Numerical solutions of fuzzy nonlinear integral equations of the second kind

Document Type: Research Paper

Authors

Department of Mathematics, Firoozkooh Branch, Islamic Azad Univer- sity, Firoozkooh, Iran

Abstract

In this paper, we use the parametric form of fuzzy numbers, and an
iterative approach for obtaining approximate solution for a class
of fuzzy nonlinear Fredholm integral equations of the second kind
is proposed. This paper presents a method based on Newton-Cotes
methods with positive coefficient. Then we obtain approximate
solution of the fuzzy nonlinear integral equations by an iterative
approach.

Keywords


bibitem{aba} S. Abbasbandy, E. Babolian and M. Alavi, {it Numerical
method for solving linear fredholm fuzzy integral equations of
the second kind}, Chaos Solitons & Fractals, {bf 31} (2007), 138-146.

bibitem{al1} T. Allahviranloo and M. Otadi, {it Gaussian quadratures for approximate of fuzzy integrals}, Applied Mathematics and Computation, {bf 170} (2005), 874-885.
bibitem{al2} T. Allahviranloo and M. Otadi, {it Gaussian quadratures for approximate of fuzzy multiple integrals}, Applied Mathematics and Computation, {bf 172} (2006), 175-187.

bibitem{at} K. E. Atkinson, {it An introduction to numerical analysis},
New York: Wiley, 1987.

bibitem{bsa} E. Babolian, H. S. Goghary and S. Abbasbandy, {it Numerical
solution of linear fredholm fuzzy integral equations of the
second kind by Adomian method}, Applied Mathematics and
Computation, {bf 161} (2005), 733-744.

bibitem{baker} C. T. H. Baker, {it A perspective on the numerical
treatment of volterra equations}, Journal of Computational and Appllied Mathematics, {bf 125} (2000), 217-249.

bibitem{bgggp} M. I. Berenguer, D. Gamez, A. I. Garralda-Guillem, M.
Ruiz Galan and M. C. Serrano Perez, {it Biorthogonal systems for solving
volterra integral equation systems of the second kind}, Journal of Computational and Appllied Mathematics, {bf 235} (2011), 1875-1883.

bibitem{b} A. M. Bica, {it Error estimation in the approximation of
the solution of nonlinear fuzzy fredholm integral equations},
Information Sciences, {bf 178} (2008), 1279-1292.

bibitem{bf} A. H. Borzabadi and O. S. Fard, {it A numerical scheme for
a class of nonlinear fredholm integral equations of the second
kind}, Journal of Computational and Applied Mathematics, {bf 232} (2009), 449-454.

bibitem{cz} S. S. L. Chang and L. Zadeh, {it On fuzzy mapping and control},
IEEE Trans. System Man Cybernet, {bf 2} (1972), 30-34.

bibitem{ct} Y. Chen and T. Tang, {it Spectral methods for weakly
singular volterra integral equations with smooth solutions}, Journal of Computational and Appllied Mathematics, {bf 233} (2009), 938-950.

bibitem{cm} W. Congxin and M. Ming, {it On embedding problem of fuzzy
number spaces}, Part 1, Fuzzy Sets and Systems, {bf 44} (1991), 33-38.

bibitem{dd} D. Dubois and H. Prade, {it Operations on fuzzy numbers}, International Journal of Systems Science, {bf 9} (1978), 613-626.

bibitem{dp} D. Dubois and H. Prade, {it Towards fuzzy differential
calculus}, Fuzzy Sets and Systems, {bf 8} (1982), 1-7.

bibitem{ez} R. Ezzati and S. Ziari, {it Numerical solution and error estimation of fuzzy fredholm integral equation using fuzzy bernstein polynomials}, Australian Journal of Basic and Applied Sciences, {bf 5} (2011), 2072-2082.

bibitem{fp} M. A. Fariborzi Araghi and N. Parandin, {it Numerical solution of fuzzy fredholm integral equations
by the lagrange interpolation based on the extension principle}, Soft Computing, {bf 15} (2011), 2449-2456.

bibitem{fmk} M. Friedman, M. Ma and A. Kandel, {it Numerical solutions
of fuzzy differential and integral equations}, Fuzzy Sets and
Systems, {bf 106} (1999), 35-48.

bibitem{fmk2} M. Friedman, M. Ma and A. Kandel, {it Solution to the fuzzy
integral equations with arbitrary kernels}, International Journal of Approximate Reasoning, {bf 20} (1999), 249-262.

bibitem{gv} R. Goetschel and W. Vaxman, {it Elementary fuzzy calculus}, Fuzzy
Sets and Systems, {bf 18} (1986), 31-43.

bibitem{h} H. Hochstadt, {it Integral equations}, New York: Wiley,
1973.

bibitem{kg} A. Kaufmann and M. M. Gupta, {it Introduction fuzzy
arithmetic}, Van Nostrand Reinhold, New York, 1985.

bibitem{kal}O. Kaleva, {it Fuzzy differential equations}, Fuzzy Sets and
Systems, {bf 24} (1987), 301-317.

bibitem{kauthen} J. P. Kauthen, {it Continuous time collocation method
for volterra-fredholm integral equations}, Numerische Math., {bf 56} (1989),
409-424.

bibitem{kcy} G. J. Klir, U. S. Clair and B. Yuan, {it Fuzzy set theory:
foundations and applications}, Prentice-Hall, 1997.

bibitem{linz} P. Linz, {it Analytical and numerical methods for
volterra equations}, SIAM, Philadelphia, PA, 1985.

bibitem{mfk} M. Ma, M. Friedman and A. Kandel, {it A new fuzzy
arithmetic}, Fuzzy Sets and Systems, {bf 108} (1999), 83-90.

bibitem{mola} A. Molabahrami, A. Shidfar and A. Ghyasi, {it An analytical method for solving linear fredholm fuzzy integral equations of the second kind}, Computers & Mathematics with Applications, {bf 61} (2011), 2754-2761.

bibitem{mo11} M. Mosleh and M. Otadi, {it Numerical solution of fuzzy integral equations using Bernstein polynomials}, Australian Journal of Basic Applied Sciences, {bf 5} (2011), 724-728.

bibitem{pf1} N. Parandin and M. A. Fariborzi Araghi, {it The approximate solution of linear fuzzy fredholm integral equations of the second kind by using iterative interpolation}, World Academy of Science, Engineering and Technology, {bf 49} (2009), 947-984.

bibitem{pf2} N. Parandin and M. A. Fariborzi Araghi, {it The numerical solution of linear fuzzy fredholm integral equations of the second kind by using finite and divided differences methods}, Soft Computing, {bf 15} (2010), 729-741.

bibitem{pr} M. L. Puri and D. Ralescu, {it Fuzzy random variables}, Journal of
Mathematical Analysis and Applications, {bf 114} (1986), 409-422.

bibitem{fard} O. Solaymani Fard and M. Sanchooli, {it Two successive schemes for numerical solution of linear fuzzy fredholm integral equations of the second kind}, Australian Journal of Basic Applied Sciences, {bf 4} (2010), 817-825.

bibitem{sy} H. H. Sorkun and S. Yalcinbas, {it Approximate solutions of
linear volterra integral equation systems with variable
coefficients}, Applied Mathematical Modelling, {bf 34} (2010), 3451-3464.

bibitem{sb} J. Stoer and R. Bulirsch, {it Introduction to numerical
analysis}, Springer-Verlag,New York, 1993.

bibitem{laz} L. A. Zadeh, {it The concept of a linguistic variable
and its application to approximate reasoning}, Information Sciences, {bf 8} (1975), 199-249.