^{1}School of Mathematical Science, Nanjing Normal University, Nan- jing, Jiangsu 210023, P. R. China

^{2}Department of Mathematics, Anhui NormalUniversity, Wuhu, Anhui 241000, P. R. China

Abstract

In this paper, a new definition of bounded fuzzy linear order homomorphism on $I$-topological vector spaces is introduced. This definition differs from the definition of Fang [The continuity of fuzzy linear order-homomorphism. J. Fuzzy Math. {\bf 5}\textbf{(4)}(1997), 829--838]. We show that the ``boundedness" and `` boundedness on each layer" of fuzzy linear order homomorphisms do not imply each other. On the basis, characterizations of continuity of fuzzy linear order-homomorphisms, and the relation between continuity and boundedness are studied.

bibitem{Fang1} J. X. Fang, {it Fuzzy linear order-homomorphism and its structures}, J. Fuzzy Math., {bf 4}textbf{(1)} (1996), 93--102.

bibitem{Fang2} J. X. Fang, {it The continuity of fuzzy linear order-homomorphism}, J. Fuzzy Math., {bf 5}textbf{(4)} (1997), 829--838.

bibitem{Fang3} J. X. Fang, {it On local bases of fuzzy topological vector spaces}, Fuzzy Sets and Systems, {bf 87} (1997), 341--347.

bibitem{HR} U. H"ohle and S. E. Rodabaugh, eds., {it Mathematics of fuzzy sets: logic, topology, and measure theory}, The Handbooks of Fuzzy Sets Series, Kluwer Academic Publishers, Dordrecht, {bf 3} (1999).

bibitem{JY} S. Q. Jiang and C. H. Yan, {it Fuzzy bounded sets and totally fuzzy bounded sets in $I$-topological vector spaces}, Iranian Journal of Fuzzy Systems, {bf 6}textbf{(3)} (2009), 73--90.

bibitem{KL} A. K. Katsaras and D. B. Liu, {it Fuzzy vector spaces and fuzzy topological vector spaces}, J. Math. Anal. Appl., {bf 58} (1977), 135--146.

bibitem{Ka1} A. K. Katsaras, {it Fuzzy topological vector spaces I}, Fuzzy Sets and Systems, {bf 6} (1981), 85--95.

bibitem{Ka2} A. K. Katsaras, {it Fuzzy topological vector spaces II}, Fuzzy Sets and Systems, {bf 12} (1984), 143--154.

bibitem{Lo} R. Lowen, {it Fuzzy topological spaces and fuzzy compactness}, J. Math. Anal. Appl., {bf 56} (1976), 621--633.

bibitem{PL} P. M. Liu, {it Fuzzy topology I, neighborhood structures of a fuzzy points and Moore-Smith convergence}, J. Math. Anal. Appl., {bf 76} (1980), 571--599.

bibitem{Ro1} S. E. Rodabaugh, {it Point-set lattice-theoretic topology}, Fuzzy Sets and Systems, {bf 40} (1991), 297--347.

bibitem{Ro2} S. E. Rodabaugh, {it Powerset operator based foundation for point-set lattice-theoretic (POSLAT) fuzzy set theories and topologies}, Quaestiones Mathematicae, {bf 20} (1997), 463--530.

bibitem{Wang} G. J. Wang, {it Order-homomorphisms of fuzzes}, Fuzzy Sets and Systems, {bf 12} (1984), 281--288.

bibitem{Wa} R. H. Warren, {it Neighborhoods, bases and continuity in fuzzy topological spaces}, Rocky Mountain J. Math., {bf 8} (1978), 459--470.

bibitem{WF} C. X. Wu and J. X. Fang, {it Boundedness and locally bounded fuzzy topological vector spaces}, Fuzzy Math. (China), (in Chinese), {bf 5}textbf{(4)} (1985), 87--94.

bibitem{ZF} H. P. Zhang and J. X. Fang, {it A note on locally bounded $L$-topological vector spaces}, Information Sciences, {bf 179} (2009), 1792--1794.