• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Iranian Journal of Fuzzy Systems
Articles in Press
Current Issue
Journal Archive
Volume Volume 15 (2018)
Volume Volume 14 (2017)
Volume Volume 13 (2016)
Volume Volume 12 (2015)
Volume Volume 11 (2014)
Issue Issue 6
Issue Issue 5
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 10 (2013)
Volume Volume 9 (2012)
Volume Volume 8 (2011)
Volume Volume 7 (2010)
Volume Volume 6 (2009)
Volume Volume 5 (2008)
Volume Volume 4 (2007)
Volume Volume 3 (2006)
Volume Volume 2 (2005)
Volume Volume 1 (2004)
Hao, J., Li, Q., Guo, L. (2014). Fuzzy order congruences on fuzzy posets. Iranian Journal of Fuzzy Systems, 11(6), 89-109. doi: 10.22111/ijfs.2014.1750
Jing Hao; Qingguo Li; Lankun Guo. "Fuzzy order congruences on fuzzy posets". Iranian Journal of Fuzzy Systems, 11, 6, 2014, 89-109. doi: 10.22111/ijfs.2014.1750
Hao, J., Li, Q., Guo, L. (2014). 'Fuzzy order congruences on fuzzy posets', Iranian Journal of Fuzzy Systems, 11(6), pp. 89-109. doi: 10.22111/ijfs.2014.1750
Hao, J., Li, Q., Guo, L. Fuzzy order congruences on fuzzy posets. Iranian Journal of Fuzzy Systems, 2014; 11(6): 89-109. doi: 10.22111/ijfs.2014.1750

Fuzzy order congruences on fuzzy posets

Article 6, Volume 11, Issue 6, November and December 2014, Page 89-109  XML PDF (493 K)
Document Type: Research Paper
DOI: 10.22111/ijfs.2014.1750
Authors
Jing Hao1; Qingguo Li 2; Lankun Guo3
1College of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou, 450000, China
2College of Mathematics and Econometrics, Hunan University, Chang- sha, 410082, China
3College of Information Science and Engineering, Hunan University, Changsha, 410082, China
Abstract
Fuzzy order congruences play an important role in studying the categorical
properties of fuzzy posets. In this paper, the correspondence between the fuzzy
order congruences and the fuzzy order-preserving maps is discussed. We focus on
the characterization of fuzzy order congruences on the fuzzy poset in terms of
the fuzzy preorders containing the fuzzy partial order. At last, fuzzy complete
congruences on fuzzy complete lattices are discussed.
Keywords
Fuzzy poset; Fuzzy relation; Fuzzy order congruence; Fuzzy preorder; Fuzzy complete congruence
References
bibitem{ahs90} J. Adamek, H. Herrlich and G. Strecker, {it Abstract and
concrete categories: the joy of cats}, John Wiley and Sons, New York, 1990.

bibitem{rb02} R. Bv{e}lohl'avek, {it Fuzzy relational systems: foundations
and principles}, Kluwer Academic Publishers, Norwell, MA, USA, 2002.

bibitem{rb04} R. Bv{e}lohl'{a}vek, {it Concept lattices and order in fuzzy logic},
Ann. Pure Appl. Logic, {bf 128} (2004), 277--298.

bibitem{bt03} K. Blount and C. Tsinakis, {it The structure of residuated lattices},
Int. J. Algebr. Comput., {bf 13}textbf{(4)} (2003), 437--461.

bibitem{ub04} U. Bodenhofer, {it Applications of fuzzy orderings: an overview},
In: K. T. Atanasov, O. Hryniewicz, J. Kacprycz, eds., Soft Computing. Foundations
and Theoretical Aspects, EXIT, Warsaw, (2004), 81--95.

bibitem{ub07} U. Bodenhofer, B. De Baets and J. Fodor, {it A compendium of fuzzy
weak orders}, Fuzzy Sets and Systems, {bf 158} (2007), 811--829.

bibitem{csn98} I. Chajda and V. Sn'{a}v{s}el, {it Congruences in ordered sets},
Math. Bohem., {bf 123}textbf{(1)} (1998), 95--100.

bibitem{cib07} M. '{C}iri'{c}, J. Ignjatovi'{c} and S. Bogdanovi'{c},
{it Fuzzy equivalence relations and their equivalence classes}, Fuzzy Sets and Systems,
{bf 158} (2007), 1295--1313.

bibitem{dp02} B. A. Davey and H. A. Priestley, {it Introduction to lattices and
order}, Cambridge University Press, Cambridge, 2002.

bibitem{debm98} B. De Baets and R. Mesiar, {it T-partitions}, Fuzzy Sets and Systems,
{bf 97} (1998), 211--223.

bibitem{debm02} B. De Baets and R. Mesiar, {it Metrics and T-equalities},
J. Math. Anal. Appl., {bf 267} (2002) 531--547.

bibitem{mde03I} M. Demirci, {it Indistinguishability operators in measurement
theory, Part I: Conversions of indistinguishability operators with respect to
scales}, Internat. J. General Systems, {bf 32} (2003), 415--430.

bibitem{mde03II} M. Demirci, {it Indistinguishability operators in measurement
theory, Part II: Construction of indistinguishability operators based on
probability distributions}, Internat. J. General Systems, {bf 32} (2003), 431--458.

bibitem{mde04} M. Demirci and J. Recasens, {it Fuzzy groups, fuzzy functions and
fuzzy equivalence relations}, Fuzzy Sets and Systems, {bf 144} (2004), 441--458.

bibitem{lf01} L. Fan, {it A new approach to quantitative domain theory},
Electronic Notes in Theoretical Computer Science, {bf 45} (2001), 77--87.


bibitem{fsw96} R. C. Flagg, Ph. S"{u}nderhauf and K. R. Wagner,
{it A logical approach to quantitative domain theory}, Topology Atlas Preprint,
{bf 23} (1996), 10--29.

bibitem{gsw99} B. Ganter, G. Stumme and R. Wille, {it Formal concept analysis:
Mathematical Foundations}, Springer, Berlin, 1999.

bibitem{jag67} J. A. Goguen, {it $L$-fuzzy sets}, J. Math. Anal. Appl.,
 {bf 18} (1967), 145--174.

bibitem{fuzzy10} R. Gonz'{a}lez-del-Campo, L. Garmendia and B. De Baets,
{it Transitive closure of $L$-fuzzy relations and interval-valued fuzzy relations},
Fuzzy Systems (FUZZ), 2010 IEEE International Conference on, July (2010), 1--8.

bibitem{rh00} R. Halav{s}, {it Congruences on posets}, Contributions to
General Algebra, {bf 12} (2000), 195--210.

bibitem{hd03} R. Halav{s} and D. Hort, {it A characterization of
1-,2-,3-,4-homomorphisms of ordered sets}, Czechoslovak Math. J.,
{bf 53}textbf{(128)} (2003), 213--221.

bibitem{hol85} U. H"{o}hle and N. Blanchard, {it Partial ordering in $L$-under
determinate sets}, Information Science, {bf 35} (1985), 133--144.

bibitem{pk05} P. K"{o}rtesi, {it Congruences and isotone maps on partially
ordered sets}, Mathematica Pannonica, {bf 16}textbf{(1)} (2005), 39--55.

bibitem{lzh07} H. Lai and D. Zhang, {it Complete and directed complete
$Omega$-categories}, Theor. Comput. Sci., {bf 388} (2007), 1--25.

bibitem{mar11} P. Martinek, {it Completely lattice $L$-ordered sets with
and without $L$-equality}, Fuzzy Sets and Systems, {bf 166} (2011), 44--55.

bibitem{szk08} K. P. Shum, P. Zhu and N. Kehayopulu, {it III-Homomorphisms and
III-congruences on posets}, Discrete Math., {bf 308} (2008), 5006--5013.

bibitem{et99} E. Turunen, {it Mathematics behind fuzzy logic},
Physica--Verlag, 1999.

bibitem{ven92} P. Venugopalan, {it Fuzzy ordered sets}, Fuzzy Sets and Systems,
{bf46} (1992), 221--226.

bibitem{wag94} K. R. Wagner, {it Solving recursive domain equations with
enriched categories}, Ph.D. Thesis, School of Computer Science, Carnegie
Mellon University, Technical Report CMU-CS-94-159, July 1994.

bibitem{wag97} K. R. Wagner, {it Liminf convergence in $Omega$-categories},
Theor. Comput. Sci., {bf 184} (1997), 61--104.

bibitem{wd39} M. Ward and R. P. Dilworth, {it Residuated lattices},
T. Am. Math. Soc., {bf 45} (1939), 335--354.

bibitem{xzhf09} W. Xie, Q. Zhang and L. Fan, {it The Dedekind-MacNeille
completions for fuzzy posets}, Fuzzy Sets and Systems, {bf 160} (2009), 2292--2316.

bibitem{xs05} X. Xie and X. Shi, {it Order-congruences on S-posets}, Commun.
Korean Math. Soc., {bf 20}textbf{(1)} (2005), 1--14.

bibitem{yao10} W. Yao, {it Quantitative domains via fuzzy sets: part I:
continuity of fuzzy directed complete posets}, Fuzzy Sets and Systems,
{bf 161} (2010), 973--987.

bibitem{zad71} L. A. Zadeh, {it Similarity relations and fuzzy orderings},
Information Science, {bf 3} (1971), 177--200.

bibitem{zf05} Q. Zhang and L. Fan, {it Continuity in quantitative domains},
Fuzzy Sets and Systems, {bf 154} (2005), 118--131.

bibitem{zxf09} Q. Zhang, W. Xie and L. Fan, {it Fuzzy complete lattices},
Fuzzy Sets and Systems, {bf 160} (2009), 2275--2291.

Statistics
Article View: 2,160
PDF Download: 1,436
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.