Menhaj, M., Shakouri G, H., Arabi, M. (2014). Introduction to a simple yet effective Two-Dimensional Fuzzy Smoothing Filter. Iranian Journal of Fuzzy Systems, 11(3), 1-26. doi: 10.22111/ijfs.2014.1567

M. B. Menhaj; H. Shakouri G; M. Arabi. "Introduction to a simple yet effective Two-Dimensional Fuzzy Smoothing Filter". Iranian Journal of Fuzzy Systems, 11, 3, 2014, 1-26. doi: 10.22111/ijfs.2014.1567

Menhaj, M., Shakouri G, H., Arabi, M. (2014). 'Introduction to a simple yet effective Two-Dimensional Fuzzy Smoothing Filter', Iranian Journal of Fuzzy Systems, 11(3), pp. 1-26. doi: 10.22111/ijfs.2014.1567

Menhaj, M., Shakouri G, H., Arabi, M. Introduction to a simple yet effective Two-Dimensional Fuzzy Smoothing Filter. Iranian Journal of Fuzzy Systems, 2014; 11(3): 1-26. doi: 10.22111/ijfs.2014.1567

Introduction to a simple yet effective Two-Dimensional Fuzzy Smoothing Filter

^{1}Department of Electrical Engineering, Amirkabir University of Technology

^{2}School of Industrial and Systems Engineering, College of Engineer- ing, University of Tehran

^{3}Electrical Engineering Department, Shahed University

Abstract

Annihilation or reduction of each kind of noise blended in correct data signals is a field that has attracted many researchers. It is a fact that fuzzy theory presents full capability in this field. Fuzzy filters are often strong in smoothing corrupted signals, whereas they have simple structures. In this paper, a new powerful yet simple fuzzy procedure is introduced for sharpness reduction in two-dimensional signals. It is indeed an extension of our previously published one-dimensional fuzzy smoothing filter. This procedure has been designed for annihilation of all unknown noises in two-dimensional corrupted signals, although works the best for impulse noise. The proposed method looks for emph{sharp points} in the corrupted signal and then smoothes them out by emph{sharing} their values with eight (or more) neighboring point values. Preservation of correct data in the corrupted signal is an important advantage of this method. To obtain experimental results of the proposed procedure, both color and black & white images are used as the most common two-dimensional signals, and the results are compared with several other filters recently cited in the literature. Experimental results exhibit a high capability of our method in both numerical measures and visual inspection, preserving its simplicity. Finally, application of the proposed filter to socio-economic fields is presented using a demographic mixed data set to better illustrate original motivation for this idea.

bibitem{14} A. A. Alshennawy and A. A. Aly, emph{Edge detection in digital images using fuzzy logic technique}, World Academy of Science, Engineering and Technology, textbf{51} (2009), 178-187.

bibitem{33} D. Androutsos, K. N. Plataniotis and A. N. Venetsanopoulos, emph{Novel vector-based approach to color image retrieval using a vector angular-based distance measure}, Computer Vision and Image Understanding, textbf{{75}(1,2)} (1999), 46â€“58.

bibitem{8} F. Beritelli, S. Casale and A. Cavallaro, emph{Multi-channel speech/silence detector based on time delay estimation and fuzzy classification}, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSPâ€™99), (1999), 93-96.

bibitem{19} R. Caponetto, L. LoBello and O. Mirabella, emph{Fuzzy traffic smoothing: another step towards statistical real-time communication over ethernet networks}, 1st Internet workshop on Real-Time LANs in the Internet Age (RTILAâ€™02), 2002.

bibitem{21} G. C. Cardarilli, M. Re, R. Lojacono and L. Carfagnini, emph{High speed fuzzy filter for non-linear channel equalization}, In Proceedings of the International Symposium on Fuzzy Logic (ISFL'97), 1997.

bibitem{1} Central Bank of Iran: www.cbi.ir

bibitem{26} K. M. T. Chen and L. Chen, emph{Tri-state median filter for image de-noising}, IEEE Transactions on Image Processing, textbf{{8}(12)} (1999), 1834-1838.

bibitem{22} S. F. Chen and R. Rosenfeld, emph{A gaussian prior for smoothing maximum entropy models}, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, (Available on-line at: http://reports-archive.adm.cs.cmu.edu/anon/1999/CMU-CS-99-108.pdf), 1999.

bibitem{9} R. C. Chen and P. Yu, emph{Nonlinear filter design based on fuzzy inference rules for image processing}, IEEE Workshop on Nonlinear Signal and Image Processing (NSIP97), 1997.

bibitem{11} F. Farbiz, M. B. Menhaj, S. A. Motamedi and M. T. Hagan, emph{A new fuzzy logic control based filter for image enhancement}, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, textbf{{30}(1)} (2000), 110-119.

bibitem{20} Y. R. Hwang and M. Tomizuka, emph{Fuzzy smoothing algorithms for variable structure systems}, IEEE Transactions on Fuzzy Systems, textbf{{2}(4)} (1994), 277-284.

bibitem{12} H. R. Ishii, A. Taguchi and M. Sone, emph{The edge detection from images corrupted by mixed noise using fuzzy rules}, IX European Signal Processing Conference, 1998.

bibitem{35} K. Kal Vin Toh, H. Ibrahim and M. N. Mahyuddin, emph{Salt-and-Pepper noise detection and reduction using fuzzy switching median filter}, IEEE Transactions on Consumer Electronics, textbf{{54}(4)} (2008), 1956-1961.

bibitem{30} Y. H. Kuo, C. Lee and C. Chen, emph{High-stability AWFM filter for signal restoration and its hardware design}, Fuzzy Sets and Systems, textbf{{114}(2)} (2000), 185-202.

bibitem{10} Y. H. Kuo, C. S. Lee and C. C. Liu, emph{A new fuzzy edge detection method for image enhancement}, The Sixth IEEE International Conference on Fuzzy Systems, textbf{1} (1997), 369-372.

bibitem{4} J. S. Lee, emph{Digital image smoothing and the sigma filter}, In Computer Vision, Graphics, and Image Processing, textbf{24} (1983), 255-269.

bibitem{27} C. S. Lee, Y. H. Kuo and P. T. Yau, emph{Weighted fuzzy mean filter for image processing}, Fuzzy Sets and Systems, textbf{{89}(2)} (1997), 157-180.

bibitem{32} R. Lukac, emph{Adaptive color image filtering based on center-weighted vector directional filters}, Multidimensional Systems and Signal Processing, textbf{{15}(2)} (2004), 169-196.

bibitem{23} R. Lukac, K. N. Plataniotis, B. Smolka and A. N. Venetsanopoulos, emph{cDNA micro-array image processing using fuzzy vector filtering framework}, Fuzzy Sets and Systems, textbf{{152}(1)} (2005), 17-35.

bibitem{16} M. Nachtegael, S. Schulte, D. Van der Weken, V. De Witte and E. E. Kerre, emph{Gaussian noise reduction in grayscale images}, International Journal of Intelligent Systems Technologies and Applications, textbf{{1}(3,4)} (2006), 211-233.

bibitem{25} M. Nachtegael, D. Van der Weken, D. Van der Ville, E. Kerre, W. Philips and I. Lemahieu, emph{An overview of fuzzy filters for noise reduction}, Proc. IEEE, International Fuzzy System Conference, (2001), 7-10.

bibitem{6} A. V. Openheim, A. S. Willsky and S. H. Nawab, emph{Signals and Systems}, Prentice Hall, 1997.

bibitem{5} I. Pitas and A. N. Venetsanopoulos, emph{Nonlinear digital filters}, Kluwer Academic Publishers, 1990.

bibitem{15} F. Russo and G. Ramponi, emph{A fuzzy filter for images corrupted by impulse noise}, IEEE Signal Processing Letters, textbf{{3}(6)} (1996), 168-170.

bibitem{18} F. Sahba, H. R. Tizhoosh and M. M. Salama, emph{A coarse-to-fine approach to prostate boundary segmentation in ultrasound images}, Bio-Medical Engineering On-Line, (Available on-line at: http://www.biomedical-engineering-online.com/content/4/1/58), 2005.

bibitem{29} F. Sahba, H. R. Tizhoosh and M. M. Salama, emph{A New technique for Adaptive fuzzy image enhancement for edge detection}, International workshop on multidisciplinary image, video and audio retrieval and mining, 2004.

bibitem{3} A. Savitzky and M. J. E. Golay, emph{Smoothing and differentiation of data by simplified least squares procedures}, Analytical Chemistry, textbf{36} (1964), 1627-1639.

bibitem{36} S. Schulte, V. De Witte, M. Nachtegael, D. Van der Weken and Etienne E. Kerre, emph{Fuzzy two-step filter for impulse noise reduction from color images}, IEEE Transactions on Image Processing, textbf{{15}(11)} (2006), 3568-3579.

bibitem{31} H. Shakouri G. and M. B. Menhaj, emph{A single fuzzy rule to smooth the sharpness of mixed data: time & frequency domains analysis}, Fuzzy Sets and Systems, textbf{ {159}(18)} (2008), 2446-2465.

bibitem{24} H. Shakouri G., M. Rastad and J. Nazarzadeh, emph{A hybrid nonlinear model for maximum simultaneous electric power demand}, IEEE Trans. on Power Systems, textbf{{21}(3)} (2006), 1069-1078.

bibitem{2} Statistical Center of Iran: www.sci.ir.

bibitem{28} A. Taguchi, emph{A design method of fuzzy weighted median filters}, IEEE International Conference on Image Processing, (1996), 423-426.

bibitem{13} H. R. Tizhoosh, emph{Fast fuzzy edge detection}, Proceedings of Fuzzy Information Processing Society, (2002), 239-242.

bibitem{17} H. R. Tizhoosh, emph{Image thresholding using type II fuzzy sets}, Pattern Recognition, textbf{38} (2005), 2363-2372.

bibitem{7} D. Van der Ville, M. Nachtegael, D. Van der Weken, Etienne E. Kerre, W. Philips and I. Lemahieu, emph{Noise reduction by fuzzy image filtering}, IEEE Transactions on Fuzzy Systems, textbf{{11}(4)} (2003), 429-436.

bibitem{34} J. Wang and H. Chiu, emph{HAF: an adaptive fuzzy filter for restoring highly corrupted images by histogram estimation}, Proc. National Science Counc. ROC(A), textbf{{23}(5)} (1999), 630-643.