SOME FIXED POINT THEOREMS FOR SINGLE AND MULTI VALUED MAPPINGS ON ORDERED NON-ARCHIMEDEAN FUZZY METRIC SPACES

Document Type: Research Paper

Author

Department of Mathematics, Faculty of Science and Arts, Kirikkale University, 71450 Yahsihan, Kirikkale , Turkey

Abstract

In the present paper, a partial order on a non- Archimedean fuzzy
metric space under the  Lukasiewicz t-norm is introduced and fixed point theorems
for single and multivalued mappings are proved.

Keywords


[1] S. S. Chang, Y. J. Cho, B. S. Lee, J. S. Jung and S. M. Kang, Coincidence point and
minimization theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 88 (1997), 119-128.
[2] Y. J. Cho, Fixed points in fuzzy metric spaces, J. Fuzzy Math., 5 (1997), 949-962.
[3] J. X. Fang, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 46
(1992), 107- 113.
[4] Y. Feng and S. Liu, Fixed point theorems for multi-valued increasing operators in partially
ordered spaces, Soochow J. Math., 30(4) (2004), 461-469.
[5] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems,
64 (1994), 395-399.
[6] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27 (1988), 385-389.
[7] V. Gregori and A. Sapena, On fixed-point theorem in fuzzy metric spaces, Fuzzy Sets and
Systems, 125 (2002), 245-252.
[8] O. Hadzic, Fixed point theorems for multi-valued mappings in some classes of fuzzy metric
spaces, Fuzzy Sets and Systems, 29 (1989), 115-125.
[9] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984),
215-229.
[10] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11
(1975), 326-334.
[11] D. Mihet, A banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems,
114 (2004), 431- 439.
[12] D. Mihet, On the existence and the uniqueness of fixed points of Sehgal contractions, Fuzzy
Sets and Systems, 156 (2005), 135-141.
[13] D. Mihet, Fuzzy  - contractive mappings in Non-archimedean fuzzy metric spaces, Fuzzy
Sets and Systems, 159 (2008), 739-744.
[14] S. N. Mishra , S. N. Sharma and S. L. Singh, Common fixed points of maps in fuzzy metric
spaces, Internat. J. Math. Math. Sci., 17 (1994), 253-258.
[15] V. Radu, Some remarks on the probabilistic contractions on fuzzy Menger spaces, The Eighth
International Conference on Appl. Math. Comput. Sci., Cluj-Napoca, Automat. Comput.
Appl. Math., 11 (2002) 125-131.
[16] M. Rafi and M. S. M. Noorani, Fixed point theorem on intuitionistic fuzzy metric spaces,
Iran. J. Fuzzy Syst., 3(1) (2006), 23-29.
[17] R. Saadati, S. Sedghi and H. Zhou, A common fixed point theorem for  -weakly commuting
maps in L-fuzzy metric spaces, Iran. J. Fuzzy Syst., 5(1) (2008), 47-53.
[18] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313-334.
[19] S. Sedghi, K. P. R. Rao and N. Shobe, A common fixed point theorem for six weakly compatible
mappings in M-fuzzy metric spaces, Iran. J. Fuzzy Syst., 5(2) (2008), 49-62.
[20] Z. Q. Xia and F. F. Gou, Fuzzy metric spaces, J. Appl. Math. Computing, 16(1-2) (2004),
371-381.