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WEIGHTED SIMILARITY MEASURE ON INTERVAL-VALUED

FUZZY SETS AND ITS APPLICATION TO PATTERN

RECOGNITION

M. AREFI AND S. M. TAHERI

Abstract. A new approach to define the similarity measure between interval-
valued fuzzy sets is presented. The proposed approach is based on a weighted

measure in which the normalized similarities between lower functions and also
between upper functions are combined by a weight parameter. The properties

of this similarity measure are investigated. It is shown that, the proposed

measure has some advantages in comparison with the commonly used similarity
measures.

1. Introduction

In the real world, there are vaguely specified data values in many applications.
Fuzzy set theory has been proposed to handle such vagueness by generalizing the
notion of membership in a set. In a fuzzy set, each element is associated with
a point-value selected from the unit interval [0,1], which is termed the grade of
membership in the set [33].

The intuitionistic fuzzy sets (IFSs) [1, 2], the vague sets [14], and the interval-
valued fuzzy sets [4, 15] are some generalizations of a fuzzy set. Since these general-
izations can present the degrees of membership and non-membership with a degree
of indeterminacy, the knowledge and semantic representation becomes more mean-
ingful and applicable (see [1, 3, 2]). These generalizations have been widely studied
and applied to a variety of areas such as decision making, pattern recognition,
medical diagnostics, etc (see, e.g. [9, 11, 17, 20, 21, 24, 25, 26, 30, 31]).

An important issue related to interval-values fuzzy sets, which is very important
in the applied area especially in pattern recognition, is the similarity measure be-
tween such sets. This topic has been studied by some researchers. For instance,
Chen [7, 8] and Chen and Tan [10] studied several similarity measures for mea-
suring the degree of similarity of vague sets. Li and Cheng [22] investigated the
similarity measures on intuitionistic fuzzy sets and used these measures for the
problem of pattern recognition. Li and Cheng’s similarity measures may not be
effective in some cases, and so to overcome the drawbacks of their methods, Liang
and Shi [23] and Mitchell [24] proposed several new similarity measures. Numer-
ical comparisons showed that these similarity measures are more reasonable than

Received: May 2013; Revised: February 2014; Accepted: August 2014

Key words and phrases: Interval-valued fuzzy set, Intuitionistic fuzzy set, Pattern recognition,
Similarity measure.



68 M. Arefi and S. M. Taheri

Li and Cheng’s ones. Julian et al. [21] reviewed and revised the similarity mea-
sures introduced by Mitchell [24], and then, proposed a more scattered similarity
measure for pattern recognition. Hung and Yang [18] presented a new method to
calculate the degree of similarity between IFSs based on the Hausdorff distance (see
also the approach introduced by Hung and Yang [19] based on Lp metric). Wang
and Xin [28] provided the definitions of distance measures between IFSs, and then
applied these measures to pattern recognition. Chachi and Taheri [6] introduced
two general classes of similarity measures on IFSs, which include several commonly
used similarity measures between IFSs. Dinagar and Anbalagan [12] provided an
extended version of similarity measure on the type-2 fuzzy numbers. For studying
some other researches about the similarity measure on interval-valued (intuitionis-
tic) fuzzy sets, see Hwang et al. [20], Wei et al. [29], Ye [32], Zeng and Guo [34],
Zeng and Li [35], and Zhang et al. [36].

In this paper, a new weighted similarity measure for interval-valued fuzzy sets is
introduced. Since, the similarity measures introduced by Li and Cheng’s [22], Liang
and Shi’s [23], Wang and Xin’s [28], and Zeng and Guo’s [34] can not be effective
in some cases, we compare our proposed method with the similarity measures for
pattern recognition. Numerical comparisons show that our proposed similarity
measure is more reasoned.

The paper is organized as follows: In Section 2, we review some preliminary
concepts about interval-valued fuzzy sets. In Section 3, we introduce a new weighted
similarity measure between interval-valued fuzzy sets when the universal set is as
discrete or continuous. In Section 4, we compare our method with some other
methods. Application of the proposed method to pattern recognition is studied
in Section 5, indicating the performance of the proposed method. Finally, a brief
conclusion is provided in Section 6.

2. Preliminary Concepts

In the following, we review some notations and preliminary concepts of interval-
valued fuzzy sets. For more details, the reader is referred to Atanassov [1, 3, 2] and
Atanassov and Gargov [4].

Definition 2.1. An interval-valued fuzzy set (IVFS) Ã on the universal set X is
defined as

Ã = {(x, [µÃ(x), 1− νÃ(x)])|x ∈ X},
where, µÃ(.) : X → [0, 1] is the “degree of membership”, νÃ(.) : X → [0, 1] is the
“degree of nonmembership”, and 0 ≤ µÃ(x) + νÃ(x) ≤ 1 for all x ∈ X. Also, the
value τÃ(x) = 1 − µÃ(x) − νÃ(x) is called the “degree of indeterminacy” of the

element x ∈ X to the IVFS Ã.

In the above definition, µÃ(x) and 1−νÃ(x) are the lower and upper bounds for

degree of membership of x into Ã. Therefore, the degree of membership of x into

the interval-valued fuzzy set Ã is characterized by the interval [µÃ(x), 1 − νÃ(x)]
(see [4, 16, 15, 27]).

Generally, the idea of interval-valued fuzzy sets was attributed to Gorzalczany
[16] and Turksen [27]. Some well-known generalizations of a fuzzy set are, the
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so-called intuitionistic fuzzy set, introduced by Atanassov [1, 2], and the vague
set, defined by Gau and Buehrer [14]. Essentially, these three approaches are not
independent and there exist relationship among them. Sometimes, they are even
mathematically equivalent, however they have arisen on different ground and they
have different semantics (for more details, see [1, 2, 4, 5, 14]).

Note that, in a special case, if for each x ∈ X, ν
Ã

(x) = 1−µ
Ã

(x), then the interval-

valued fuzzy set Ã is reduced to a fuzzy set with the membership function µÃ(.).

Definition 2.2. [19] If Ã and B̃ are two IVFSs on X, then

i) Ã ⊆ B̃ if and only if ∀ x ∈ X, µÃ(x) ≤ µB̃(x) and νÃ(x) ≥ νB̃(x),

ii) Ã = B̃ if and only if ∀ x ∈ X, µÃ(x) = µB̃(x) and νÃ(x) = νB̃(x).

3. A New Weighted Similarity Measure

In this section, we introduce a new weighted similarity measure between the
interval-valued fuzzy sets. We also state and prove the properties of the proposed
definition.

Definition 3.1. Let Ã and B̃ be two IVFSs of the universal set X. The weighted

similarity measure between Ã and B̃ is defined as follows:
i) Discrete case: Let X = {x1, x2, ..., xn}. We first introduce the sum of lower
bounds and the sum of upper bounds of subintervals [µÃ(xi), 1 − νÃ(xi)] and
[µB̃(xi), 1− νB̃(xi)], i = 1, 2, ..., n, as follows

STµ =
∑n
i=1

[
µÃ(xi) + µB̃(xi)

]
, STν =

∑n
i=1

[
(1− νÃ(xi)) + (1− νB̃(xi))

]
.

Also, the proportions of the end points for each i = 1, 2, ..., n are given by

ϕµ(xi) =
|µ
Ã

(xi)− µB̃(xi)|
STµ

,

ϕν(xi) =
|(1− ν

Ã
(xi))− (1− ν

B̃
(xi))|

STν
=
|ν
Ã

(xi)− νB̃(xi)|
STν

.

Then, the weighted similarity measure between Ã and B̃ is defined as follows

Sw(Ã, B̃) = 1−
[
w ·
∑n
i=1 ϕµ(xi) + (1− w) ·

∑n
i=1 ϕν(xi)

]
= 1− w ·

∑n
i=1 |µÃ(xi)−µB̃(xi)|

STµ
− (1− w) ·

∑n
i=1 |νÃ(xi)−νB̃(xi)|

STν

= 1− w ·
∑n
i=1 |µÃ(xi)−µB̃(xi)|∑n

i=1 µÃ(xi)+
∑n
i=1 µB̃(xi)

− (1− w) ·
∑n
i=1 |νÃ(xi)−νB̃(xi)|∑n

i=1(1−νÃ(xi))+
∑n
i=1(1−νB̃(xi))

.

ii) Continuous case: Let X = R. Then, in a similar way to the discrete case,

the weighted similarity measure between Ã and B̃ is defined as follows (subject to
existence of integrals)

Sw(Ã, B̃) = 1−
[
w ·
∫∞
−∞ ϕµ(x)dx+ (1− w) ·

∫∞
−∞ ϕν(x)dx

]
= 1− w ·

∫∞
−∞ |µÃ(x)−µ

B̃
(x)|dx

STµ
− (1− w) ·

∫∞
−∞ |νÃ(x)−ν

B̃
(x)|dx

STν

= 1− w ·
∫∞
−∞ |µÃ(x)−µ

B̃
(x)|dx∫∞

−∞ µ
Ã
(x)dx+

∫∞
−∞ µ

B̃
(x)dx

− (1− w) ·
∫∞
−∞ |νÃ(x)−ν

B̃
(x)|dx∫∞

−∞(1−ν
Ã
(x))dx+

∫∞
−∞(1−ν

B̃
(x))dx

,

where, 0 ≤ w ≤ 1.
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Remark 3.2. In Definition 3.1, we have two similarity measures on the lower
bounds µÃ(·) and µB̃(·), and also on the upper bounds 1− νÃ(·) and 1− νB̃(·). We
can control these similarity measures with the weight value w. It is obvious that
the selection of w is more or less subjective, and it depends on the users opinion.
The greater value of w means the more importance for the lower bounds.

Proposition 3.3. The mapping Sw on IV FS×IV FS satisfies the following prop-
erties:

P1: 0 ≤ Sw(Ã, B̃) ≤ 1,

P2: Sw(Ã, B̃) = 1 if and only if Ã = B̃,

P3: Sw(Ã, B̃) = Sw(B̃, Ã),

P4: If Ã ⊆ B̃ ⊆ C̃, then Sw(Ã, C̃) ≤ min{Sw(Ã, B̃), Sw(B̃, C̃)}.

Proof. The properties P1, P2, and P3 are obviously held. We only prove the
property P4 for the case X = R (for discrete case, a similar proof can be used).

Since Ã ⊆ B̃ ⊆ C̃, based on Definition 2.2, for each x ∈ X, we have µÃ(x) ≤
µB̃(x) ≤ µC̃(x) and νÃ(x) ≥ νB̃(x) ≥ νC̃(x), and, then∫ ∞

−∞
µÃ(x)dx ≤

∫ ∞
−∞

µB̃(x)dx ≤
∫ ∞
−∞

µC̃(x)dx,

and ∫ ∞
−∞

νÃ(x)dx ≥
∫ ∞
−∞

νB̃(x)dx ≥
∫ ∞
−∞

νC̃(x)dx.

Hence, we have∫ ∞
−∞
|µÃ(x)− µC̃(x)|dx =

∫ ∞
−∞

(
µC̃(x)− µÃ(x)

)
dx

≥
∫ ∞
−∞

(
µC̃(x)− µB̃(x)

)
dx

=

∫ ∞
−∞
|µC̃(x)− µB̃(x)|dx.

But,
∫∞
−∞ µÃ(x)dx+

∫∞
−∞ µC̃(x)dx ≤

∫∞
−∞ µB̃(x)dx+

∫∞
−∞ µC̃(x)dx, and so

I1 =

∫∞
−∞ |µÃ(x)− µ

C̃
(x)|dx∫∞

−∞ µ
Ã

(x)dx+
∫∞
−∞ µ

C̃
(x)dx

≥
∫∞
−∞ |µC̃(x)− µ

B̃
(x)|dx∫∞

−∞ µ
B̃

(x)dx+
∫∞
−∞ µ

C̃
(x)dx

= I2. (1)

Similarly, since for each x ∈ X, 1 − νÃ(x) ≤ 1 − νB̃(x) ≤ 1 − νC̃(x), the similar
relations are held for the nonmembership functions, as follows:

I′1 =

∫∞
−∞ |νÃ(x)−ν

C̃
(x)|dx∫∞

−∞(1−ν
Ã
(x))dx+

∫∞
−∞(1−µ

C̃
(x))dx

≥
∫∞
−∞ |νC̃(x)−ν

B̃
(x)|dx∫∞

−∞(1−ν
B̃
(x))dx+

∫∞
−∞(1−ν

C̃
(x))dx

= I′2. (2)

Based on the relations (1) and (2), we can obtain the following relation between

Sw(Ã, C̃) and Sw(B̃, C̃) as

Sw(Ã, C̃) = 1− wI1 − (1− w)I ′1 ≤ 1− wI2 − (1− w)I ′2 = Sw(B̃, C̃).

Similarly, we can show that Sw(Ã, C̃) ≤ Sw(Ã, B̃), and the proof is complete. �
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Remark 3.4. It should be mentioned that, the most common similarity measures
introduced by authors satisfy the properties P1, P3, P4, and a weak version of P2

as “P2′) if Ã = B̃, then S(Ã, B̃) = 1”. For instance, see [22, 23, 28, 34]. Note that,
as we will explain in the next section, considering P2′ instead of P2 may lead to
some mistakes in practical applications.

Remark 3.5. In Definition 3.1, if νÃ(.) = 1 − µÃ(.) and νB̃(.) = 1 − µB̃(.), then,

two interval-valued fuzzy sets Ã and B̃ are reduced to two fuzzy sets. In such a

case, the weighted similarity measure between Ã and B̃ is reduced as follows

Sw(Ã, B̃) =


1−

∑n
i=1 |µÃ(xi)−µB̃(xi)|∑n

i=1 µÃ(xi)+
∑n
i=1 µB̃(xi)

, if X = {x1, x2, ..., xn}

1−
∫∞
−∞ |µÃ(x)−µB̃(x)|dx∫∞

−∞ µÃ(x)dx+
∫∞
−∞ µB̃(x)dx

. if X = R

Definition 3.6. [22] Assume that there exist n patterns in the universal set X,

which are represented by IVFSs Ãi, i = 1, 2, ..., n, and there is a sample represented

by IVFS B̃ in X. Suppose that

Sw(Ãk, B̃) = max
i=1,...,n

{Sw(Ãi, B̃)}.

Then, we decide that the sample B̃ should belong to the pattern Ãk. This principle
is called “principle of the maximum degree of similarity”, and is commonly used in
pattern recognition based on IVFSs.

4. Comparison Studies

In this section, we compare our method with some other works on the similarity
measures of the interval-value (intuitionistic) fuzzy sets.

4.1. Comparison with Li and Cheng’s Approach. Let Ã and B̃ be two IVFSs
on the universal set X. Li and Cheng [22] based on the median values ϕÃ(i) =
(µÃ(xi) + 1 − νÃ(xi))/2 and ϕB̃(i) = (µB̃(xi) + 1 − νB̃(xi))/2, i = 1, 2, ..., n,

introduced a similarity measure between Ã and B̃ as follows (p ≥ 1)

SpLC(Ã, B̃) =


1− 1

p
√
n
p

√∑n
i=1

(
ϕÃ(i)− ϕB̃(i)

)p
, if X = {x1, x2, ..., xn}

1− 1
p√b−a

p

√∫ b
a

(
ϕÃ(x)− ϕB̃(x)

)p
dx. if X = [a, b]

Our proposed similarity measure has the following advantages over the Li and
Cheng’s one.

The similarity measure introduced by Li and Cheng is based on the median
values ϕÃ(i) and ϕB̃(i), i = 1, ..., n. Now, if median values for each subintervel
[µÃ(xi), 1− νÃ(xi)] and [µB̃(xi), 1− νB̃(xi)] are equal, then the similarity measure

between Ã and B̃ is equal to 1. Hence, in such cases, we can not distinguish different



72 M. Arefi and S. M. Taheri

similarities. But, our method is based on the proportions of end points of subin-

tervals in IVFSs (i.e. ϕµ(xi) =
|µÃ(xi)−µB̃(xi)|

STµ
and ϕν(xi) =

|νÃ(xi)−νB̃(xi)|
STν

). Since

STµ and STν are depended on the degrees of membership and non-membership of
IVFSs, we obtain different results, while the median values of IVFSs are the same
(see Example 4.1).

Also, based on SpLC(Ã, B̃), we may have Ã 6= B̃, but SpLC(Ã, B̃) = 1. In fact, the
definition proposed by Li and Cheng obeys the weak property P2′ instead of P2.

Example 4.1. [23] Suppose that there are three patterns denoted by IFVSs on
X = {x1, x2, x3} as follows:

Ã1 = {(x1, [0.3, 0.7]), (x2, [0.2, 0.8]), (x3, [0.1, 0.9])};
Ã2 = {(x1, [0.2, 0.8]), (x2, [0.2, 0.8]), (x3, [0.2, 0.8])};
Ã3 = {(x1, [0.4, 0.6]), (x2, [0.4, 0.6]), (x3, [0.4, 0.6])}.

Assume that a sample B̃ = {(x1, [0.3, 0.7]), (x2, [0.2, 0.8]), (x3, [0.1, 0.9])} is given.

According to Li and Cheng’s definition, SpLC(Ã1, B̃) = 1, SpLC(Ã3, B̃) = 1, and

SpLC(Ã2, B̃) = 1. It is clear that the sample B̃ is similar to the pattern Ã1, but the
correct result is not obtained based on this definition. According to our proposed

definition with w = 1
2 , Sw(Ã1, B̃) = 1, Sw(Ã3, B̃) = 0.8958, and Sw(Ã2, B̃) =

0.7619. Hence, the sample B̃ belongs to the pattern Ã1.

4.2. Comparison with Liang and Shi’s Approaches. In the following, we
compare our method with two methods introduced by Liang and Shi [23].

4.2.1. Liang and Shi’s First Approach. The first similarity measure on X =
{x1, x2, ..., xn} by Liang and Shi is introduced as

SpLS1(Ã, B̃) = 1− 1
p
√
n

p

√√√√ n∑
i=1

(ϕµAB (i) + ϕνAB (i))
p
, p ≥ 1

where, ϕµAB (i) = |µÃ(xi)−µB̃(xi)|/2 and ϕνAB (i) = |(1−νÃ(xi))−(1−νB̃(xi))|/2.
Liang and Shi in this definition used the differences of two end points of the

intervals in IVFSs. Hence, if the difference values of intervals between IVFSs are
equal, since the denominators of ϕµAB (.) and ϕνAB (.) are fixed, then similarity
measures between IVFSs are equal, and we can not obtain the correct result. But,
in our approach, we use STµ and STν in the denominators of ϕµ(xi) and ϕν(xi),
hence, the similarity measures between IVFSs are different (see Example 4.2).

Also, note that the definition proposed by Liang and Shi obeys the weak property
P2′, but it does not satisfies the property P2.

4.2.2. Liang and Shi’s Second Approach. Liang and Shi [23] also introduced
another definition of similarity measure on X = {x1, x2, ..., xn}. They first defined
the median values of the IVF sets asmÃ(xi) = (µÃ(xi)+1−νÃ(xi))/2 andmB̃(xi) =
(µB̃(xi) + 1 − νB̃(xi))/2, i = 1, 2, ..., n. Hence, the interval [µÃ(xi), 1 − νÃ(xi)] is
divided into two subintervals [µÃ(xi),mÃ(xi)] and [mÃ(xi), 1−νÃ(xi)] (in a similar
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way, we obtain [µB̃(xi),mB̃(xi)] and [mB̃(xi), 1 − νB̃(xi)]). The median values of
these subintervals are obtained as follows

mA1(xi) =
µÃ(xi) +mÃ(xi)

2
, mA2(xi) =

mÃ(xi)+1−νÃ(xi)

2 ,

mB1(xi) =
µB̃(xi) +mB̃(xi)

2
, mB2(xi) =

mB̃(xi)+1−νB̃(xi)

2 .

Then, the similarity measure between Ã and B̃ is defined as follows

SpLS2(Ã, B̃) = 1− 1
p
√
n

p

√√√√ n∑
i=1

(ϕs1(i) + ϕs2(i))
p
, p ≥ 1

where, for each i = 1, 2, ..., n

ϕs1(i) =
|mA1(xi)−mB1(xi)|

2
, ϕs2(i) =

|mA2(xi)−mB2(xi)|
2

.

In this definition, if the median values of subintervals of IVFSs are equal, since
the denominators of ϕs1(.) and ϕs2(.) are fixed, then similarity measures between
IVFSs are equal, and we can not obtain the correct result. But in such situations,
since we use STµ and STν in the denominators of ϕµ(.) and ϕν(.), the results of
similarity measures between IVFSs are different (see Example 4.2). Similar to the
first definition of Liang and Shi, the second definition of Liang and Shi does not
obey property P2.

Example 4.2. [23] Assume that there are two patterns denoted by IFVSs on
X = {x1, x2, x3} as follows:

Ã1 = {(x1, [0.2, 0.8]), (x2, [0.2, 0.8]), (x3, [0.2, 0.8])};
Ã2 = {(x1, [0.4, 0.6]), (x2, [0.4, 0.6]), (x3, [0.4, 0.6])}.

Assume that a sample B̃ = {(x1, [0.3, 0.7]), (x2, [0.3, 0.7]), (x3, [0.3, 0.7])} is given.

According to the above definitions of Liang and Shi, SpLS1(Ã1, B̃) = SpLS1(Ã2, B̃)

and SpLS2(Ã1, B̃) = SpLS2(Ã2, B̃). Hence, we can not make a decision about the

sample B̃ based on these definitions. But, based on our definition of similarity

measure for the different values of w, we obtain the different values of Sw(Ã1, B̃)

and Sw(Ã2, B̃). For example, if w = 1
2 then, Sw(Ã1, B̃) = 0.8667 and Sw(Ã2, B̃) =

0.8901. Hence, the sample B̃ belongs to the pattern Ã2.

4.3. Comparison with Zeng and Guo’s Approach. Zeng and Guo [34] in-
troduced a similarity measure between two IVFs on a discrete universal set X =
{x1, x2, ..., xn} based on some normalized distances. They defined the similarity

measure between two IVFs Ã and B̃ as follows

SZG(Ã, B̃) =
f(d(Ã, B̃))− f(1)

f(0)− f(1)
,

where, f : [0, 1] → [0, 1] is a strictly monotone decreasing function, and d(., .) is
some normalized distances from Atanassov [2] as follows
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i) Normalized Hamming distance:

d1(Ã, B̃) =
1

2n

n∑
i=1

(
|µÃ(xi)− µB̃(xi)|+ |νÃ(xi)− νB̃(xi)|

)
,

ii) Normalized Euclidean distance:

d2(Ã, B̃) =

√√√√ 1

2n

n∑
i=1

(
(µÃ(xi)− µB̃(xi))2 + (νÃ(xi)− νB̃(xi))2

)
.

They also introduced some operations for f(.) as follows:

f1(x) = 1− x,
f2(x) = 1− x2,

f3(x) = 1/(1 + x),

f4(x) = e−x.

This definition used the differences of the end points of subintervals in IVFSs for
calculating the normalized distance d(., .). If the difference values between IVFSs
are equal, then the normalized distance between IVFSs are equal, and hence, the
similarity measures between IVFSs are similar. So, we can not obtain the correct
result. But, in our approach, we use STµ and STν in the denominators of ϕµ(xi) and
ϕν(xi), hence, the similarity measures between IVFSs are different (see Example
4.3).

Note that, based on SZG(Ã, B̃), we may have Ã 6= B̃, but SpLC(Ã, B̃) = 1. Hence,
the definition proposed by Zeng and Guo does not satisfy the property P2.

Example 4.3. Consider two patterns Ã1 and Ã2, and the sample B̃ in Example 4.2.

According to the above definitions of Zeng and Guo, since d1(Ã1, B̃) = d1(Ã2, B̃) =

0.1 and d2(Ã1, B̃) = d2(Ã2, B̃) = 0.1, the degrees of similarity measure SZG(Ã1, B̃)

and SZG(Ã2, B̃) are equal for each di(., .), i = 1, 2, and each fj(.), j = 1, .., 4.

Hence, we can not make a decision about the sample B̃ based on this definition.
But, based on our definition of similarity measure, we obtain the different values

of Sw(Ã1, B̃) and Sw(Ã2, B̃). For example, if w = 1
2 then, Sw(Ã1, B̃) = 0.8667 and

Sw(Ã2, B̃) = 0.8901. Hence, the sample B̃ belongs to the pattern Ã2.

4.4. Comparison with Farhadinia’s Approach. Farhadinia [13] introduced a
similarity measure between two IVFs using a special distance on the discrete uni-
versal set X = {x1, x2, ..., xn}. This distance is introduced as follows

dIV F (Ã, B̃) =

√√√√√ 1

n

n∑
i=1

 1

m+ 1

m∑
j=0

[χj(Ã(xi))− χj(B̃(xi))]2


where χj(Ã(xi)) (and χj(B̃(xi))) is the convex combination of the lower and upper
bound values of interval [µÃ(xi), 1− νÃ(xi)]. Finally, by inception of the Zeng and
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Guo’s approach [34], the similarity measure between two IVFs Ã and B̃ is given by

SdF (Ã, B̃) = 1− dIV F (Ã, B̃).
The similarity measure introduced by Farhadinia is based on the convex combi-

nation of lower and upper bound values χj(.), j = 0, 1, ...,m. Now, if the difference
values of lower and upper bounds between IVFs are equal (i.e. µÃ(xi) = ci+µB̃(xi)
and 1−νÃ(xi) = ci+1−νB̃(xi), for some constant values ci, i = 1, 2, ..., n), then, the
similarity measure between these IVFs would be the same. Hence, in such cases,
we can not distinguish different similarities. But, since in our method STµ and
STν are depended on the degrees of membership and non-membership of IVFSs,
we obtain different results (see Example 4.4).

Note that, while our approach is introduced both for discrete and continuous
cases, the Farhadinia’s approach is introduced just for discrete case.

Example 4.4. Suppose that there are two patterns denoted with IFVSs on X =
{x1, x2, x3} as follows:

Ã1 = {(x1, [0.1, 0.2]), (x2, [0.2, 0.5]), (x3, [0.2, 0.4])};
Ã2 = {(x1, [0.5, 0.6]), (x2, [0.6, 0.9]), (x3, [0.8, 1.0])}.

Assume that a sample B̃ = {(x1, [0.3, 0.4]), (x2, [0.4, 0.7]), (x3, [0.5, 0.7])} is given.

According to Farhadinia’s definition, SdF (Ã1, B̃) = SdF (Ã2, B̃) = 0.7620. Hence, we

can not take a correct decision about the sample C̃ based on this definition. But,

based on our definition of similarity measure, we obtain Sw(Ã1, B̃) < Sw(Ã2, B̃)

for each w ∈ [0, 1]. Hence, the sample B̃ belongs to the pattern Ã2.

4.5. Comparison with Wang and Xin’s Approach. Wang and Xin [28] in-
troduced a similarity measure between two IVFs on the discrete universal set
X = {x1, x2, ..., xn} based on a certain distance measure. They first introduced

a distance measure between Ã and B̃ as follows

dWX(Ã, B̃) = 1
n

∑n
i=1

[
|µÃ(xi)−µB̃(xi)|+|νÃ(xi)−νB̃(xi)|

4

+
max(|µÃ(xi)−µB̃(xi)|,|νÃ(xi)−νB̃(xi)|)

2

]
.

Then, the similarity measure between Ã and B̃ is defined as SWX(Ã, B̃) = 1 −
dWX(Ã, B̃).

This definition is similar to the definition of similarity measure introduced by
Zeng and Guo [34] in Subsection 4.3 for the function f1(x) = 1 − x. But, Wang
and Xin in this definition have added the following expression to the normalized

Hamming distance d1(Ã, B̃):

max(|µÃ(xi)− µB̃(xi)|, |νÃ(xi)− νB̃(xi)|)
2

.

Hence, if the differences of end points of subintervals in IVFSs and the values
max(., .) between this differences are similar, then we can not obtain the correct
result. Note that in this definition, the denominators are fixed, but, in our approach,
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we use STµ and STν in the denominators of ϕµ(xi) and ϕν(xi), and hence, the
similarity measures between IVFSs are different (see Example 4.5).

Note that, in Wang and Xin’s approach, the weak property P2′, rather than P2,
is held.

Example 4.5. Consider two patterns Ã1 and Ã2 in Example 4.2. Now, assume

that a sample C̃ = {(x1, [0.3, 0.7]), (x2, [0.3, 0.7]), (x3, [0.5, 0.9])} is given. According

to Wang and Xin’s definition, SWX(Ã1, C̃) = SWX(Ã2, C̃) = 0.8500. Hence, we

can not make a correct decision about the sample C̃ based on Wang and Xin’s
definition. But, based on our definition of similarity measure for each w < 0.2620,

Sw(Ã1, C̃) > Sw(Ã2, C̃) and for each w > 0.2620, Sw(Ã1, C̃) < Sw(Ã2, C̃). Hence,

for w < 0.2620, the sample C̃ belongs to the pattern Ã1, and for w > 0.2620, the

sample C̃ belongs to the pattern Ã2.

5. Numerical Examples in Pattern Recognition

In this section, we apply the proposed similarity measure to several numerical
examples given by Li and Cheng [22], Liang and Shi [23] and Wang and Xin [28],
and explain advantages of the proposed measure.

Example 5.1. [23] Assume that there are three patterns denoted with IFVSs on
X = {x1, x2, x3} as follows:

Ã1 = {(x1, [0.1, 0.9]), (x2, [0.5, 0.9]), (x3, [0.1, 0.1])};
Ã2 = {(x1, [0.5, 0.5]), (x2, [0.7, 0.7]), (x3, [0.0, 0.2])};
Ã3 = {(x1, [0.7, 0.8]), (x2, [0.1, 0.2]), (x3, [0.4, 0.6])}.

Assume that a sample B̃ = {(x1, [0.4, 0.6]), (x2, [0.6, 0.8]), (x3, [0.0, 0.2])} is given.

Some degrees of similarity measure are obtained in Table 1. Since, Sw(Ã3, B̃) <

Sw(Ã1, B̃) < Sw(Ã2, B̃), the sample B̃ belongs to the pattern Ã2 based on each
value of w. This result is similar to that of Liang and Shi [23].

Example 5.2. [28] Given five kinds of mineral fields, each is featured by the
content of six minerals and contains one kind of typical hybrid mineral. The five

kinds of typical hybrid mineral are represented by IVFSs C̃1, C̃2, C̃3, C̃4, C̃5 in X =

{x1, x2, ..., x6}, respectively. Given another kind of hybrid mineral B̃, to which field

does this kind of mineral B̃ most possibly belong to? These IVFSs are shown in
Table 2.

The degrees of similarity measure are obtained as shown in Table 3. It is seen that

the pattern B̃ belongs to the class C̃5 according to the principle of the maximum
degree of similarity between IVFSs (Definition 3.6). This result is the same as the
result of Wang and Xin [28].

Example 5.3. [22] Let two patterns be represented by IVFSs

Ã1 = {(x, [µÃ1
(x), 1− νÃ1

(x)]) | x ∈ [1, 5]},

Ã2 = {(x, [µÃ2
(x), 1− νÃ2

(x)]) | x ∈ [1, 5]},
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Sw(Ã1, B̃) Sw(Ã2, B̃) Sw(Ã3, B̃)
w = 0.1 0.8420 0.9309 0.6080
w = 0.2 0.8269 0.9285 0.5909
w = 0.3 0.8118 0.9261 0.5739
w = 0.4 0.7966 0.9236 0.5568
w = 0.5 0.7815 0.9212 0.5398
w = 0.6 0.7664 0.9188 0.5227
w = 0.7 0.7513 0.9164 0.5057
w = 0.8 0.7361 0.9139 0.4886
w = 0.9 0.7210 0.9115 0.4716

Table 1. Some Degrees of Similarity in Example 5.1

x1 x2 x3 x4 x5 x6
[µ(.), 1− ν(.)] [µ(.), 1− ν(.)] [µ(.), 1− ν(.)] [µ(.), 1− ν(.)] [µ(.), 1− ν(.)] [µ(.), 1− ν(.)]

C̃1 [0.739, 0.875] [0.033, 0.182] [0.188, 0.374] [0.492, 0.642] [0.020, 0.372] [0.739, 0.875]

C̃2 [0.124, 0.335] [0.030, 0.175] [0.048, 0.200] [0.136, 0.352] [0.019, 0.177] [0.347, 0.393]

C̃3 [0.449, 0.613] [0.662, 0.702] [1.000, 1.000] [1.000, 1.000] [1.000, 1.000] [1.000, 1.000]

C̃4 [0.280, 0.285] [0.521, 0.632] [0.470, 0.577] [0.295, 0.342] [0.188, 0.194] [0.735, 0.882]

C̃5 [0.326, 0.548] [1.000, 1.000] [0.182, 0.275] [0.156, 0.235] [0.049, 0.104] [0.675, 0.737]

B̃ [0.629, 0.697] [0.524, 0.644] [0.210, 0.311] [0.218, 0.247] [0.069, 0.124] [0.658, 0.744]

Table 2. Six Kinds of Materials represented by IVFSs in Example 5.2

Sw(C̃1, B̃) Sw(C̃2, B̃) Sw(C̃3, B̃) Sw(C̃4, B̃) Sw(C̃5, B̃)

w = 1
3

0.7625 0.6026 0.6339 0.8219 0.8674

w = 1
2

0.7650 0.5688 0.6188 0.8203 0.8523

w = 2
3

0.7676 0.5350 0.6038 0.8187 0.8373

Table 3. Some Degrees of Similarity in Example 5.2

where

µ
Ã1

(x) =

{
0.8(x− 1) 1 ≤ x < 2,

4(5− x)/15 2 ≤ x ≤ 5,
ν
Ã1

(x) =

{
1.9− 0.9x 1 ≤ x < 2,

0.3x− 0.5 2 ≤ x ≤ 5,

µ
Ã2

(x) =

{
0.2(x− 1) 1 ≤ x < 4,
0.6(5− x) 4 ≤ x ≤ 5,

ν
Ã2

(x) =

{
1.3− 0.3x 1 ≤ x < 4,
0.9x− 3.5 4 ≤ x ≤ 5.

Now, assume that the sample B̃ = {(x, [µB̃(x), 1 − νB̃(x)]) | x ∈ [1, 5]} is given,
where

µB̃(x) =

{
0.3(x− 1) 1 ≤ x < 3,
0.3(5− x) 3 ≤ x ≤ 5,

νB̃(x) =

{
1.4− 0.4x 1 ≤ x < 3,
0.4x− 1 3 ≤ x ≤ 5.

The weighted similarity measures between B̃ and Ãi, i = 1, 2, are obtained as
follows

Sw(Ã1, B̃) = 1− w ·
∫ ∞
−∞

ϕµ(x)dx− (1− w) ·
∫ ∞
−∞

ϕν(x)dx

= 1− w ×
23

119
− (1− w)×

23

119

=
96

119
,

Sw(Ã2, B̃) = 1− w ·
∫ ∞
−∞

ϕµ(x)dx− (1− w) ·
∫ ∞
−∞

ϕν(x)dx

= 1− w ×
1

5
− (1− w)×

23

119
.

Since, for each w ∈ [0, 1], Sw(Ã2, B̃) < Sw(Ã1, B̃), then, according to the principle
of the maximum degree of similarity between IVFSs (Definition 3.6), the pattern
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B̃ belongs to the class Ã1. This result is different from the result of Li and Cheng
[22].

6. Conclusion

Similarity measure is a term that describes the difference between two objects
(e.g. two fuzzy sets or two interval-valued fuzzy sets), and can be considered as a
dual concept of distance measure. As an important content in fuzzy mathematics,
the similarity measures between interval-valued fuzzy sets have also gained much
attentions for their wide applications in real world, such as pattern recognition,
machine learning, decision making and market prediction.

In this paper, we introduced a new similarity measure for interval-valued fuzzy
data. This measure, by using a weight parameter, employs two similarity measure
between the lower functions and between upper functions. The weight parame-
ter makes the measure more applicable so that a user can take attention on, for
example, the lower functions by considering a great value for the weight.

The properties of the introduced measure were investigated. It was shown that,
having a more useful property, the proposed measure works much better than a lot
of commonly used measures, specially in some pattern recognition problems.

Acknowledgements. The authors wish to express their thanks to the referees for
valuable comments which improved the paper.
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