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FUZZY QUASI-METRIC VERSIONS OF A THEOREM OF
GREGORI AND SAPENA

D. MIHET

Abstract. We provide fuzzy quasi-metric versions of a fixed point theorem of
Gregori and Sapena for fuzzy contractive mappings in G-complete fuzzy metric

spaces and apply the results to obtain fixed points for contractive mappings

in the domain of words.

1. Introduction and Preliminaries

Fixed point theories in fuzzy metric spaces and probabilistic metric spaces are
closely related. The fixed point theory of the fuzzy metric spaces was introduced
by Grabiec [2], where a fuzzy metric version of the Banach contraction principle
was proved. In order to obtain his theorem, Grabiec considered a notion of com-
pleteness, now called G-completeness, cf. [5]. Subsequently, Gregori and Sapena [5]
introduced a new class of contractive mappings in G- complete fuzzy metric spaces.
Recent results related to the paper of Gregori and Sapena [5] may be found in [9],
[10], [11], [12], [13], [18].

Unfortunately, G-completeness is a very restricting notion, and as is shown in
[17], even the induced fuzzy metric space (R,M,Min), where

M(x, y, t) =
t

t+ | x− y |
is not G-complete. This fact motivated the alternative notion of M-completeness
[4], borrowed from probabilistic metric space theory [16]. On the other hand, it is
shown by Romaguera et. al [14] that G-completeness provides an efficient tool for
obtaining fixed points for fuzzy contraction mappings on complete Non-archimedean
fuzzy quasi-metric spaces, and thus it can be successfully applied to obtain fixed
points for contractive mappings in the domain of words.

The aim of this paper is to provide fuzzy quasi-metric versions of the fixed point
theorem of Gregori and Sapena [5]. The existence of a solution for a recurrence
equation, which appears in the average case analysis of Quicksort algorithms is
obtained as an application. Our basic references are [3], Chapter X, [5], [6] and
[14].

A fuzzy quasi-metric on a nonempty set X is a pair (M, ∗), where ∗ is a continuous
t-norm and M is a fuzzy set in X ×X × [0,∞) such that for all x, y, z ∈ X :
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(i)M(x, y, 0) = 0;
(ii)x = y if and only if M(x, y, t) = M(y, x, t) = 1 for all t > 0;
(iii)M(x, z, t + s) > M(x, y, t) ∗M(y, z, s) for all t, s > 0;
(iv)M(x, y, ·) : [0,∞) → [0, 1] is left continuous.
If the triangle inequality (iii) is replaced by:

M(x, z, t) ≥ M(x, y, t) ∗M(y, z, t) for all x, y, z ∈ X, t > 0

then (M, ∗) is called a Non-archimedean fuzzy quasi-metric.
A fuzzy quasi-metric (M, ∗) satisfying the symmetry axiom M(x, y, t) = M(y, x, t)

for all x, y ∈ X and t > 0 is a fuzzy metric in the sense of Kramosil and Michalek
[8].

Definition 1.1. A triple (X, M, ∗), where (M, ∗) is a (Non-archimedean) fuzzy
quasi-metric on X is said to be a (Non-archimedean) fuzzy quasi-metric space.

If (M, ∗) is a fuzzy quasi-metric on X, then (M−1, ∗) is also a fuzzy quasi-metric
on X, where M−1 is the fuzzy set in X × X × [0,∞) defined by M−1(x, y, t)
= M(y, x, t). Moreover, if we denote by M i the fuzzy set in X ×X × [0,∞) given
by M i(x, y, t) = min{M(x, y, t),M−1(x, y, t)}, then (M i, ∗) is a fuzzy metric on X
[6].

Definition 1.2. Let (X, M, ∗) be a fuzzy metric space. A sequence (xn)n∈N in X
is said to be M-convergent if there exists x ∈ X such that

lim
n→∞

M(x, xn, t) = 1 ∀t > 0.

A sequence {xn}n∈N in a fuzzy metric space (X, M, ∗) is called Cauchy if for
each ε ∈ (0, 1) and t > 0 there exists n0 ∈ N such that M(xn, xm, t) > 1 − ε for
all m,n ≥ n0. The space (X, M, ∗) is called complete if every Cauchy sequence is
convergent.

Definition 1.3. [6] A sequence {xn} in a fuzzy quasi-metric space (X, M, ∗) is
called G-Cauchy if it is a G- Cauchy sequence in the fuzzy metric space (X, M i, ∗).
A fuzzy quasi-metric space (X, M, ∗) is called G- bicomplete if the fuzzy metric
space (X, M i, ∗) is G- complete.

Each G-(bi)complete fuzzy quasi- metric space is (bi) complete, but the converse
is not true ([17]).

Definition 1.4. Let (X, M, ∗) be a fuzzy quasi- metric space. A sequence {xn} in
X is called left G-Cauchy if

lim
n→∞

M(xn, xn+1, t) = 1

for all t > 0. The space (X, M, ∗) is called G-complete if every left G-Cauchy
sequence is M−1-convergent.
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2. Fuzzy Quasi-metric Versions of the Theorem of Gregori and Sapena

We begin this section by recalling the celebrated fixed point theorem of Gregori
and Sapena [5].

Definition 2.1. [5] A fuzzy contractive mapping on a fuzzy metric space (X, M, ∗)
is a self-mapping f of X satisfying the following condition for all x, y ∈ X, t > 0
and fixed k ∈ (0, 1).

(c) M(x, y, t) > 0 =⇒ 1
M(f(x), f(y), t)

− 1 ≤ k(
1

M(x, y, t)
− 1)

Theorem 2.2. ([5], Theorem 5.2) Let (X, M, ∗) be a G -complete fuzzy metric space
and f : X → X be a fuzzy contractive mapping such that M(x, f(x), t) > 0, ∀t > 0
for some x ∈ X. Then f has a fixed point.

The following two theorems are fuzzy quasi-metric versions of the theorem of
Gregori and Sapena.

Theorem 2.3. Let (X, M, ∗) be a G-bicomplete fuzzy quasi-metric space and f be
a fuzzy contractive mapping on X. If there exists x in X such that M(x, f(x), t) >
0, ∀t > 0 and M(f(x), x, t) > 0, ∀t > 0, then f has a fixed point.

Proof. Let x, y, t be such that M i(x, y, t) > 0. Then M(x, y, t) > 0 and M(y, x, t) >
0, hence the following two relations hold.

1
M(f(x), f(y), t)

− 1 ≤ k(
1

M(x, y, t)
− 1)

and
1

M(f(y), f(x), t)
− 1 ≤ k(

1
M(y, x, t)

− 1)

It follows that

k(
1

M i(x, y, t)
− 1) ≥ 1

M(f(x), f(y), t)
− 1

and
k(

1
M i(x, y, t)

− 1) ≥ 1
M(f(y), f(x), t)

− 1.

Hence

k(
1

M i(x, y, t)
− 1) ≥ 1

min{M(f(x), f(y), t),M(f(y), f(x), t)}
− 1

=
1

M i(f(x), f(y), t)
− 1.

Thus, f is a fuzzy contractive mapping on the complete fuzzy metric space
(X, M i, ∗) and so, by Theorem 2.2, f has a fixed point. �

Theorem 2.4. Let (X, M, ∗) be a G-complete fuzzy quasi-metric space and f be a
fuzzy contractive mapping on X. If every M−1-convergent sequence has a unique
limit and there exists x0 in X such that M(x0, f(x0), t) > 0, ∀t > 0, then f has a
fixed point.
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Proof. Let xn := fn(x0) (n ∈ N). From M(x0, f(x0), t) > 0, ∀t > 0 and the
contractive condition (c), it immediately follows that

M(xn, xn+1, t) ≥ knM(x0, x1, t) (n ∈ N, t > 0),

which implies that {xn} is a left G-Cauchy sequence. Since (X, M, ∗) is G-complete,
there is x ∈ X such that {xn} is M−1-convergent to x. As f is continuous, xn+1

is M−1-convergent to f(x). From the uniqueness of the limit we conclude that
f(x) = x. �

The following proposition states sufficient conditions for the fixed point to be
unique.

Proposition 2.5. Let f be a fuzzy contractive mapping on a fuzzy quasi met-
ric space (X, M, ∗). If x, y are fixed points of f such that M(x, y, t) > 0 and
M(y, x, t) > 0 ∀t > 0, then x = y.

Proof. Since M(f(x), f(y), t) = M(x, y, t) > 0, by induction on n it can be proved
that

1
M(f(x), f(y), t)

− 1 ≤ kn(
1

M(x, y, t)
− 1)

for every n. Therefore M(f(x), f(y), t) = 1 for all t > 0. Similarly, M(f(y), f(x), t) =
1 for all t > 0, implying f(x) = f(y), that is, x = y. �

3. Application to the Domain of Words

Although the condition of G-completeness is quite restrictive, in the next propo-
sition, which slightly improves Theorem 3 from [14], we show that every complete
Non-archimedean fuzzy metric space under a t-norm of Hadz̆ić type is G-complete.
Recall that a t-norm T is said to be of Hadžić-type if the family of its iterates is
equicontinuous at the point x = 1 (see [7], Chapter 1).

Proposition 3.1. Every bicomplete Non- archimedean fuzzy quasi-metric space
(X, M, T ) with T of Hadžić-type is G-bicomplete.

Proof. Since T is of Hadžić type, for given ε ∈ (0, 1) there is λ in (0, 1) such that

Tm−1(1− λ, ..., 1− λ) > 1− ε ∀m ∈ N.

Let {xn}n∈N be a G-Cauchy sequence. Fix ε ∈ (0, 1) and t > 0 and consider n0

such that M i(xn, xn+1, t) > 1−λ for all n ≥ n0. Then, for all n ≥ n0 and j > 0 we
have:

M i(xn, xn+j , t) ≥ T (M i(xn, xn+1, t), ...,M i(xn+j−1, xn+j , t)) > 1− ε.

This shows that {xn} is a Cauchy sequence in (X, M, T ). Therefore, there is x ∈ X
such that limn→∞M i(xn, x, t) = 1 for all t > 0. It follows that (X, M i, T ) is
G-complete, that is, (X, M, T ) is G-bicomplete. �

Let Σ∞ be the set of all (finite and infinite) sequences over a nonempty alphabet
Σ. Denote by l(x) the length of x and by < the prefix order on Σ∞, i.e., x < y ⇔ x
is a prefix of y. For each x, y ∈ Σ∞ let x u y be the common prefix of x and y.
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With the convention 2−∞ = 0, let M be defined as M(x, y, 0) = 0 for all x, y ∈
Σ∞, M(x, y, t) = 1 (t > 0) if x is a prefix of y and

M(x, y, t) =
{

1− 2−l(xuy), if x is not a prefix of y and t ∈ (0, 1];
1, if x is not a prefix of y and t > 1.

Lemma 3.2. [14] l(Φ(x)) = l(x)+1 for all x ∈ Σ∞ and l(Φ(xuy)) ≤ l(Φ(x)uΦ(y))
for all x, y ∈ Σ∞.

By Proposition 3.1 with T = ∧,∧(a, b) = Min{a, b}, we may prove the following
proposition. [14]:

Proposition 3.3. ([14], Proposition 4) (Σ∞,M,∧) is a bicomplete Non-archimedean
fuzzy quasi-metric space.

Proposition 3.3 allows us to apply Theorem 2.3 to show, in a direct way, the
existence and uniqueness of solution for the following recurrence equation: T (1) = 0
and

T (n) =
2(n− 1)

n
+

n + 1
n

T (n− 1), n > 2.

This equation appears in the average case analysis of Quicksort algorithms, see [1],
[14].

To this end, we associate with T , the functional Φ : Σ∞ → Σ∞ as follows: we
write x = x1x2...xn, if x ∈ Σ∞ has length n < ∞ and x = x1x2..., if x is an infinite
word and define (Φ(x))n by (Φ(x))1 = T (1) and Φ(x)n = 2(n−1)

n + n+1
n xn−1, for

all n > 2. We claim that Φ is a fuzzy contractive mapping on (Σ∞,M,∧) with
k = 1/2. Indeed, if x is a prefix of y, then M(Φ(x),Φ(y), t) = M(x, y, t) = 1. If x is
not a prefix of y, then M(Φ(x),Φ(y), t) = 1− 2−l(Φ(x)uΦ(y)). Therefore,

1
M(Φ(x),Φ(y), t)

− 1 =
1−M(Φ(x),Φ(y), t)

M(Φ(x),Φ(y), t)
=

2−l(Φ(x)uΦ(y))

1− 2−l(Φ(x)uΦ(y))

≤ 2−l(Φ(xuy)

1− 2−l(Φ(x)uΦ(y))

and
1
2
(

1
M(x, y, t)

− 1) =
2−l(xuy)−1

1− 2−l(xuy)
=

2−l(Φ(xuy)

1− 2−l(xuy)
.

Since l(x u y) ≤ l(Φ(x u y)) ≤ l(Φ(x) u Φ(y)), it follows that
1

1− 2−l(Φ(x)uΦ(y))
≤ 1

1− 2−l(xuy)

and thus
1

M(Φ(x),Φ(y), t)
− 1 ≤ 1

2
(

1
M(x, y, t)

− 1).

Next, since (Φ(x))1 = 0, it follows that M i(x,Φ(x), t) > 0 (t > 0) for every
x = 0x2x3... ∈ Σ∞ and hence, by Theorem 3.2, Φ has a fixed point z = z1z2, ....
Next, since every fixed point y = y1... of Φ, has y1 = 0, it follows that if y, z are
fixed points of Φ then M i(z, y, t) > 0 for all t > 0. Therefore, by Proposition 3.1,
the fixed point z is unique and it is the unique solution to the recurrence equation
T , i.e. z1 = 0 and zn = 2(n−1)

n + n+1
n zn−1 for all n > 2.



64 D. Mihet

Remark 3.4. A similar approach can be found in [14], where it is shown that the
mapping Φ is a probabilistic B contraction on the bicomplete fuzzy metric space
(Σ∞,M1,∧), where M1(x, y, t) = 1, if x is a prefix of y and M1(x, y, t) = t

t+2−l(xuy)

otherwise is the fuzzy quasi-metric induced by the Baire quasi-metric dv defined
through dv(x, y) = 0 if x < y and dv(x, y) = 2−l(xuy) otherwise. We note that the
mapping Φ is not a probabilistic B-contraction on (Σ∞,M,∧).
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