Fixed Points of Fuzzy Generalized Contractive Mappings in Fuzzy Metric Spaces

Document Type: Research Paper

Author

Department of Pure Mathematics, University of Shahrekord, Shahrekord, 88186-34141 Iran and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, Iran

Abstract

In this paper, we introduce a new concept of fuzzy generalized
contraction and give a fixed point result for such mappings in the setting of fuzzy M-complete metric spaces.
We also give an affirmative partial answer to a question posed by Wardowski
[D. Wardowski, Fuzzy contractive mappings and fixed points in fuzzy metric spaces,
Fuzzy Set Syst., {\bf 222}(2013), 108-114].
Some examples are also given to support our main result.

Keywords


bibitem{GV}
A. George and P. Veeramani, {it On some results in fuzzy metric spaces}, Fuzzy Sets and Systems, {bf 64} (1994), 395-399.

bibitem{G}
M. Grabiec, {it Fixed points in fuzzy metric spaces}, Fuzzy Sets and Systems, {bf 27} (1988), 385-389.


bibitem{GS}
V. Gregori and A. Sapena, {it On fixed point theorems in fuzzy metric spaces}, Fuzzy Sets and Systems,
{bf 125} (2002), 245-252.

bibitem{HP1}
O. Hadv{z}i'{c} and E. Pap, {it A fixed point theorem for multivalued mappings in probabilistic metric
spaces and an application in fuzzy metric spaces}, Fuzzy Sets and Systems, {bf 127} (2002), 333-344.


bibitem{HP2}
O. Hadv{z}i'{c} and E. Pap, {it Fixed point theory in probabilistic metric spaces},
Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, Boston, London, {bf 536} (2001).

bibitem{KS}
O. Kaleva and S. Seikkala, {it On fuzzy metric spaces}, Fuzzy Sets and Systems, {bf 12} (1984), 215-229.

bibitem{KMP}
E. P. Klement, R. Mesiar and E. Pap, {it Triangular Norms}, Trends in Logics, Kluwer
Academic Publishers, Dordrecht, Boston, London, {bf8} (2000).

bibitem{KM}
I. Kramosil and J. Michalek, {it Fuzzy metrics and statistical metric spaces}, Kybernetika, {bf 11} (1975), 336-344.

bibitem{M1}
D. Mihet, {it A Banach contraction theorem in fuzzy metric spaces}, Fuzzy Sets and Systems,
{bf 144} (2004), 431-439.

bibitem{M2}
D. Mihet, {it On fuzzy contractive mappings in fuzzy metric spaces}, Fuzzy Sets and Systems,
{bf 158} (2007), 915-921.

bibitem{M3}
D. Mihet, {it Fuzzy $psi$-contractive mappings in non-Archimedean fuzzy metric spaces},
Fuzzy Sets and Systems, {bf 159} (2008), 739-744.

bibitem{SS}
B. Schweizer and A. Sklar, {it Statistical metric spaces}, Pacific Journal of Mathematics, {bf 10} (1960), 313-334.

bibitem{S}
S. Sharma, {it Common fixed point theorems in fuzzy metric spaces}, Fuzzy Sets and Systems, {bf 127} (2002), 345-352.

bibitem{VV}
R. Vasuki and P. Veeramani, {it Fixed point theorems and Cauchy sequences in fuzzy metric spaces},
Fuzzy Sets and Systems, {bf 135} (2003), 415-417.

bibitem{V}
C. Vetro, {it Fixed points in weak non-Archimedean fuzzy metric spaces}, Fuzzy Sets and Systems, {bf 162} (2011), 84-90.

bibitem{W}
D. Wardowski, {it Fuzzy contractive mappings and fixed points in fuzzy metric spaces},
Fuzzy Sets and Systems, {bf 222} (2013), 108-114.

bibitem{XZJ}
J. Z. Xiao, X. H. Zhu and X. Jin, {it Fixed point theorems for nonlinear contractions in Kaleva-Seikkala's type fuzzy metric spaces}, Fuzzy Sets and Systems, {bf 200} (2012), 65-83.