Fixed point results in fuzzy metric-like spaces

Document Type: Research Paper

Authors

1 Department of Applied Mathematics, Shri Vaishnav Institute of Technology & Science, Gram Baroli, Sanwer Road, Indore (M.P.) 453331, India

2 Department of Mathematics and Applied Mathematics, University of Pretoria, Lynnwood road, Pretoria 0002, South Africa

Abstract

In this paper,  the concept of fuzzy metric-like spaces is introduced which generalizes  the notion of fuzzy metric spaces given by George and Veeramani \cite{Vee1}. Some fixed point results for fuzzy contractive mappings on fuzzy metric-like spaces are derived. These results generalize several comparable results from the current literature. We also provide illustrative examples in support of our new results where result from current literature are not applicable.

Keywords


bibitem{Beg} I. Beg, S. Sedghi and N. Shobe, textit{Fixed point theorems in fuzzy
metric spaces}, Internat. J. Anal., Article ID 934145, textbf{2013} (2013), 1-4.

bibitem{SSC} S. S. Chang, Y. J. Cho, B. S. Lee, J. S. Jung and S. M. Kang,
textit{Coincidence point theorems and minimization theorems in fuzzy metric spaces},
Fuzzy Sets and Systems, textbf{88} (1997), 119-128.

bibitem{Sun1} S. Chauhan, M. A. Khan and W. Sintunavarat, textit{Common fixed
point theorems in fuzzy metric spaces satisfying $phi$-contractive
condition with common limit range property}, Abstr. Appl. Anal., Article ID 735217,
textbf{2013} (2013), 1-14.

bibitem{Sun2} S. Chauhan and S. Kumar, textit{Coincidence and xed points in fuzzy
metrtc spaces using common property (E.A)}, Kochi J. Math., textbf{8} (2013), 135-154.

bibitem{Cho1} Y. J. Cho, textit{Fixed points in fuzzy metric spaces}, J.
Fuzzy Math., textbf{5} (1997), 949-962.

bibitem{Cho2} Y. J. Cho, H. K. Pathak, S. M. Kang and J. S. Jung,
textit{Common fixed points of compatible maps of type $(beta)$ on fuzzy
metric spaces}, Fuzzy Sets and Systems, textbf{93} (1998), 99-111.

bibitem{Den} Z. K. Deng, textit{Fuzzy pseudo-metric spaces}, J. Math. Anal. Appl.,
textbf{86} (1982), 74-95.

bibitem{Vee1} A. George and P. Veeramani, textit{On some results in fuzzy metric
spaces}, Fuzzy Sets and Systems, textbf{64} (1994), 395-399.

bibitem{Vee} A. George and P. Veeramani, textit{On some results of analysis for
fuzzy metric spaces}, Fuzzy Sets and Systems, textbf{90} (1997), 365-368.

bibitem{Gop} D. Gopal, M. Imdad and C. Vetro, textit{Impact of common property
(E.A.) on fixed point theorems in fuzzy metric spaces}, Fixed Point Theory
Appl., Article ID 297360, textbf{2011(1)} (2011), 1-14.

bibitem{Gre} V. Gregori and A. Sapena, textit{On fixed-point theorems in fuzzy
metric spaces}, Fuzzy Sets and Systems, textbf{125} (2002), 245-252.

bibitem{Har} A. A. Harandi, Metric-like spaces, textit{partial metric spaces
and fixed points}, Fixed Point Theory Appl., Article ID 204, textbf{2012(1)} (2012), 1-10.

bibitem{Im} M. Imdad, J. Ali and M. Hasan, textit{Common fixed point theorems in fuzzy
metric spaces employing common property (E.A.)}, Math. Comput. Modelling,
textbf{55(3)} (2012), 770-778.


bibitem{Kra} I. Kramosil and J. Michalek, textit{Fuzzy metric and statistical metric
spaces}, Kybernetica, textbf{15} (1975), 326-334.

bibitem{Dmih} D. Mihet, textit{Fixed point theorems in fuzzy metric spaces using
property (E.A)}, Nonlinear Anal., textbf{73(7)} (2010), 2184-2188.

bibitem{PP} P. P. Murthy, S. Kumar and K. Tas, textit{Common fixed points of self
maps satisfying an integral type contractive condition in fuzzy metric
spaces}, Math. Commun., textbf{15(2)} (2010), 521-537.

bibitem{El} M. S. E. Naschie, textit{On a fuzzy Khaler-like manifold which is
consistent with two slit experiment}, Int. J. Nonlinear Sciences and
Numerical Simulation, textbf{6} (2005), 95-98.

bibitem{exa} A. Sapena, textit{A contribution to the study of fuzzy metric spaces},
Applied General Topology, textbf{2(1)} (2001) 63-75.

bibitem{Sch} B. Schweizer and A. Sklar, textit{Statistical metric spaces}, Pacific J.
Math., textbf{10} (1960), 313-334.

bibitem{YH} Y. H. Shen and W. Chen, textit{Fixed point theorems for cyclic
contraction mappings in fuzzy metric spaces}, Fixed Point Theory Appl.
textbf{2013}, 2013:133.

bibitem{YH3} Y. H. Shen, H. F. Li and F. X. Wang, textit{On interval-valued
fuzzy metric spaces}, Internat. J. Fuzzy Syst., textbf{14(1)} (2012), 35-44.

bibitem{YH1} Y. H. Shen, D. Qiu and W. Chen, textit{Fixed point theorems in
fuzzy metric spaces}, Appl. Math. Lett., textbf{25(2)} (2012), 138-141.

bibitem{YH2} Y. H. Shen, D. Qiu and W. Chen, textit{On convergence of fixed
points in fuzzy metric spaces}, Abastr. Appl. Anal., Article ID 135202, textbf{2013} (2013),
1-6.

%bibitem{Mer} F. Merghadi and A. Aliouche, textit{A related fixed point theorem in
%N-fuzzy metric spaces}, Iranian Journal of Fuzzy Systems, textbf{7(3)} (2010), 73-86.

%bibitem{Is} I. Altun, textit{Some fixed point theorems for single and muli valued
%mappings on ordered nonarchimedean fuzzy metric spaces}, Iranian Journal of
%Fuzzy Systems, textbf{7(3)} (2010), 91-96.

%bibitem{Saa} R. Saadati, S. Sedghi and H. Zhou, textit{A common fixed point
%theorem for weakly commuting maps in L-fuzzy metric spaces}, Iranian Journal
%of Fuzzy Systems, textbf{5(1)} (2008), 47-53.

%bibitem{Sed} S. Sedghi, K. P. R. Rao and N. Shobe, textit{A common fixed point
%theorem for six weakly compatible maps in M-fuzzy metric spaces}, Iranian
%Journal of Fuzzy Systems, textbf{5(2)} (2008), 49-62.

bibitem{WS} W. Sintunavarat and P. Kumam, textit{Common fixed points for
R-weakly commuting in fuzzy metric spaces}, Annali dell'Universita di
Ferrara, textbf{58(2)} (2012), 389-406.

%bibitem{Hon} Y. Hong, X. Fang and B. Wang, textit{Intuitionistic fuzzy
%quasi-metric and pseudo-metric spaces}, Iranian Journal of Fuzzy Systems,
%textbf{5(3)} (2008), 81-88.

bibitem{Zad} L. A. Zadeh, textit{Fuzzy sets}, Information and Control, textbf{ 8}
(1965), 338-353.