H\"{o}lder summability method of fuzzy numbers and a Tauberian theorem

Document Type: Research Paper

Author

Department of Mathematics, Ege University, 35100, Izmir, Turkey

Abstract

In this paper we establish a Tauberian condition under which convergence follows from H\"{o}lder summability of sequences of fuzzy  numbers.

Keywords


bibitem{y5} Y. Altin, M. Et and M. Basarir, {it On some generalized difference sequences of fuzzy numbers}, Kuwait J. Sci. Eng., {bf 34}textbf{(1A)} (2007), 1--14.

bibitem{y4} Y. Altin, M. Mursaleen and H. Altinok, {it Statistical summability $(C,1)$ for sequences of fuzzy real numbers and a Tauberian theorem}, J. Intell. Fuzzy Syst., {bf 21}textbf{(6)} (2010), 379--384.

bibitem{alt1} H. Altinok, Y. Altin and M. Isik, {it Statistical convergence and strong $p$-Ces`{a}ro summability of order $beta$ in sequences of fuzzy numbers}, Iranian Journal of Fuzzy Systems, {bf 9}textbf{(2)} 2012, 63--73.

bibitem{alt3} H. Altinok, R. Colak and Y. Altin, {it On the class of $lambda$-statistically convergent difference sequences of fuzzy numbers}, Soft Comput., {bf 16}textbf{(6)} (2012), 1029--1034.

bibitem{alt2} H. Altinok, R. Colak and M. Et, {it $lambda$-Difference sequence spaces of fuzzy numbers}, Fuzzy Sets and Syst., {bf 160}textbf{(21)} (2009), 3128--3139.

bibitem{dub} D. Dubois and H. Prade, {it Fuzzy numbers: an overview, analysis of fuzzy information}, Mathematical Logic, CRC Press, Boca, FL, {bf1} (1987), 3--39.

bibitem{mat} M. Matloka, {it Sequences of fuzzy numbers}, BUSEFAL, {bf 28} (1986), 28--37.

bibitem{nan} S. Nanda, {it On sequences of fuzzy numbers}, Fuzzy Sets and Systems, {bf 33}textbf{(1)} (1989), 123--126.

bibitem{sta} v{C}. V. Stanojevi'{c}, {it Analysis of divergence: control and management of divergent
process}, Graduate Research Seminar Lecture Notes, edited by .{I}.
Canak, University of Missouri - Rolla, Fall, 1998.

bibitem{sub} P. V. Subrahmanyam, {it Ces`{a}ro summability of fuzzy real numbers}, J. Anal., {bf 7} (1999), 159--168.

bibitem{sza} O. Sz'{a}sz, {it Introduction to the theory of divergent series}, Revised ed. Department of Mathematics, Graduate School of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio, 1952.

bibitem{tal} O. Talo and C. Cakan, {it On the Ces`{a}ro convergence of sequences of fuzzy numbers}, Appl. Math. Lett., {bf 25} (2012), 676--681.

bibitem{trimma} B. C. Tripathy and A. Baruah, {it New type of difference sequence spaces of fuzzy real numbers}, Math. Model. Anal., {bf 14}textbf{(3)} (2009), 391--397.

bibitem{tri} B. C. Tripathy and A. Baruah, {it N"{o}rlund and Riesz mean of sequences of fuzzy real number}, Appl. Math. Lett., {bf 23}textbf{(5)} (2010), 651--655.

bibitem{triij}B. C. Tripathy, A. Baruah, M. Et and M. Gungor, {it On almost statistical convergence of new type of generalized difference sequence of fuzzy numbers}, Iran. J. Sci. Technol., Trans. A, Sci., {bf 36}textbf{(2)} (2012), 147--155.

bibitem{trimm} B. C. Tripathy and S. Borgogain, {it The sequence space $m(M, phi, Delta _{m}^{n}, p)^{F}$},  Math. Model. Anal., {bf 13}textbf{(4)} (2008), 577--586.

bibitem{tria} B. C. Tripathy and S. Borgogain, {it Some classes of difference sequence spaces of fuzzy real numbers defined by Orlicz function}, Adv. Fuzzy Syst., Article ID 216414, 6 pages, 2011.

bibitem{tricma} B. C. Tripathy and A. J. Dutta, {it Bounded variation double sequence space of fuzzy real numbers}, Comput. Math. Appl., {bf 59}textbf{(2)} (2010), 1031--1037.

bibitem{trimma12} B. C. Tripathy and A. J. Dutta, {it On $I$-acceleration convergence of sequences of fuzzy real numbers}, Math. Model. Anal., {bf 17}textbf{(4)} (2012),
549--557.

bibitem{trims} B. C. Tripathy and B. Sarma, {it Sequence spaces of fuzzy real numbers defined by Orlicz functions},  Math. Slovaca, {bf 58}textbf{(5)} (2008), 621--628.

bibitem{trikmj} B. C. Tripathy and B. Sarma, {it On $I$-convergent double sequences of fuzzy real numbers},  Kyungpook Math. J., {bf 52}textbf{(2)} (2012), 189--200.

bibitem{zad} L. A. Zadeh, {it Fuzzy sets}, Information and Control, {bf 8} (1965), 338--353.