Roughness in modules by using the notion of reference points

Document Type: Research Paper

Authors

Department of Mathematics, Yazd University, Yazd, Iran

Abstract

 module over a ring is a general mathematical concept for many examples of mathematical
objects that can be added to each other and multiplied by scalar numbers.
In this paper, we consider a module over a ring as a universe and by using the notion of reference points, we provide local approximations for  subsets of the universe.

Keywords


bibitem{Ac}
 U. Acar, {it On $L$-fuzzy prime submodules},  Hacettepe Journal of Mathematics and Statistics,  {bf 34} (2005), 17--25.

bibitem{A} F. W. Anderson and K. R. Fuller, {it Rings and categories of modules}, Springer-Verlag, USA, 1992.

bibitem{B} R. Biswas and S. Nanda, {it Rough groups and rough subgroups}, Bulletin of the Polish Academy of Science and Mathematics, {bf 42} (1994), 251--254.

bibitem{Bo} G. L.  Booth and N. J.  Groenewald,  {it Special radicals of
near-ring modules}, Quaest. Math.,  {bf 15(2)} (1992),
127--137.


bibitem{C} D. Ciucci, {it A unifying abstract approach for rough
models}, In: RSKTO8 Proceedings, Lecture Notes in Artificial
Intelligence, {bf 5009} (2008), 371--378.

bibitem{D} B. Davvaz, {it Roughness in rings}, Information Sciences, {bf  164} (2004), 147--163.

bibitem{D1}
B. Davvaz, {it Roughness based on fuzzy ideals}, Information Sciences, {bf  176} (2006), 2417--2437.

bibitem{BD} B. Davvaz, {it A short note on algebraic $T$-rough sets}, Information Sciences, {bf  178} (2008), 3247--3252.

bibitem{BD1} B. Davvaz,  {it Rough subpolygroups in a factor polygroup}, Journal of Intelligent and Fuzzy Systems, {bf 17(6)} (2006), 613--621.

bibitem{D2}
B. Davvaz and M. Mahdavipour, {it Roughness in modules}, Information Sciences, {bf  176} (2006), 3658--3674.

bibitem{BD2} B. Davvaz and M. Mahdavipour,  {it Rough approximations in a general approximation space and their fundamental properties}, Int. J. General Systems, {bf  37}  (2008), 373--386.

bibitem{Du}D. Dubois and H. Prade, {it Rough fuzzy sets and fuzzy rough sets}, Int. J. General Systems, {bf 17} (1990), 191--209.

bibitem{d}
A. Gaur, A. Kumar Maloo and  A. Parkash, {it Prime submodules in multiplication modules}, International Journal of Algebra, {bf  1} (2007), 375--380.

bibitem{KD} O. Kazanc{i} and  B. Davvaz, {it On the structure of rough prime (primary) ideals and rough fuzzy prime (primary) ideals in commutative rings}, Information Sciences, {bf  178} (2008), 1343--1354.

bibitem{KSD} O. Kazanc{i}, S. Yamak and  B. Davvaz, {it The lower and upper approximations in a quotient hypermodule with respect to fuzzy sets}, Information Sciences, {bf  178} (2008), 2349--2359.

bibitem{Ked} B. S. Kedukodi, S. P. Kuncham and  S. E.  Bhavanari,
 {it 3-prime and c-prime fuzzy ideals of
nearrings}, Soft Comput.,  {bf 13(2)} (2009),  933--944.

bibitem{r}
B. S. Kedukodi, S. P. Kuncham and  S. Bhavanari, {it Reference points and roughness}, Information Sciences, {bf  180} (2010), 3348--3361.

bibitem{e}
D. Keskin, {it A study on prime submodules}, Banyan Mathematical Journal, {bf  3} (1996), 27--32.

bibitem{K}
N. Kuroki, {it Rough ideals in semigroups}, Information Sciences, {bf  100} (1997), 139--163.

bibitem{K1} N. Kuroki and  P. P. Wang, {it The lower and upper approximations in a fuzzy group}, Information Sciences, {bf 90} (1996), 203--220.

bibitem{L} V. Leoreanu-Fotea and  B. Davvaz, {it Roughness in n-ary hypergroups}, Information Sciences, {bf  178} (2008), 4114--4124.

bibitem{N} C. V. Negoita and D. A. Ralescu, {it Applications of fuzzy sets and
systems analysis}, Birkhauser, Basel, 1975.

bibitem{P3} Z. Pawlak and  A. Skowron, {it Rough sets: some extensions}, Information Sciences, {bf  177} (2007), 28--40.

bibitem{P4} Z. Pawlak and A. Skowron, {it Rough sets and boolean reasoning}, Information Sciences, {bf 177} (2007), 41--73.

bibitem{P1} Z. Pawlak, {it Rough sets}, Int. J. Inf. Comp. Sci., {bf  11} (1982), 341--356.

bibitem{P2} Z. Pawlak, {it Rough sets - theoretical aspects of reasoning about data},
            Kluwer Academic Publishing, Dordrecht, 1991.

bibitem{R} S. Rasouli and B. Davvaz, {it Roughness in $MV$-algebras}, Information Sciences, {bf  180} (2010), 737--747.

bibitem{S} M. H. Shahzamanian, M. Shirmohammadi and B. Davvaz, {it Roughness in Cayley graphs}, Information Sciences, {bf  180} (2010), 3362--3372.

bibitem{f}
F. I. Sidky, {it On radicals of fuzzy submodules and primary fuzzy submodules}, Fuzzy Sets and Systems, {bf  119} (2001), 419--425.

bibitem{S1} B. Sun, Z. Gong and  D. Chen, {it Fuzzy rough set theory for the interval-valued fuzzy information systems}, Information Sciences, {bf  178} (2008), 2794--2815.

bibitem{S2}B. Sun, Z. Gong and  D. Chen, {it Rough set theory for the interval-valued fuzzy information systems}, Information Sciences, {bf  178} (2008), 1968--1985.

bibitem{T1} H. Torabi, B. Davvaz and J. Behboodian,
           {it Fuzzy random events in incomplete probability models}, Journal of Intelligent and Fuzzy
           Systems, {bf  17(2)} (2006), 183--188.

 bibitem{T2} H. Torabi, B. Davvaz and J. Behboodian, {it Inclusiveness measurement of random events using rough set theory}, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, {bf  15(4)} (2007),  483--491.

bibitem{Y} S. Yamak, O. Kazanc{i} and  B. Davvaz, {it Generalized lower and upper approximations in a ring}, Information Sciences, {bf 180} (2010), 1759--1768.

bibitem{Z} L. A. Zadeh, {it Fuzzy sets}, Information and Control, {bf  8} (1965), 338--353.