(13), if we replace b,r # 1 and r € 5(b) with b € M (L) and
r € B*(b), then the conclusions are still right.

Theorem 3.9. Let (X, T) be an L-fuzzy topological space and G € LX,a € L\{L}.
If for any ¢,d € L, B(c Ad) = B(c) A B(d). Then the following conditions are
equivalent:

(1) scdr(G) > a.

(2) For any b € B(a), b # L, each strong By-cover U of G with b € B(Ts(U)) has
a finite subfamily V which is a Qy-cover of G.

(8) For any b € B(a), b # L, each strong By-cover U of G with b € B(Ts(U)) has
a finite subfamily V which is a strong By-cover of G.

(4) For any b € (a), b # L, each strong By-cover U of G with b € B(Ts(U)) has
a finite subfamily V which is a By-cover of G.

4. Properties of Fuzzy Semicompactness Degrees

Theorem 4.1. Let (X, T) be an L-fuzzy topological space and G, H € LX. Then
sed(GV H) > scdr(G) A sedr(H).

Proof. By Theorem 3.7 we have
sch(G\/H):\/{aeL:ﬁ.(Z/{)/\[(G\/H)E\/U]/\a
< V (GvHEC\/vvucL*}
ve2)
=\{aeL: .U N[GE\JUINHC\/ U Na
< V (GE\/VIr[HE\/ V), vu c L}
ve2t)
ZV{aEL:ﬁ(Z/{)/\[Ga\/L{}/\a
< V e\ c Ly A\{ae L: Tou) A[HE\/ U] Aa
ye2)
< \/ [HC\/ V], VU C L*} = scdr(G) A sedr(H).

ve2) 0

Theorem 4.2. Let (X, T) be an L-fuzzy topological space and G, H € LX. Then
scdr(GNANH) > scdr(G) NTF(H).
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Proof. By Theorem 3.7 we have
sedr(GANH) = \/{a eL:T.U)A [(G/\H)&\/Z/{] ANa

< V (GaHmE\/ Vv, c L™}
veal)

=\{aeL: L) ANGEH v\/U)]Aa

<\ e v\/ v c L}
ve2)

> \/{a/\T;(H) :Ts(U) AN [GC \/U] Aa

<V [GE\/VLVU C LY} = sedr(G) AT (H).
Vvea ) |

Corollary 4.3. Let (X,T) be an L-fuzzy topological space and G € L*. Then
scdr(G) > sedr(T) AT#(G).

Theorem 4.4. Let (X,T;),(X,Tz2) be two L-fuzzy topological spaces and satisfy
T < T, G € LX. Then scdr,(G) < scdr, (G).

Corollary 4.5. Let (X,T) be an L-fuzzy topological space and let B be a base or
subbase [7, 8, 34] of T, G € LX. Then scd(G) < scds(G).

Theorem 4.6. Let f : X — Y be a set mapping, T be an L-fuzzy topology on
X, T2 be an L-fuzzy topology on'Y, and f : (X, T1) — (Y, T2) be an L-fuzzy strong
irresolute mapping. Then for any G € LX, cdr, (G) < sedr, (fi7(G)).

Proof. For any G € L*, we have

sedr, (f27 (@) = \/{a € L: (T2)sU @\ un
< V @ c\/v VLICLX}
ve2(“>

2\/{@61&:7‘1(]‘11_( GC\/fL N Aa

< V [GEV L W,VU C LYY > edry (G).
Ve O

Theorem 4.7. Let f : X — Y be a set mapping, T1 be an L-fuzzy topology on X,
T2 be an L-fuzzy topology on'Y, and f : (X, T1) — (Y, T2) be an L-fuzzy irresolute
mapping. Then for any G € LX, scdr, (G) < scdr, (f1 (G)).

Proof. For any G € LX, we have

sedr, (f27 (@) = \/{a € L: (T2)sU @\ un
<V @ c\/v WCLX}
ve2(“>

> VAo L: (T)s(f @) NGEN fi @) Aa
<V GV fE W), vU € L7} > sedr (G).

Ve |
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Theorem 4.8. Let f : X — Y be a set mapping, T1 be an L-fuzzy topology
on X, Ta be an L-fuzzy topology on 'Y, and f : (X, T1) — (Y, T2) be an L-fuzzy
semicontinuous mapping. Then for any G € LX | scdr, (G) < cdr, (f77(G)).

Proof. For any G € L, we have

cdry (f2 (@) = \[{a € L: o) A [f (@)T\/ Ul Aa
\ (@c\/vivuc L™}

vea )
>\/{aeL: (T)s(fL U)NGE\ fr U] Aa
<V [GEV i W,VU C L} > scdr (G).

ve2t)
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