Shi, F., Chen, P. (2010). THE URYSOHN AXIOM AND THE COMPLETELY HAUSDORFF
AXIOM IN L-TOPOLOGICAL SPACES. Iranian Journal of Fuzzy Systems, 7(1), 33-45. doi: 10.22111/ijfs.2010.159

Fu-Gui Shi; Peng Chen. "THE URYSOHN AXIOM AND THE COMPLETELY HAUSDORFF
AXIOM IN L-TOPOLOGICAL SPACES". Iranian Journal of Fuzzy Systems, 7, 1, 2010, 33-45. doi: 10.22111/ijfs.2010.159

Shi, F., Chen, P. (2010). 'THE URYSOHN AXIOM AND THE COMPLETELY HAUSDORFF
AXIOM IN L-TOPOLOGICAL SPACES', Iranian Journal of Fuzzy Systems, 7(1), pp. 33-45. doi: 10.22111/ijfs.2010.159

Shi, F., Chen, P. THE URYSOHN AXIOM AND THE COMPLETELY HAUSDORFF
AXIOM IN L-TOPOLOGICAL SPACES. Iranian Journal of Fuzzy Systems, 2010; 7(1): 33-45. doi: 10.22111/ijfs.2010.159

THE URYSOHN AXIOM AND THE COMPLETELY HAUSDORFF
AXIOM IN L-TOPOLOGICAL SPACES

^{}Department of Mathematics, School of Science, Beijing Institute of Technology, Beijing, 100081, P. R. China

Abstract

In this paper, the Urysohn and completely Hausdorff axioms in general topology are generalized to L-topological spaces so as to be compatible with pointwise metrics. Some properties and characterizations are also derived

References

[1] S. L. Chen,Fuzzy Urysohn spaces and $alpha$-stratified fuzzy Urysohn spaces, Proceedings of the

Fifth IFSA World Congress I, Korea, (1993), 453-456.

[2] S. L. Chen and Z. X.Wu,Urysohn separation property in topological molecular lattices, Fuzzy

Sets and Systems,123(2) (2001), 177-184.

[3] Z. Deng,Fuzzy pseudo-metric space, J. Math. Anal. Appl., 86 (1982), 74-95.

[4] P. Dwinger,Characterizations of the complete homomorphic images of a completely distributive

complete lattice I, Indagationes Mathematicae (Proceedings), 85 (1982), 403-414.

[5] M. A. Erceg,Metric space in fuzzy set theory, J. Math. Anal. Appl., 69 (1979), 205-230.

[6] J. Fang,H()-completely Hausdorff axiom on L-topological spaces, Fuzzy Sets and Systems,

140(3)(2003), 475-469.

[7] J. Fang and Y. Yue,Urysohn closedness on completely distributive lattices, Fuzzy Sets and

Systems,144(3) (2004), 367-381.

[8] M. H. Ghanim, O. A. Tantawy and F. M. Selim,On lower separation axioms, Fuzzy Sets

and Systems,85(3) (1997), 385-389.

[9] G. Gierz and et al.,A compendium of continuous lattices, Springer Verlag, Berlin, 1980.

[10] U. H¨ohle, S. E. Rodabaugh and eds,Mathematics of fuzzy sets: logic, topology and

measure theory, The Handbooks of Fuzzy Sets Series, Kluwer Academic Publishers

(Boston/Dordrecht/London),3 (1999).

[11] C. Hu,Fuzzy topological space, J. Math. Anal. Appl., 110 (1985), 141-178.

[12] B. Hutton,Uniformities on fuzzy topological spaces, J. Math. Anal. Appl., 58 (1977), 559-571.

[13] B. Hutton,Normality in fuzzy topological spaces, J. Math.Anal.Appl., 50 (1975), 74-79.

[14] B. Hutton and I. Reilly,Separation axioms in fuzzy topological spaces, Fuzzy Sets and Systems,

3(1)(1980), 93-104.

[15] O. Kaleva and S. Seikkala,On fuzzy metric spaces, Fuzzy Sets and Systems, 12(3) (1984),

215-229.

[16] I. Kramosil and J. Michalek,Fuzzy metric and statistical metric spaces, Kybernetica, 11(1975), 326-334.

[17] W. Kotz´e,Lifting of sobriety concepts with particular reference to (L,M)-topological spaces,

in S. E. Rodabaugh, E. P. Klement and eds., Topological and Algebraic Structures in Fuzzy