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MINIMIZATION OF DETERMINISTIC FINITE AUTOMATA

WITH VAGUE (FINAL) STATES AND INTUITIONISTIC

FUZZY (FINAL) STATES

A. CHOUBEY AND K. M. RAVI

Abstract. In this paper, relations among the membership values of gener-
alized fuzzy languages such as intuitionistic fuzzy language, interval-valued

fuzzy language and vague language are studied. It will aid in studying the

properties of one language when the properties of another are known.
Further, existence of a minimized finite automaton with vague (final) states

for any vague regular language recognized by a finite automaton with vague

(final) states is shown in this paper. Finally, an efficient algorithm is given
for minimizing the finite automaton with vague (final) states. Similarly, it can

be shown for intuitionistic fuzzy regular language. These may contribute to a

better understanding of the role of finite automaton with vague (final) states
or the finite automaton with intuitionistic fuzzy (final) states while studying

lexical analysis, decision making etc.

1. Introduction

Fuzziness reduces the gap between formal language and natural language in
terms of precision, leading to describe fuzzy language. Fuzzy language and fuzzy
grammars were formerly defined by Lee and Zadeh [12]. A fuzzy language L̃ in
the set of finite alphabet Σ, is a class of strings w ∈ Σ∗ along with a grade of
membership function fL̃(w). This membership function assigns to each string a
grade of membership value in [0, 1]. Fuzzy language is further generalized as in-
tuitionistic fuzzy language (IFL) [17], interval-valued fuzzy language (IVFL) [18]
and vague language (VL) [6] using the notion of intuitionistic fuzzy sets [1], [2],
interval-valued fuzzy sets [8] and vague sets [7] respectively. Our motive is to study
the membership values of these languages in a generalized set up. Here, we have
shown that there is a relation between the membership values of the strings in IFL,
IVFL and VL respectively.

One of the most significant branches of the algebraic theory of languages and
automata is Myhill-Nerode’s theory [9], where recognizability of regular languages
by finite automata is studied through right invariant equivalence classes. Also, it is
a powerful tool for minimizing the number of redundant states in a finite automaton.
Myhill-Nerode’s theorem has been extended to fuzzy regular language and also an
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algorithm is given for minimizing the deterministic finite automaton with fuzzy
(final) states in [13], [15]. Since finite automata constitutes a mathematical model
on computation, fuzzy finite automata may be considered as an extended model
which includes notions like vagueness and imprecision frequently encountered in the
study of fuzzy language. The models of general fuzzy automata and general fuzzy
recognizers are given in [10] and [11] respectively.

In this paper, we have shown that for any vague regular language and for any in-
tuitionistic fuzzy regular language recognizable respectively by vague (final) states
automaton and intuitionistic fuzzy (final) states automaton, there exists a mini-
mal vague (final) states automaton and a minimal intuitionistic fuzzy (final) states
automaton. These automata are unique up to an isomorphism. Furthermore, an
efficient algorithm is given for minimizing vague (final) states automaton and in-
tuitionistic fuzzy (final) states automaton. These may help out to a better under-
standing of the role of vague (final) states automaton or intuitionistic fuzzy (final)
states automaton while studying lexical analysis, decision making, and some other
areas involving the manipulation of imprecise data.

2. Preliminaries

Basic definitions on fuzzy sets and fuzzy finite automata can be found in [19]
and [14]. In this section, we have given some definitions.

Definition 2.1. Let Σ be a finite alphabet set and fL̃(w) : Σ∗ → M a function,

where M is a set of real numbers in [0, 1]. Then the set L̃ = {(w, fL̃(w)) | w ∈ Σ∗}
is called a fuzzy language (FL) [15] over Σ and fL̃(w) the membership function of

L̃.

Definition 2.2. Let ‘L̃’ be a fuzzy language over Σ, the finite alphabet set with
fL̃(w) : Σ∗ → M as its membership function. Then, ‘L̃’ is called a fuzzy regular
language (FRL) [15] if;

(i) the set {m ∈M | SL̃(m) 6= ∅} is finite, and
(ii) for each m ∈M, the string SL̃(m) is regular,
where SL̃(m) = {w ∈ Σ∗ | fL̃(w) = m} [15] and a string is regular, if it is

recognized by a finite automaton [9].

Definition 2.3. Let Σ be a set of finite alphabet and fL̃(w) : Σ∗ →M ,
gL̃(w) : Σ∗ → N are the functions, where M and N are the finite set of real numbers

in [0, 1]. Then we call the set, L̃ = {(w, fL̃(w), gL̃(w)) | w ∈ Σ∗} an intuitionistic
fuzzy language (IFL) [17] over Σ.
Here, fL̃(w), gL̃(w) represents respectively, the membership and nonmembership

functions of L̃ and for any w ∈ Σ∗, 0 ≤ fL̃(w) + gL̃(w) ≤ 1.

Definition 2.4. Let ‘L̃’ be an IFL over Σ, the finite alphabet set with fL̃(w) and

gL̃(w) as its membership and nonmembership functions. We call ‘L̃’ an intuitionistic
fuzzy regular language (IFRL) [17] if,

(i) the sets {m ∈M | SL̃(m) 6= ∅} and {l ∈ N | SL̃(l) 6= ∅} are finite, and
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(ii) for each m ∈ M the string SL̃(m) and for each l ∈ N the string SL̃(l) are
regular,

where SL̃(m) = {w ∈ Σ∗ | fL̃(w) = m} and SL̃(l) = {w ∈ Σ∗ | gL̃(w) = l} [17].

Definition 2.5. Let Σ be a finite alphabet set. Then we call the set,
L̃ = {(w, [fL

L̃
(w), fU

L̃
(w)]) | w ∈ Σ∗} an interval-valued fuzzy language (IVFL) [18],

where fL
L̃

(w), fU
L̃

(w) : Σ∗ → [0, 1] represents the lower and the upper membership

functions of L̃ respectively.
Here, for any w ∈ Σ∗, 0 ≤ fL

L̃
(w) ≤ fU

L̃
(w) ≤ 1 and 0 ≤ fL

L̃
(w) + (1− fU

L̃
(w)) ≤ 1.

In short, L̃ = {(w, fL̃(w)) | w ∈ Σ∗}, where fL̃(w) = [fL
L̃

(w), fU
L̃

(w)] ∀w ∈ Σ∗.

Definition 2.6. Let ‘L̃’ be an IVFL over Σ, the finite alphabet set, and fL̃(w)

the membership function of ‘L̃’. Then we call, ‘L̃’ an interval-valued fuzzy regular
language (IVFRL) [18] if;

(i) the set {[m,n] ∈ I[0, 1] | SL̃[m,n] 6= ∅} is finite, and
(ii) for each [m,n] ∈ I[0, 1] the string SL̃[m,n] is regular,
where SL̃[m,n] = {w ∈ Σ∗ | fL̃(w) = [m,n]} [18].

Definition 2.7. Let Σ be a finite alphabet set. Then we call the set,
L̃ = {(w, [tL̃(w), 1 − fL̃(w)]) | w ∈ Σ∗} a vague language (VL) [6] over Σ. Here,
tL̃(w), fL̃(w) : Σ∗ → [0, 1] represents respectively, the truth membership and the

false membership functions of L̃, such that 0 ≤ tL̃(w) ≤ 1− fL̃(w) ≤ 1 or
0 ≤ tL̃(w) + fL̃(w) ≤ 1.

Definition 2.8. Let ‘L̃’ be a VL over Σ, the finite alphabet set with tL̃(w) : Σ∗ →
M , fL̃(w) : Σ∗ → N as its truth and false membership functions respectively. Then

we call, ‘L̃’ a vague regular language (VRL) [6] if,
(i) the sets {m ∈M | SL̃(m) 6= ∅} and {n ∈ N | SL̃(1− n) 6= ∅} are finite, and
(ii) for each m ∈M and n ∈ N the strings SL̃(m) and SL̃(1− n) are regular,
where SL̃(m) = {w ∈ Σ∗ | tL̃(w) = m} and SL̃(1− n) = {w ∈ Σ∗ | 1− fL̃(w) =

1− n} [6].

Definition 2.9. A nondeterministic finite automaton with vague (final) states

(NDFA-VS) [6] ‘Ã’ is a 7-tuple Ã = (Q,Σ, δ, γ, q0, T̃FÃ
, F̃FÃ

), where Q is the finite

set of states, Σ is the finite set of input alphabets, δ, γ: Q×Σ :→ 2Q are the state
transition functions i.e., δ(p, a) = q and γ(p, a) = q for p ∈ Q, q ∈ 2Q and a ∈ Σ,

q0 is the vague starting state and T̃FÃ
, F̃FÃ

: Q → [0, 1] are respectively, the truth
and false membership functions of vague (final) state set.

Define,
tdÃ(x) = max{T̃FÃ

(q) | (q0, x, q) ∈ δ∗} and

fdÃ(x) = min{F̃FÃ
(q) | (q0, x, q) ∈ γ∗} or fdÃ(x) = max{1−F̃FÃ

(q) | (q0, x, q) ∈
γ∗}, where δ∗, γ∗ : Q×Σ∗ → 2Q are respectively, the reflexive and transitive closure
of δ and γ.
The string ‘x’ is accepted by ‘Ã’ with the truth degree tdÃ(x) and the false degree
fdÃ(x) with the condition 0 ≤ tdÃ(x) + fdÃ(x) ≤ 1.
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The vague regular language accepted by ‘Ã’ is denoted by L̃(Ã) and is given by the

set, L̃(Ã) = {(x, [tdÃ(x), 1− fdÃ(x)]) | x ∈ Σ∗}.

Definition 2.10. A deterministic finite automaton with vague (final) states (DFA-

VS) [6] Ã = (Q,Σ, δ, γ, q0, T̃FÃ
, F̃FÃ

) is a NDFA-VS with δ, γ: Q × Σ → Q being
functions instead of a relation.

For each x ∈ Σ∗, tdÃ(x) = T̃FÃ
(q), where q = δ∗(q0, x) and

fdÃ(x) = F̃FÃ
(q), where q = γ∗(q0, x).

Define, tdÃ(x) = 0 and fdÃ(x) = 1 if δ∗(q0, x) and γ∗(q0, x) are not defined (i.e.,
there is no transition for a string x from state q0).

Note: Deterministic and nondeterministic finite automata with vague (final) states
are called vague (final) states automaton.

Definition 2.11. A nondeterministic finite automaton with intuitionistic fuzzy
(final) states (NDFA-IFS) [5] ‘Ã’ is a 7-tuple Ã = (Q,Σ, δ, γ, q0, F̃1Ã, F̃2Ã), where
Q is the finite set of states, Σ is the finite set of input alphabets, δ, γ: Q×Σ :→ 2Q

are the state transition functions i.e., δ(p, a) = q and γ(p, a) = q for p ∈ Q, q ∈ 2Q

and a ∈ Σ, q0 is the intuitionistic fuzzy starting state and F̃1Ã, F̃2Ã: Q → [0, 1]
represents the membership and the nonmembership functions of intuitionistic fuzzy
(final) state set respectively.

Define,
dÃ(x) = max{F̃1Ã(q) | (q0, x, q) ∈ δ∗} and

nÃ(x) = min{F̃2Ã(q) | (q0, x, q) ∈ γ∗}, where δ∗, γ∗ : Q × Σ∗ → 2Q are the
reflexive and transitive closure of δ and γ respectively.
The string ‘x’ is accepted by ‘Ã’ with the degree dÃ(x) and the nondegree nÃ(x)
such that 0 ≤ dÃ(x) + nÃ(x) ≤ 1.

The intuitionistic fuzzy regular language accepted by ‘Ã’ is denoted by L̃(Ã) and

is given by the set, L̃(Ã) = {(x, dÃ(x), nÃ(x)) | x ∈ Σ∗}.

Definition 2.12. A deterministic finite automaton with intuitionistic fuzzy (final)

states (DFA-IFS) [5] Ã = (Q,Σ, δ, γ, q0, F̃1Ã, F̃2Ã) is a NDFA-IFS with
δ, γ: Q× Σ→ Q being functions instead of a relation.

For each x ∈ Σ∗, dÃ(x) = F̃1Ã(q), where q = δ∗(q0, x) and

nÃ(x) = F̃2Ã(q), where q = γ∗(q0, x).
Define, dÃ(x) = 0 and nÃ(x) = 1 if δ∗(q0, x) and γ∗(q0, x) are not defined (i.e.,

there is no transition for a string x from state q0).

Note: Deterministic and nondeterministic finite automata with intuitionistic fuzzy
(final) states are called intuitionistic fuzzy (final) states automaton.

3. Relation Between IFL, IVFL and VL

Intuitionistic fuzzy sets, interval-valued fuzzy sets and vague sets are the exten-
sions of fuzzy set. Atanassov and Gargov [3] shown that, interval-valued fuzzy sets
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can be express in the form of intuitionistic fuzzy sets and Bustince and Burillo [4]
shown that vague sets are equivalent to intuitionistic fuzzy sets. In this section, an
attempt has been made to compare three models that extend fuzzy language theory:
intuitionistic fuzzy language, interval-valued fuzzy language and vague language
theory. Our exposition recalls the concept of their membership values resulting in
some relations among them. With the help of this, the property of one language
can be used to study the property of another.

The difference between IFL and IVFL is due to the definition of their member-
ship values. In IFL, we have (fL̃(w), gL̃(w)) as the membership value of a string
‘w’, where each of fL̃(w) and gL̃(w) represents a value of ‘w’ in [0, 1]. These are
respectively, the membership and the nonmembership values of ‘w’, with the con-
dition that 0 ≤ fL̃(w) + gL̃(w) ≤ 1. Whereas, in IVFL the membership value of a
string ‘w’ is given by [fL

L̃
(w), fU

L̃
(w)], where each of fL

L̃
(w) and fU

L̃
(w) represents a

value in [0, 1]. These represents respectively, the lower and the upper membership
values of ‘w’, with the condition that 0 ≤ fL

L̃
(w) + (1 − fU

L̃
(w)) ≤ 1. It has been

observed that the semantics of the membership value (fL̃(w)) of a string ‘w’ in IFL
is the same as lower membership value (fL

L̃
(w)) of the string ‘w’ in IVFL and the

nonmembership value (gL̃(w)) of the string ‘w’ in IFL is the same as (1 − fU
L̃

(w))

(i.e., complement of the upper membership value) of the string ‘w’ in IVFL.
Also, the membership value plays an important role while differentiating IFL

and VL. The membership value of a string ‘w’ in IFL is explained above. The
membership value of a string ‘w’ in VL is given by [tL̃(w), 1 − fL̃(w)], where each
of tL̃(w) and fL̃(w) represents a value in [0, 1]. These are respectively, the truth
membership and the false membership values of ‘w’, with the condition that 0 ≤
tL̃(w) + fL̃(w) ≤ 1. It has been observed that the semantics of the membership
value (fL̃(w)) of ‘w’ in IFL is the same as that of the truth membership value
(tL̃(w)) of ‘w’ in VL and the nonmembership value (gL̃(w)) of ‘w’ in IFL is the
same as that of the false membership value (fL̃(w)) of ‘w’ in VL.

From the above discussion, one can obtain an equality relation between the
membership values of the string ‘w’ in aforementioned languages (in sequence IFL,
IVFL and VL) as follows:

(i) fL̃(w) = fL
L̃

(w) = tL̃(w) and

(ii) gL̃(w) = 1− fU
L̃

(w) = fL̃(w).

4. Myhill-Nerode Theorem for Vague Regular Language

One classical problem in the theory of automata is equivalence, reduction and
minimization of finite state automata. Myhill-Nerode theory is a branch of the
algebraic theory of languages and automata in which formal languages and deter-
ministic automata are studied through right invariant equivalence classes. This
theorem has also been extended to FRL. In our study we have further extended
Myhill-Nerode theory to VRL and IFRL and have provided an efficient algorithm
for minimizing DFA-VS and DFA-IFS. It provides necessary and sufficient condi-
tions for VL and IFL to be regular in terms of equivalence classes. In particular,
right invariant equivalence classes have shown oneself to be very useful in the proof
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of existence and construction of the minimal DFA-VS and DFA-IFS recognizing
VRL and IFRL, respectively.

Theorem 4.1. The following three statements are equivalent to one another:

(i) Some finite automaton with vague (final) states can accept a vague regular

language L̃ over Σ.
(ii) L̃ is the union of some equivalence classes of a right invariant equivalence

relation of finite index.
(iii) Let the relation RL̃ ⊆ Σ∗ × Σ∗ be defined as xRL̃y iff ∀ z ∈ Σ∗, tL̃(xz) =

tL̃(yz) and fL̃(xz) = fL̃(yz), then RL̃ is an equivalence relation of finite index.

Proof. (i) ⇒ (ii) Let L̃ be a vague regular language over Σ the finite alphabet

set. Assume that L̃ is accepted by some DFA-VS Ã = (Q,Σ, δ, γ, q0, T̃FÃ
, F̃FÃ

). Let
RÃ be the equivalence relation xRÃy iff δ(q0, x) = δ(q0, y) and γ(q0, x) = γ(q0, y).
RÃ is right invariant since, for any z, δ(q0, xz) = δ(q0, yz), if δ(q0, x) = δ(q0, y) and
γ(q0, xz) = γ(q0, yz), if γ(q0, x) = γ(q0, y). Then the index of RÃ is finite, since the

index is at most the number of states in Q. Furthermore, L̃ is the union of those
equivalence classes having a string ‘x’ such that δ(q0, x) and γ(q0, x) is in T̃FÃ

and

F̃FÃ
respectively (i.e., the equivalence classes corresponding to the final states).

(ii) ⇒ (iii) We show that any equivalence relation ‘E’ satisfying (ii) is a
refinement of RL̃; i.e., some equivalence class of RL̃ will be the superset of every
equivalence class ‘E’. Thus, the index of RL̃ cannot be greater than the index of
‘E’ and so is finite. Assume that ‘xEy’. For each z ∈ Σ∗, ‘xzEyz’ and thus
L̃(xz) = L̃(yz) (since ‘E’ is right invariant). Hence, xRL̃y. We conclude that each
equivalence class of ‘E’ is the subset of some equivalence class of RL̃.

(iii)⇒ (i) To show that RL̃ is right invariant, suppose xRL̃y, and let w ∈ Σ∗,

we must prove that xwRL̃yw; i.e., for any z, L̃(xwz) = L̃(ywz). Since xRL̃y, for

any v, L̃(xv) = L̃(yv) (by the definition of RL̃). Consider ‘v = wz’ to prove RL̃ is
right invariant.

Now we present the minimized DFA-VS by constructing equivalence classes of
RL̃: Let Q′ be the finite set of equivalence classes of RL̃ and [x] ∈ Q′ containing x.
Define, δ′([x], a) = [xa] and γ′([x], a) = [xa]. This definition is consistent as RL̃ is
right invariant. If we choose ‘y’ instead of ‘x’ from [x], we will have δ′([x], a) = [ya]

and γ′([x], a) = [ya]. But xRL̃y, so L̃(xz) = L̃(yz). In particular, if z = az′,

L̃(xaz′) = L̃(yaz′), so xaRL̃ya and [xa]=[ya].

Let q′0 = [ε], T̃ ′FÃ
= {[x] | x ∈ L̃} and F̃ ′FÃ

= {[x] | x ∈ L̃}. The finite automaton

Ã′ = (Q′,Σ, δ′, γ′, q′0, T̃
′
FÃ′

, F̃ ′FÃ′
) accepts L̃, since δ′(q′0, x) = δ′([ε], x) = [x] and

γ′(q′0, x) = γ′([ε], x) = [x]. Thus L̃(Ã′) = L̃(Ã). �
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Algorithm 4.2. Algorithm for minimizing deterministic finite automata with vague
(final) states (DFA-VS)

Let Ã = (Q,Σ, δ, γ, q0, T̃FÃ
, F̃FÃ

) be a DFA-VS. Assume that
Q = {q0, q1, ..., qn}, n ≥ 0 and let P = {(qi, qj) | qi, qj ∈ Q and 0 ≤ i < j ≤ n}.
begin

Step 1 : for each pair (qi, qj) ∈ P , and T̃FÃ
(qi) 6= T̃FÃ

(qj) or F̃FÃ
(qi) 6= F̃FÃ

(qj)
do mark (qi, qj);

Step 2 : for each unmarked pair (qi, qj) ∈ P do
if for some x ∈ Σ, (δ(qi, x), δ(qj , x)) and (γ(qi, x), γ(qj , x)) is marked

then
Step 2.1 : mark (qi, qj);
Step 2.2 : recursively mark all unmarked pairs on the list of (qi, qj)

and on the list of other pairs that are marked at this
step.

else
Step 2.3 : for all input symbols ‘x’ do

put (qi, qj) on the list for (δ(qi, x), δ(qj , x)) and
(γ(qi, x), γ(qj , x)) unless δ(qi, x) = δ(qj , x) and
γ(qi, x) = γ(qj , x).

Step 3 : Equivalence classes of Q are constructed as follows;
For i = 0 to n - 1 do

For j = i + 1 to n do
if (qi, qj) is unmarked, qj is in [qi], the equivalence class containing qi.

Step 4 : Define a minimum DFA-VS Ã′ = (Q′,Σ, δ′, γ′, q′0, T̃
′
FÃ′

, F̃ ′FÃ′
) as follows;

Q′ = {[qi] | qi ∈ Q}, δ′([qi], a) = [δ(qi, a)], γ′([qi], a) = [γ(qi, a)],

q′0 = [q0], T̃ ′FÃ′
([qi]) = T̃FÃ

(qi) and F̃ ′FÃ′
([qi]) = F̃FÃ

(qi).

end.

Example 4.3. Let Ã = (Q,Σ, δ, γ, q0, T̃FÃ
, F̃FÃ

) be a DFA-VS (Figure 1). Here,
Q = {a, b, c, d, e, f}, Σ = {0, 1}, q0 = {a} the vague starting state with truth

membership value T̃FÃ
(a) = 0.4 and false membership value F̃FÃ

(a) = 0.5. δ,
γ : Q × Σ → Q are the transition functions given as δ(a, 0) = γ(a, 0) = c, δ(a, 1)
= γ(a, 1) = b, δ(b, 0) = γ(b, 0) = d, δ(b, 1) = γ(b, 1) = a, δ(c, 0) = γ(c, 0) = f ,
δ(c, 1) = γ(c, 1) = e, δ(d, 0) = γ(d, 0) = f , δ(d, 1) = γ(d, 1) = e, δ(e, 0) =
γ(e, 0) = f , δ(e, 1) = γ(e, 1) = e, δ(f, 0) = γ(f, 0) = f , δ(f, 1) = γ(f, 1) = f ,

and T̃FÃ
(b) = 0.4, F̃FÃ

(b) = 0.6, T̃FÃ
(c) = 0.6, F̃FÃ

(c) = 0.7, T̃FÃ
(d) = 0.6,

F̃FÃ
(d) = 0.7, T̃FÃ

(e) = 0.7, F̃FÃ
(e) = 0.9, and T̃FÃ

(f) = 0.2, F̃FÃ
(f) = 0.3 shows

the truth and false membership values of the states {b}, {c}, {d}, {e}, and {f}
respectively.
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Figure 1. DFA-VS

Figure 2. Minimized DFA-VS of Figure 1

Above DFA-VS (Figure 1) and its minimized DFA-VS (Figure 2) will accept the
vague regular language;

L̃ = {1(11)∗/[0.4,0.6], (11)∗/[0.4, 0.5], 1∗0/[0.6, 0.7], 1∗01+/[0.7, 0.9], 1∗00(0 +
1)∗/[0.2, 0.3], 1∗01+0(0 + 1)∗/[0.2, 0.3]}.

Similarly, we can prove the Myhill-Nerode theorem for intuitionistic fuzzy regular
language. An algorithm for minimizing DFA-IFS is given below.

Algorithm 4.4. Algorithm for Minimizing Deterministic Finite Automata with
Intuitionistic fuzzy (final) States (DFA-IFS)

Let B̃ = (Q,Σ, δ, γ, q0, F̃1B̃ , F̃2B̃) be a DFA-IFS [5]. Assume that
Q = {q0, q1, ..., qn}, n ≥ 0 and let P = {(qi, qj) | qi, qj ∈ Q and 0 ≤ i < j ≤ n}.
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begin

Step 1 : for each pair (qi, qj) ∈ P , and F̃1B̃(qi) 6= F̃1B̃(qj) or F̃2B̃(qi) 6= F̃2B̃(qj)
do mark (qi, qj);

Step 2 : for each unmarked pair (qi, qj) ∈ P do
if for some x ∈ Σ, (δ(qi, x), δ(qj , x)) and (γ(qi, x), γ(qj , x)) is marked

then
Step 2.1 : mark (qi, qj);
Step 2.2 : recursively mark all unmarked pairs on the list of (qi, qj)

and on the list of other pairs that are marked at this
step.

else
Step 2.3 : for all input symbols ‘x’ do

put (qi, qj) on the list for (δ(qi, x), δ(qj , x)) and
(γ(qi, x), γ(qj , x)) unless δ(qi, x) = δ(qj , x) and
γ(qi, x) = γ(qj , x).

Step 3 : Equivalence classes of Q are constructed as follows;
For i = 0 to n - 1 do

For j = i + 1 to n do
if (qi, qj) is unmarked, qj is in [qi], the equivalence class containing qi.

Step 4 : Define a minimum DFA-IFS B̃′ = (Q′,Σ, δ′, γ′, q′0, F̃
′
1B̃′ , F̃

′
2B̃′) as follows;

Q′ = {[qi] | qi ∈ Q}, δ′([qi], a) = [δ(qi, a)], γ′([qi], a) = [γ(qi, a)],

q′0 = [q0], F̃ ′
1B̃′([qi]) = F̃1B̃(qi) and F̃ ′

2B̃′([qi]) = F̃2B̃(qi).
end.

If intuitionistic fuzzy sets are reduced to fuzzy sets, we will consider only mem-
bership value. In that case DFA-IFS becomes deterministic finite automaton with
fuzzy (final) states (DFA-FS). This DFA-FS may reduce further depending on the
state transition and membership of each states (where strings with membership 0 in
DFA-FS will not be considered as explained in example 4.2). For reducing DFA-FS
we apply the algorithm given in [15]. Again, if fuzzy set is reduced to crisp set,
then we will consider state with membership value zero in DFA-FS as non-final
state in deterministic finite automaton (DFA) and all other states as final states in
DFA. Thus DFA-FS becomes DFA. Depending on the state transition, DFA may
get further reduced. For reducing automata, we will apply algorithm given in [9].

Further if intuitionistic fuzzy sets reduced to fuzzy sets, intuitionistic fuzzy reg-
ular language reduces to fuzzy refular language, where each string contains some
membership value in [0, 1] and it can be recognized by DFA-FS and NDFA-FS
[15]. The state reduction of DFA-FS will depend on membrship value of the state
and state transition. Again, if fuzzy sets are reduced to crisp sets, fuzzy regular
language becomes regular language. This regular language is accepted by a finite
automaton and same can be reduced to its minimized form if possible [9].

Example 4.5. Let Ã = (Q,Σ, δ, γ, q0, F̃1Ã, F̃2Ã) be a DFA-IFS (Figure 3). Here,
Q = {p, q, r, s, t, u}, Σ = {a, b}, q0 = {p} the intuitionistic fuzzy starting state

with membership value F̃1Ã(p) = 0.2 and nonmembership value F̃2Ã(p) = 0.4. δ,
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γ : Q×Σ→ Q are the transition functions given as δ(p, a) = γ(p, a) = q, δ(p, b) =
γ(p, b) = t, δ(q, a) = γ(q, a) = s, δ(q, b) = γ(q, b) = r, δ(r, a) = γ(r, a) = t, δ(r, b)
= γ(r, b) = u, δ(s, a) = γ(s, a) = u, δ(s, b) = γ(s, b) = r, δ(t, a) = γ(t, a) = t,

δ(t, b) = γ(t, b) = t, δ(u, a) = γ(u, a) = u, δ(u, b) = γ(u, b) = u, and F̃1Ã(q) =

0.3, F̃2Ã(q) = 0.5, F̃1Ã(r) = 0.2, F̃2Ã(r) = 0.4, F̃1Ã(s) = 0.3, F̃2Ã(s) = 0.6,

F̃1Ã(t) = 0, F̃2Ã(t) = 1, and F̃1Ã(u) = 0, F̃2Ã(u) = 1 shows the membership and
nonmembership value of the states {q}, {r}, {s}, {t}, and {u} respectively.

Figure 3. DFA-IFS

Figure 4. Minimized DFA-IFS of Figure 3

Above DFA-IFS (Figure 3) and its minimized DFA-IFS (Figure 4) will accept
the intuitionistic fuzzy regular language;
L̃ = {ε/0.2/0.4, a/0.3/0.5, aa/0.3/0.6, ab, aab/0.2/0.4}.

If we change this DFA-IFS (Figure 3) to DFA-FS, the number of states of reduced
DFA-FS [15] is the same as the number of states of reduced DFA-IFS. Again, if we
change DFA-FS to DFA, the number of states of reduced DFA [9] will be the same
as the number of states of reduced DFA-FS (here, (in DFA) we consider states with
membership zero in DFA-FS as non final states).
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Example 4.6. Let Ã = (Q,Σ, δ, γ, q0, F̃1Ã, F̃2Ã) be a DFA-IFS (Figure 5). Here,
Q = {a, b, c, d, e}, Σ = {0, 1}, q0 = {a} the intuitionistic fuzzy starting state

with membership value F̃1Ã(a) = 0.5 and nonmembership value F̃2Ã(a) = 0.5. δ,
γ : Q×Σ→ Q are the transition functions given as δ(a, 0) = γ(a, 0) = b, δ(a, 1) =
γ(a, 1) = d, δ(b, 0) = γ(b, 0) = c, δ(b, 1) = γ(b, 1) = e, δ(c, 0) = γ(c, 0) = b, δ(c, 1)
= γ(c, 1) = e, δ(d, 0) = γ(d, 0) = c, δ(d, 1) = γ(d, 1) = e, δ(e, 0) = γ(e, 0) = e,

δ(e, 1) = γ(e, 1) = e, and F̃1Ã(b) = 0.6, F̃2Ã(b) = 0.3, F̃1Ã(c) = 0.6, F̃2Ã(c) = 0.2,

F̃1Ã(d) = 0.6, F̃2Ã(d) = 0.3, and F̃1Ã(e) = 0, F̃2Ã(e) = 1 shows the membership
and nonmembership value of the states {b}, {c}, {d}, and {e} respectively.

Figure 5. DFA-IFS

Figure 6. Minimized DFA-IFS of Figure 5

Above DFA-IFS (Figure 5) and its minimized DFA-IFS (Figure 6) will accept
the intuitionistic fuzzy regular language;
L̃ = {ε/0.5/0.5, 0(00)∗/0.6/0.3, 0(00)∗0/0.6/0.2, 1(00)∗/0.6/0.3, 1(00)∗0/0.6/0.2,

0(00)∗1(0+ 1)∗/0.8/0.1, 1(00)∗1(0+ 1)∗/0.8/0.1, 0(00)∗01(0+ 1)∗/0.8/0.1, 1(00)∗01(0+

1)∗/0.8/0.1}.
DFA-IFS (Figure 5) is changed to DFA-FS (Figure 7) and its minimized DFA-FS

is given in Figure 8 accepting the fuzzy regular language
L̃ = {ε/0.5, 0+, 10∗/0.6, 0+1(0 + 1)∗, 10∗1(0 + 1)∗/0.8} [13].
DFA-FS (Figure 7) is changed to DFA (Figure 9). Its minimized DFA is given

in Figure 10 and both of these will accept the regular language; L̃ = {0 + 1}∗ [9].
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Figure 7. DFA-FS

Figure 8. Minimized DFA-FS of Figure 7

Figure 9. DFA

5. Conclusion

The extensive research being done on intuitionistic fuzzy sets, interval-valued
fuzzy sets and vague sets (a survey [16] lists over 400 publications in the domain
of intuitionistic fuzzy set theory alone, and the number is still growing fast) shows
a mounting interest in these models. This paper has attempted to mend the sit-
uation by obtaining a relation between the membership values of IFL, IVFL and
VL. It discusses the extended Myhill-Nerode theorem in the framework of VRL and
IFRL also, it explains the method of minimizing DFA-VS and DFA-IFS through
an algorithm. The theory of VL and IFL may prove to be of relevance in the con-
struction of better models for natural languages. These may contribute to a better
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Figure 10. Minimized DFA of Figure 9

understanding of the role of vague (final) states automaton or intuitionistic fuzzy
(final) states automaton in lexical analysis, decision making, pattern recognition,
learning systems and other processes involving the manipulation of imprecise data.
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