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FUZZY ORDER CONGRUENCES ON FUZZY POSETS

J. HAO, Q. LI AND L. GUO

Abstract. Fuzzy order congruences play an important role in studying the
categorical properties of fuzzy posets. In this paper, the correspondence be-

tween the fuzzy order congruences and the fuzzy order-preserving maps is

discussed. We focus on the characterization of fuzzy order congruences on the
fuzzy poset in terms of the fuzzy preorders containing the fuzzy partial order.

At last, fuzzy complete congruences on fuzzy complete lattices are discussed.

1. Introduction

Congruences are mostly studied in abstract algebra. In essence, they are equiv-
alence relations compatible with the underlying algebraic structure and every con-
gruence corresponds to a quotient structure that is made up of the equivalence
classes. It is well known that in the classical setting, there exists a one-to-one
correspondence between the set of congruences on an algebra A and the set of
homomorphisms with domain X, which is the universe of algebra A.

On a poset, order congruences are those equivalence relations compatible with
the order structure. Various kinds of order congruences have been proposed in the
literature and each of them corresponds to a particular isotone map [7, 20, 21, 23,
26]. Particularly, order congruences proposed by Kortesi in [23] as the kernel of the
isotone maps are the most general ones. In their work, the order congruences were
characterized and the lattice properties of the set of order congruences on a poset
were also investigated.

Much work has been devoted to the fuzzification of partially ordered sets. After
Zadeh first introduced fuzzy orders in [35], more research in this field are developed
[3, 5, 6, 15, 16, 22, 24, 25, 28, 29, 30, 37]. And since then, there are two directions
in studying the fuzzy orders. One is to treat fuzzy orders as enriched categories
over commutative unital quantale [16, 24, 29, 30]. Lai and Zhang [24] investigated
the L-preordered sets as enriched categories over a commutative, unital quantale Ω.
The other is from the viewpoint of fuzzy set theory [3, 15, 25, 37]. Fuzzy partially
ordered set (X, e) was proposed by Fan in [15], where e is a reflexive, antisymmetric
and transitive fuzzy relation over X. Fuzzy poset, sometimes called L-ordered set,
was originally introduced in [3] in order to fuzzify the fundamental theorem of
concept lattices. Particularly, a fuzzy poset (X, e) is called a fuzzy complete lattice

Received: January 2013; Revised: June 2014; Accepted: November 2014

Key words and phrases: Fuzzy poset, Fuzzy relation, Fuzzy order congruence, Fuzzy preorder,
Fuzzy complete congruence.



90 J. Hao, Q. Li and L. Guo

[37] if every fuzzy subset has both join and meet that belong to X. In [25], Martinek
discussed completely lattice L-ordered sets with and without L-equality.

In the literature, a lot of research work have been put on partially ordered al-
gebras, such as partially ordered semigroups, groups, rings, S-posets and so on.
Order congruences(partial order congruences) on partially ordered algebras play
an important role in studying the categorical properties of these structures. In
[33], Xie and Shi proposed the concept of pseudo order to characterize the order
congruence on S-poset where the pseudo order is a preorder containing the partial
order. Complete congruence is an equivalence relation compatible with the un-
derlying complete lattice. In [17], Ganter and Wille discussed the correspondence
between the complete congruence and formal context. The complete congruence is
a particular kind of order congruence. Since complete lattice has strong connection
with formal concept analysis, so the factorization of the concept lattice through a
complete congruence generated by a special sub context is investigated in [17].

This paper is devoted to discuss the fuzzy order congruences on fuzzy posets.
On a fuzzy poset, fuzzy order congruences are fuzzy equivalence relations which are
compatible with the underlying fuzzy partial order. We discuss the fuzzy quotient
poset and the corresponding properties. Then on a fuzzy poset, the fuzzy order
congruence is characterized by the fuzzy preorders containing the fuzzy partial or-
der. Some lattice properties of fuzzy preorders that contains the fuzzy partial order
are also investigated. According to the fuzzy order congruences, we obtain some
categorical properties of fuzzy posets. Since there is a closely relevant connection
between fuzzy complete lattices and fuzzy concept analysis, so we apply this to a
fuzzy complete lattice. We introduce the notion of fuzzy complete congruence on
fuzzy complete lattice, which is more particular fuzzy order congruence and obtain
some connection between the L-contexts and the fuzzy complete congruences.

The paper is arranged as follows. In Section 2, we recall some preliminaries on
complete residuated lattices and fuzzy posets. The notion of fuzzy order congruence
is proposed in Section 3. We discuss homomorphism theorem and characterize
the fuzzy order congruence by the fuzzy preorders containing the fuzzy partial
order. At the end of Section 3, we investigate some categorical properties of fuzzy
posets. We construct new fuzzy preorders from the given ones and discuss their
lattice properties in Section 4. In Section 5, we introduce and study fuzzy complete
congruences on fuzzy complete lattices. At last it concludes the contribution and
limitation of our work and discuss the future research.

2. Preliminaries

A residuated lattice [4, 27, 31] (L, ∗,→,∨,∧, 0, 1) is an algebra with 4 binary
operators ∗,→,∨,∧ on L such that:
(1) (L,∨,∧, 0, 1) is a bounded lattice with the greatest element 1 and the least
element 0;
(2) (L, ∗, 1) is a commutative monoid and ∗ is isotonic at both arguments;
(3) (∗,→) is an adjoint pair, i.e. x∗y ≤ z if and only if x ≤ y → z for all x, y, z ∈ L.

A residuated lattice is said to be complete if the underlying lattice is complete.
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In what follows, ∗ is sometimes called a generalized triangular norm and the
implicator → is called the residuum of ∗. An implicator I is called left monotonic
(respectively, right monotonic) if I(·, a) is decreasing for every a ∈ L (respectively,
I(a, ·) is increasing). If I is both left monotonic and right monotonic, then it is
called hybrid monotonic.

In the paper, L denotes a complete residuated lattice if not otherwise specified.
Some basic properties of complete residuated lattices are collected from [4, 31].

(1) 1→ a = a, a ≤ b⇔ a→ b = 1;
(2) (a→ b) ∗ (b→ c) ≤ a→ c;
(3) a→ (b→ c) = b→ (a→ c) = (a ∗ b)→ c;
(4) a ≤ (b→ a ∗ b), a ∗ (a→ b) ≤ b;
(5) a ∗ (

∨
i∈I bi) =

∨
i∈I(a ∗ bi);

(6) a→ (
∧
i∈I bi) =

∧
i∈I(a→ bi), (

∨
i∈I ai)→ b =

∧
i∈I(ai → b);

(7) a→ (b→ a) = 1, a→ (b→ a ∗ b) = 1;
(8) b→ c ≤ (a→ b)→ (a→ c), c→ b ≤ (b→ a)→ (c→ a).

When the operator ∗ is exactly the operator ∧ of the residuated lattice, such
structure is called a Heyting algebra. A complete Heyting algebra is a special case
of a complete residuated lattice which is also called a frame.

In [18], Goguen introduced L-fuzzy set as a generalization of Zadeh’s-fuzzy set
with L being a complete residuated lattice. An L-fuzzy set A on U is a map
A : U → L and all the L-fuzzy sets on U are denoted by LU . For every a ∈ L, we
use ā to denote the constant L-fuzzy set on U . For A,B ∈ LU , we denote A ⊆ B
if A(x) ≤ B(x) for every x ∈ U .

Given two L-fuzzy sets A and B, new L-fuzzy sets can be induced as follows:

(A ∗B)(x) = A(x) ∗B(x);
(A ∧B)(x) = A(x) ∧B(x);
(A ∨B)(x) = A(x) ∨B(x);

(A→ B)(x) = A(x)→ B(x);
(¬A)(x) = A(x)→ 0.

An L-fuzzy relation R on U is a map R : U × U → L.
(1) R is reflexive if R(x, x) = 1 for all x ∈ U ;
(2) R is transitive if

∨
y∈U R(x, y) ∗R(y, z) ≤ R(x, z) for all x, z ∈ U ;

(3) R is symmetric if R(x, y) = R(y, x) for all x, y ∈ U ;
(4) R is antisymmetric if for all x, y ∈ L, R(x, y) = R(y, x) = 1 implies x = y.

In the paper, we use fuzzy set instead of L-fuzzy set for the consistency of the
context.
Definition 2.1. [15] (1) Let X be a set, e : X×X → L a fuzzy relation. e is called
a fuzzy partial order on X if it is reflexive, antisymmetric and transitive. The pair
(X, e) is called a fuzzy partially ordered set, fuzzy poset for short.
(2) Let (X, e), (Y, eY ) be two fuzzy posets. A map f : (X, e) → (Y, eY ) is said to
be fuzzy order-preserving if e(x, y) ≤ eY (f(x), f(y)) for all x, y ∈ X.

The fuzzy order used in the paper was independently introduced by Bělohlávek
in [2, 3] and Fan, Zhang [15, 36]. It has been proved in [34] that they are equivalent
with each other.
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Example 2.2. (1) Let e be a fuzzy partial order on X. The dual fuzzy relation
e−1 ∈ LX×X defined by e−1(x, y) = e(y, x) of e, for all x, y ∈ X, is also a fuzzy
partial order on X. Moreover, the symmetrization es = e ∧ e−1 of e is a fuzzy
partial order on X.
(2) Let (X, e) be a fuzzy poset and X1 ⊆ X, then eX1

∈ LX1×X1 defined by
eX1

(x, y) = e(x, y), for every x, y ∈ X1, is a fuzzy partial order on X1. And
(X1, eX1) is called a sub fuzzy poset of (X, e).
(3) Let {(X, ei), i ∈ I} be a family of fuzzy posets. Define e(x, y) =

∧
i∈I ei(xi, yi)

for every (x, y) = ((xi)i∈I , (yi)i∈I), then it is a fuzzy partial order on the product
of {(X, ei), i ∈ I}.
(4) Let L = {0, 1} be the truth values. Then the fuzzy partial orders on a set X
are just the classical partial orders on X.

Let (X, e) be a fuzzy poset, we define ≤= {(x, y)|e(x, y) = 1}. Then ≤ is a
classical partial order on X and (X,≤) is called the underlying partially ordered
set of (X, e). We denote it by X0. If we take L = {0, 1}, then the fuzzy poset based
on L is a classical poset. So fuzzy posets are generalizations of posets. For a classical

partial order ≤, a fuzzy partial order e≤ is defined as e≤(x, y) =

{
1 if x ≤ y,
0 otherwise.

Now we review some special fuzzy subsets of a fuzzy poset, named fuzzy lower set
and fuzzy upper set.

Definition 2.3. [32, 37] Let (X, e) be a fuzzy poset. A ∈ LX is called a fuzzy
lower set if A(x) ∗ e(y, x) ≤ A(y) for all x, y ∈ X; B ∈ LX is called a fuzzy upper
set if B(x) ∗ e(x, y) ≤ B(y) for all x, y ∈ X.

Next, we recall some preliminaries of fuzzy complete lattices [32, 37].

Definition 2.4. [32, 37] Let (X, e) be a fuzzy poset, x0, x1 ∈ X and A ∈ LX .
(1) x0 is a join of A⇐⇒ ∀x ∈ X, e(x0, y) =

∧
x∈X A(x)→ e(x, y).

(2) x1 is a meet of A⇐⇒ ∀x ∈ X, e(y, x1) =
∧
x∈X A(x)→ e(y, x).

We denote the join and meet of A ∈ LX by
⊔
A and

d
A respectively. The join

and meet of a fuzzy subset, if they exist, then they are unique.
Let (X, e) be a fuzzy poset, for every A ∈ LX , ↓ A and ↑ A are defined as follows

[32, 37]:

↓ A(x) =
∨
y∈X

A(y) ∗ e(x, y); ↑ A(x) =
∨
y∈X

A(y) ∗ e(y, x).

Then
⊔
A =

⊔
↓ A and

d
A =

d
↑ A [32, 37] if they exist.

Let (X, e) and (Y, eY ) be fuzzy posets, f : (X, e) → (Y, eY ), we define fuzzy
forward powerset operators as follows:

f̃→∗ (A)(y) =
∨
x∈X

A(x) ∗ eY (y, f(x)), f̃∗→(A)(y) =
∨
x∈X

A(x) ∗ eY (f(x), y).

Definition 2.5. [37] Let (X, e) be a fuzzy poset.
(1) (X, e) is called a fuzzy complete lattice if

⊔
A and

d
A exist for every fuzzy

subset A ∈ LX .



Fuzzy Order Congruences on Fuzzy Posets 93

(2) Let (X, e) and (Y, eY ) be fuzzy complete lattices. A map f : (X, e)→ (Y, eY ) is

said to be fuzzy join-preserving if it satisfies f(
⊔
A) =

⊔
f̃→∗ (A) for every A ∈ LX ;

and f is said to be fuzzy meet-preserving if it satisfies f(
d
A) =

d
f̃∗→(A) for

every A ∈ LX . f is called a fuzzy complete lattice homomorphism if it is fuzzy
join-preserving and fuzzy meet-preserving.

Let (X, e) be a fuzzy complete lattice. Then the underlying poset X0 is a com-
plete lattice. For every A ⊆ X,

∨
A =

⊔
χA, where χA is the characteristic function

of A.

Proposition 2.6. Let (X, e), (Y, eY ) be fuzzy complete lattices and f : (X, e) →
(Y, eY ) a fuzzy complete lattice homomorphism. Then f : X0 → Y0 is a complete
lattice homomorphism.

Proof. Since f̃→∗ (χA)(y) =
∨
x∈A χA(x) ∧ eY (y, f(x)) =

∨
x∈A eY (y, f(x)) =↓ χf(A)(y)

for every y ∈ Y , we have f(
⊔
χA) =

⊔
f̃→∗ (χA) =

⊔
↓ χf(A) =

⊔
χf(A), i.e. f preserves

arbitrary joins. �

Proposition 2.7. [37] Let (X, e) be a fuzzy poset. Then
(1) (X, e) is a fuzzy complete lattices if and only if

⊔
φ exist for all φ ∈ LX ;

(2) (X, e) is a fuzzy complete lattices if and only if
d
φ exist for all φ ∈ LX .

In [3], theory of formal context is generalized to L-context, where L is a complete
residuated lattice. The author devoted much of their effort to study the properties
of L-context. In the following, we recall some basic concepts in the fuzzy formal
concept analysis.

Definition 2.8. [3] A formal L-context is a triple (X,Y, I), where I : X × Y → L.
The elements of X and Y are called objects and attributes respectively, and the
degree I(x, y) is interpreted as the truth degree of which the object x ∈ X has the
attribute y ∈ Y .

Definition 2.9. [3] Let (X,Y, I) be an L-context. For A ∈ LX , B ∈ LY , A↑, B↓
are defined as follows:

A↑(y) =
∧
x∈X

A(x)→ I(x, y),∀y ∈ Y ;

B↓(x) =
∧
y∈Y

B(y)→ I(x, y), ∀x ∈ X.

A↑ is the fuzzy set of all attributes common to all objects from A and B↓ is the
fuzzy set of all objects common to all attributes from B. A pair 〈A,B〉 is called
a formal L-concept if A↑ = B and B↓ = A, where A ∈ LX , B ∈ LY . The set
BI = {〈A,B〉 ∈ LX × LY |A↑ = B,B↓ = A} is called the L-concept lattice. The
fuzzy partial order E on BI is defined by

E(〈A1, B1〉, 〈A2, B2〉) = ẽ(A1, A2) =
∧
x∈X

A1(x)→ A2(x) (or = ẽ(B2, B1)).

For every U ∈ LBI ,⊔
U = 〈(

∧
〈A,B〉∈BI

U (〈A,B〉)→ B)↓,
∧

〈A,B〉∈BI

U (〈A,B〉)→ B〉; (1)

l
U = 〈

∧
〈A,B〉∈BI

U (〈A,B〉)→ A, (
∧

〈A,B〉∈BI

U (〈A,B〉)→ A)↑〉. (2)
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A reflexive, symmetric and transitive fuzzy relation R on a set X is called a fuzzy
equivalence relation. Zadeh introduced fuzzy equivalence relations[35] as a gener-
alization of equivalence relations. Since then researchers[12, 13, 14] have devoted
much effort to study fuzzy equivalence relations in order to measure the degree of
indistinguishability or similarity between the objects of a given set. And also fuzzy
equivalence relations have been applied to different contexts such as fuzzy control,
approximate reasoning, fuzzy cluster analysis, etc. As fuzzy equivalence relations
appeared, they have been given various names, such as similarity relations[35], indis-
tinguishability operators [12, 13, 14], T-equivalences [10, 11], many-valued equiv-
alence relations. In [8], the authors investigate various properties of equivalence
classes of fuzzy equivalence relations over a complete residuated lattice systemati-
cally. The set of fuzzy equivalence relations on given set X forms a complete lattice.
The meet coincides with the fuzzy sets intersection of the fuzzy relations, but the
join does not coincide with the ordinary fuzzy sets union.

Example 2.10. Let X = {x1, x2, x3, x4} and L = {0, 0.5, 1}.
(1) We define e : X ×X → L as follows:

e = (eij) =


1 0 0 0
1 1 0.5 0
1 0.5 1 0
1 1 1 1


Obviously, we can see that (X, e) is a fuzzy poset.

(2)We define R : X ×X → L as follows:

R = (Rij) =


1 0 0 0
0 1 0.5 0.5
0 0.5 1 1
0 0.5 1 1


According to the definition, R is a fuzzy equivalence relation.

Let R be a fuzzy equivalence relation on a set X. For every a ∈ X,Ra is called
a fuzzy equivalence class determined by R, where Ra(y) = R(a, y) for every y ∈ X.
The set X/R = {Ra, a ∈ X} is called the factor set of X with respect to R.

Lemma 2.11. [8] Let R be a fuzzy equivalence relation on a set X. Then for every
x, y ∈ X, the following is true:

(1) R(x, y) =
∨
z∈X R(x, z) ∗R(y, z);

(2) R(x, y) = 1⇔ Rx = Ry.

For every p ∈ L, p 6= 0, the p cut relation is defined by Rp = {(x, y)|R(x, y) ≥
p}. Obviously, Rp is a classical equivalence relation on X. More about order
congruences on posets can be referred to [23].

3. Fuzzy Order Congruences

Let (X, e) be a fuzzy poset, R a fuzzy equivalence relation on X. For all x, y ∈ X,
we define

Re(x, y) = e ◦R(x, y) =
∨
z∈X

e(x, z) ∗R(z, y).
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Obviously, Re is reflexive. However, Re is not transitive in general. The transitive
closure [19] of Re is defined by RTe =

⋃∞
i=1R

n
e , where Rne = Rn−1

e ◦Re, n ≥ 2.
It is easy to verify that the following two properties hold:

(i) e(x, y) ≤ RTe (x, y);
(ii) R(x, y) ≤ RTe (x, y) ∧ (RTe )−1(x, y).

Definition 3.1. Let (X, e) be a fuzzy poset, R a fuzzy equivalence relation on X.
R is called a fuzzy order congruence if R(x, y) = RTe (x, y) ∧ (RTe )−1(x, y) for all
x, y ∈ X.

A suitable fuzzy partial order eX/R on the fuzzy quotient set X/R is defined by

eX/R(Rx, Ry) = RTe (x, y) for all x, y ∈ X. (3)

Obviously, eX/R : X/R×X/R→ L is a map. In the following, we prove that it is a

fuzzy partial order on X/R. First, eX/R(Rx, Rx) = RTe (x, x) = 1, so eX/R is reflex-

ive. Second, eX/R(Rx, Ry) = eX/R(Ry, Rx) = 1 implies RTe (x, y) = RTe (y, x) = 1,
i.e. R(x, y) = 1. From the Lemma 2.11, we have Rx = Ry. Thus eX/R is antisym-

metric. Third, eX/R(Rx, Ry) ∗ eX/R(Ry, Rz) = RTe (x, y) ∗ RTe (y, z) ≤ RTe (x, z) =
eX/R(Rx, Rz) which follows that eX/R is transitive.

Proposition 3.2. Let (X, e) be a fuzzy poset, R a fuzzy order congruence on (X, e).
Then the fuzzy quotient map ηR : (X, e) → (X/R, eX/R), x 7→ Rx is fuzzy order-
preserving.

Example 3.3. Let X, e,R be defined as in Example 2.10. We could verify that R
is a fuzzy order congruence with respect to the fuzzy partial order e on X.

Firstly, through direct computing, we have

Re =


1 0 0 0
1 1 0.5 0.5
1 0.5 1 1
1 1 1 1

 .

And we can see that Re is reflexive, but not transitive.

Secondly, we could get RTe =


1 0 0 0
1 1 0.5 0.5
1 1 1 1
1 1 1 1

. It is easy to see that Re 6= RTe .

Thirdly, R = RTe ∧ (RTe )−1. So R is a fuzzy order congruence on the fuzzy poset
(X, e). And the corresponding fuzzy quotient set is X/R = {Rx1

, Rx2
, Rx3

= Rx4
},

the fuzzy partial order on X/R is defined by:

eX/R(Rx, Ry) = RTe (x, y) and eX/R =

 1 0 0
1 1 0.5
1 1 1

.

The next lemma is the characterization of the fuzzy preorders that contain the
fuzzy partial order. It is essential to obtain the relationship between the fuzzy order
congruence and the fuzzy preorder that contains the fuzzy partial order.
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Lemma 3.4. Let (X, e) be a fuzzy poset, σ ∈ LX×X . Then σ is a fuzzy preorder
that contains the fuzzy partial order if and only if there is a fuzzy poset (Y, eY ) and
a fuzzy order-preserving map f : (X, e) → (Y, eY ) with σ = Hf , where Hf (x, y) =∧
a∈Y eY (f(y), a)→ eY (f(x), a) is called the direct kernel of f .

Proof. Assume f : (X, e)→ (Y, eY ) is a fuzzy order-preserving map. Obviously, we
have

eY (f(x), f(y)) = Hf (x, y), ∀x, y ∈ X.
Since f is fuzzy order-preserving, it holds that e(x, y) ≤ eY (f(x), f(y)) = Hf (x, y)
for all x, y ∈ X. By the transitivity of eY , we have Hf ◦Hf ≤ Hf .

Conversely, assume σ is a fuzzy preorder containing the fuzzy partial order, we
define R = σ ∧ σ−1. Then R ≤ RTe ∧ (RTe )−1 ≤ σ ∧ σ−1 = R. That is, R is a fuzzy
order congruence. And we get a fuzzy poset (X/R, eσ), where eσ(Rx, Ry) = σ(x, y).
In the following, we show that HηR = σ. On the one hand,

HηR(x, y) =
∧

u∈X/R

eX/R(Ry, u)→ eX/R(Rx, u)

≥
∧
z∈X

σ(y, z)→ σ(x, z)

≥ σ(x, y).

On the other hand, HηR(x, y) ≤ 1→ σ(x, y) = σ(x, y). �

According to the characterization of the special fuzzy preorder on the fuzzy
poset, we obtain the theorem below.

Theorem 3.5. Let (X, e) be a fuzzy poset, R a fuzzy equivalence relation on X.
Then the following are equivalent:
(i) R is a fuzzy order congruence on (X, e);
(ii) There exists a fuzzy preorder σ that contains the fuzzy partial order such that
R = σ ∧ σ−1;
(iii) There exists a fuzzy poset (Y, eY ) and a fuzzy order-preserving map f : (X, e)→
(Y, eY ) with R = kf .

Proof. (ii) ⇐⇒ (iii): This is a deduction of Lemma 3.4. We only need to prove
(i)⇐⇒ (ii).

(i) =⇒ (ii): From the second part of the proof of Lemma 3.4, HηR is the fuzzy
preorder that we need.

(ii) =⇒ (i): Define R = σ∧σ−1, we prove that R is a fuzzy order congruence. For
all x, y ∈ X, e(x, y) ≤ σ(x, y) and R(x, y) ≤ σ(x, y), so we have R ≤ RTe ∧(RTe )−1 ≤
σ ∧ σ−1 = R. Therefore, R is a fuzzy order congruence. �

Remark 3.6. Let (X, e) be a fuzzy poset, R a fuzzy order congruence on (X, e).
Then R1 is an order congruence on the underlying poset X0.

Because for a given fuzzy order congruence R, the quotient set X/R may support
several different compatible fuzzy orders, it is necessary to specify which fuzzy order
is being considered on the quotient set X/R. A fuzzy preorder ρ ≥ e on (X, e) can
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generate a fuzzy order congruence ρ = ρ ∧ ρ−1. The induced fuzzy partial order
eX/ρ on the quotient fuzzy ordered set is defined by eX/ρ(ρx, ρy) = ρ(x, y), which
is denoted by eρ for convenience.

Let R be a fuzzy order congruence on a fuzzy poset (X, e). The fuzzy preorder
that contains the fuzzy partial order e and R is not unique. From Theorem 3.5, we
obtain the following corollary.

Corollary 3.7. Let (X, e) be a fuzzy poset, R a fuzzy order congruence on (X, e).
Then RTe is the least fuzzy preorder that contains e and R.

Definition 3.8. [32] Let (X, e), (Y, eY ) be fuzzy posets. A map f : (X, e)→ (Y, eY )
is said to be
(1) fuzzy order embedding if e(x, y) = eY (f(x), f(y)) for all x, y ∈ X;
(2) fuzzy order isomorphism if it is a surjective fuzzy order embedding.

The homomorphism theorem of fuzzy poset can be easily derived.

Theorem 3.9. Let (X, e), (Y, eY ) be fuzzy posets, f : (X, e)→ (Y, eY ) a surjective
fuzzy order-preserving map. Then there exists a unique fuzzy order isomorphism
g : (X/kf , eHf

)→ (Y, eY ) such that g ◦ ηkf = f , where kerf = Hf ∧H−1
f .

Proof. For the sake of convenience, let R = kf . Then R is a fuzzy order congru-
ence in terms of Theorem 3.5 and (X/R, eX/R) is the quotient fuzzy poset, where
eX/R(Rx, Ry) = Hf (x, y).
1) Define a map g : (X/R, eX/R)→ (Y, eY ) by g(Rx) = f(x). We show that it is a
well-defined map. Assume Rx = Ry, we have

1 = R(x, y) = Hf (x, y) ∧H−1
f (x, y) = eY (f(x), f(y)) ∧ eY (f(y), f(x)).

i.e., eY (f(x), f(y)) = eY (f(y), f(x)) = 1. Then we have f(x) = f(y) from the
antisymmetry of eY .
2) According to the construction of the fuzzy order on the quotient set, we have

eX/R(Rx, Ry) = Hf (x, y) = eY (f(x), f(y)) = eY (g(Rx), g(Ry)),

i.e. g is fuzzy order embedding. The surjectivity and uniqueness of g is obvious.
Therefore, g is a unique fuzzy order isomorphism and that g : X/kf → Y such that
g ◦ ηkf = f . �

The next theorem is a generalization of Theorem 3.9, which is also known as the
decomposition theorem.

Theorem 3.10. Let (A, eA), (B, eB) and (C, eC) be fuzzy posets. Assume f :
(A, eA)→ (B, eB) is a surjective fuzzy order-preserving map, g : (A, eA)→ (C, eC)
a fuzzy order-preserving with Hf ≤ Hg. Then there exists a unique fuzzy order-
preserving h : (B, eB) → (C, eC) such that h ◦ f = g. Moreover, Hf = Hg if and
only if h is fuzzy order embedding; h is surjective if and only if g is surjective.

Proof. Since f is surjective, for every a ∈ B, there exists x ∈ A such that f(x) = a.
We define h : (B, eB)→ (C, eC) by h(a) = g(x).
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First, it is a well-defined map. Assume there exist x, y ∈ A such that f(x) =
f(y) = a, we have

1 = Hf (x, y) = eB(f(x), f(y)) ≤ Hg(x, y) = eC(g(x), g(y)).

Similarly, we have eC(g(y), g(x)) = 1. According to the antisymmetry of eC , g(x) =
g(y).

Second, for every a, b ∈ B, there exist x, y ∈ A such that f(x) = a, f(y) = b.
Because

eB(a, b) = eB(f(x), f(y)) = Hf (x, y) ≤ Hg(x, y) = eC(g(x), g(y)) = eC(h(a), h(b)),

h is fuzzy order-preserving. From the definition of h, h ◦ f = g.
Third, assume there exists another h′ : (B, eB) → (C, eC) such that h′ ◦ f = g.

Since for every a ∈ B, there exists x ∈ A such that f(x) = a. So we have h(a) =
h(f(x)) = g(x) and h′(a) = h′(f(x)) = g(x). Hence h(a) = h′(a). That is to say, h
is unique.

Moreover, Hf = Hg is equivalent to

eB(a, b) = eB(f(x), f(y)) = Hf (x, y) = Hg(x, y) = eC(g(x), g(y)) = eC(h(a), h(b)),

i.e., h is fuzzy order embedding.
Assume g is surjective, then for every u ∈ C, there exists x ∈ A such that

g(x) = u. Since h ◦ f = g, h is surjective. �

Let (X, e) be a fuzzy poset, in the following, we will discuss a fuzzy order con-
gruences generated by an arbitrary reflexive fuzzy relation. Let H ∈ LX×X and H
reflexive. Then (HT

e ) ∧ (HT
e )−1 is the least fuzzy order congruence that contains

H. We denote it by H. So we easily obtain the following proposition.

Proposition 3.11. For arbitrary reflexive fuzzy relations H and K on a fuzzy
poset (X, e), the map f : X/H → X/K defined by f(Hx) = Kx is a fuzzy order
isomorphism if and only if
1. H(x, y) ≤ (KT

e )(x, y);
2. K(x, y) ≤ (HT

e )(x, y).

In the classical case of set theory, an equivalence relation on a set X can be
deduced by a subset A of X by RA = {(x, x)|x ∈ X\A} ∪ {(x, y)|x, y ∈ A}. In
fuzzy case, a fuzzy equivalence relation [8] could also be induced by a fuzzy subset
of X by

RA(x, y) = A(x)↔ A(y). (4)

In the following theorem, we will discuss the fuzzy order congruence induced by a
special fuzzy subset of the fuzzy poset (X, e). For convenience, the short form R of
RA is used. This will lead to no confusion.

Theorem 3.12. Let (X, e) be a fuzzy poset. If A ∈ LX be a fuzzy lower subset of
(X, e), then R defined by equation (3) is a fuzzy order congruence on (X, e).

Proof. For the sake of convenience, let ρ(x, y) = A(y) → A(x). It is not difficult
to verify that ρ is transitive. Because A is a fuzzy lower set of (X, e), we have
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A(y) ∗ e(x, y) ≤ A(x) ⇔ e(x, y) ≤ A(y) → A(x) for every x, y ∈ X. So ρ ≥ e is a
fuzzy preorder on (X, e). Then we have R ≤ Re = e ◦R ≤ ρ ◦ ρ ≤ ρ. So

R ≤ Re ∧R−1
e ≤ ρ ∧ ρ−1 = R.

Therefore, R is a fuzzy order congruence induced by A on (X, e). �

Dually, given a fuzzy upper subset B of (X, e), a fuzzy order congruence deter-
mined by B is given by B = σ ∧ σ−1, where σ is a fuzzy preorder determined by
the fuzzy upper subset B σ(x, y) = B(x)→ B(y). It can been seen that, the fuzzy
preorders determined by the fuzzy lower subsets and the fuzzy upper subsets are
different.

Fuzzy congruences play the vital role in the discussion of the colimit of the
category of fuzzy posets. Next, we construct the coequalizer, pushout in terms of
fuzzy order congruences.

Let (A, eA) and (B, eB) be fuzzy posets, f, g : (A, eA) → (B, eB) fuzzy order-
preserving. Define a fuzzy relation K on (B, eB), for every x, y ∈ B,

K(x, y) =

{
1, if x = y or x = f(a), y = g(a) or x = g(a), y = f(a);
0, otherwise .

It is easy to see that K is a fuzzy equivalence relation. The fuzzy order congruence
ν(K) on (B, eB) is generated by K.

Proposition 3.13. Let (A, eA), (B, eB) be fuzzy posets, f, g : (A, eA) → (B, eB)
fuzzy order-preserving. Then the coequalizer of f and g is the quotient fuzzy poset
(B/ν(K), eν(K)).

Proof. We only need to prove the following: for every fuzzy poset (C, eC) and the
fuzzy order-preserving map h : (B, eB) → (C, eC) with h ◦ f = h ◦ g, there exists
exactly one fuzzy order-preserving map m : (B/ν(K), eν(K)) → (C, eC) such that
m ◦ η = h. For the convenience, we let R = ν(K). Define m : (B/ν(K), eν(K)) →
(C, eC) for any x ∈ B, m(Rx) = h(x).

First, m is well-defined. For any x, y ∈ B and R(x, y) = 1, i.e., eR(Rx, Ry) =
eR(Ry, Rx) = 1. Since h ◦ f = h ◦ g, we have K(x, y) ≤ Hh(x, y) = eC(h(x), h(y)).
And becauseHh is a fuzzy preorder with e ≤ Hh, so (α(K))TeB (x, y) = eR(Rx, Ry) ≤
Hh(x, y). Therefore, eC(h(x), h(y)) = eC(h(y), h(x)) = 1, i.e. h(x) = h(y).

Second, it is easy to verify that m is the unique fuzzy order-preserving map such
that m ◦ η = h. �

The pushout of the pair f : (A, eA) → (B, eB) and g : (A, eA) → (C, eC) is
constructed as bellow: (B + C/R, eR) is the quotient fuzzy poset, where B + C is
the coproduct of (B, eB) and (C, eC), R is the fuzzy order congruence generated by
the following fuzzy relation on B + C,

K(x, y) =

{
1, if x = y or x = (1, f(a)), y = (2, g(a)) or x = (2, g(a)), y = (1, f(a));
0, otherwise .

The verification is similar to Proposition 3.13.
Since the category of fuzzy posets FPos has all products, coproducts, equalizers

and coequalizers, we come into conclusion that FPos is complete and cocomplete.
For more details about the category theory, please refer to [1].
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4. Lattice Properties of Fuzzy Preorders containing the
Fuzzy Partial Order

In this section, we discuss the order properties of the set of fuzzy preorders
containing the fuzzy partial order on a fuzzy poset. Let (X, e) be a fuzzy poset,
ρ, σ two fuzzy preorders on (X, e) that contain e. If ρ ≤ σ, we define a fuzzy relation
σ/ρ on (X/ρ, eρ) as follows: for all x, y ∈ X,

(σ/ρ)(ρx, ρy) = σ(x, y). (5)

Remark 4.1. σ/ρ is a fuzzy preorder on (X/ρ, eρ) that contain eρ. First, eρ(ρx, ρy) =

ρ(x, y) ≤ σ(x, y) = (σ/ρ)(ρx, ρy) for all x, y ∈ X. Second, for all x, y ∈ X,

(σ/ρ) ◦ (σ/ρ)(ρx, ρy) =
∨

u∈X/ρ

(σ/ρ)(ρx, u) ∗ (σ/ρ)(u, ρy)

≤
∨
a∈X

σ(x, a) ∗ σ(a, y) ≤ σ(x, y) = (σ/ρ)(ρx, ρy)

i.e. σ/ρ is transitive.
The fuzzy preorder σ/ρ can define a fuzzy order congruence on X/ρ by (σ/ρ) ∧
(σ/ρ)−1. So in the following theorem, we discuss the relationship between (X/ρ)/(σ/ρ)

and X/σ.

Proposition 4.2. Let (X, e) be a fuzzy poset, ρ, σ two fuzzy preorders on (X, e)

with e ≤ ρ ≤ σ. Then (X/ρ)/(σ/ρ) and X/σ is fuzzy order isomorphic, where σ/ρ
is defined by (4).

Proof. We define a map φ : X/ρ → X/σ via φ(ρx) = σx for all x ∈ X. Obviously,
it is well-defined and surjective. Since eρ(ρx, ρy) = ρ(x, y) ≤ σ(x, y) = eσ(σx, σy),
we have φ is fuzzy order-preserving. And Hφ(ρx, ρy) = eσ(σx, σy) = σ(x, y) =

(σ/ρ)(ρx, ρy). According to Theorem 3.9, X/ρ/(σ/ρ) and X/σ are fuzzy order
isomorphic. �

Let (X, e) be a fuzzy poset, ρ a fuzzy preorder on (X, e). For a fuzzy preorder θ
on (X/ρ, eρ) with eρ ≤ θ, we could define a fuzzy relation θ • ρ on (X, e) as follows:
for all x, y ∈ X:

(θ • ρ)(x, y) = θ(ρx, ρy). (6)

Moreover, it is a fuzzy preorder on (X, e). First, for all x, y ∈ X,

e(x, y) ≤ ρ(x, y) = eρ(ρx, ρy) ≤ θ(ρx, ρy) = (θ • ρ)(x, y);

Second,
(θ • ρ) ◦ (θ • ρ)(x, y) =

∨
a∈X

(θ • ρ)(x, a) ∗ (θ • ρ)(a, y)

=
∨
a∈X

θ(ρx, ρa) ∗ θ(ρa, ρy)

≤ θ(ρx, ρy) = (θ • ρ)(x, y);

i.e. θ • ρ is a fuzzy preorder on (X, e) satisfying e ≤ θ • ρ. It is easy to obtain the
following proposition.
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Proposition 4.3. The fuzzy poset ((X/ρ)/θ, eθ) and the fuzzy poset (X/θ • ρ, eθ•ρ)
are fuzzy order isomorphic.

Proof. We define a map ψ : X/ρ → (X/ρ)/θ by ψ(ρx) = θρx . Obviously, it is
well-defined and surjective fuzzy order-preserving. From the proof of Lemma 3.4,
Hψ(ρx, ρy) = θ(ρx, ρy) = (θ • ρ)(x, y). So we have (X/θ • ρ, eθ•ρ) is fuzzy order

isomorphic to ((X/ρ)/θ, eθ) according to Theorem 3.9. �

We use FPO(X, e) to denote the set of all fuzzy preorders on the fuzzy poset
(X, e) that contain e. There is a natural order structure on (X, e): ρ1 ≤ ρ2 if
ρ1(x, y) ≤ ρ2(x, y) for ρ1, ρ2 ∈ FPO(X, e), x, y ∈ X.

Proposition 4.4. Let (X, e) be a fuzzy poset. Then FPO(X, e) is a complete
lattice.

Proof. The constant fuzzy relation 1X×X is obviously the greatest fuzzy preorder
on (X, e) with e ≤ 1X×X . For any ρi, i ∈ I, we prove

∧
i∈I ρi is a fuzzy preorder

with e ≤
∧
i∈I ρi. Then from [9], it implies that FPO(X, e) is a complete lattice.

For every i ∈ I,
(
∧
i∈I

ρi) ◦ (
∧
i∈I

ρi) ≤ ρi ◦ ρi ≤ ρi;

Therefore, it is transitive. It is obviously e(x, y) ≤ (
∧
i∈I ρi)(x, y), because e(x, y) ≤

ρi(x, y) for every i ∈ I, x, y ∈ X. �

Obviously, the set of fuzzy order congruences is also a complete lattice.
Let ρ be a fuzzy preorder on (X, e) with e ≤ ρ. The next theorem will establish

a connection between FPO(X/ρ, eρ) and the set of all fuzzy preorders on (X, e)
that contain ρ, and is denoted by FP ρ≤ = {σ ∈ FPO(X, e)| ρ ≤ σ}.

Theorem 4.5. FPO(X/ρ, eρ) and FP ρ≤ are order isomorphic with the classical
ordered structure.

Proof. We define f : FPO(X/ρ, eρ) → {σ ∈ FPO(X, e)| ρ ≤ σ} by f(θ) = θ • ρ
and g : {σ ∈ FPO(X, e)| ρ ≤ σ} → FPO(X/ρ, eρ) by g(σ) = σ/ρ for all θ ∈
FPO(X/ρ, eρ), σ ∈ {σ ∈ FPO(X, e)| ρ ≤ σ}. It is not difficult to verify that f, g
are order-preserving in terms of their definition. Furthermore, they are inverse to
each other. �

5. Fuzzy Complete Congruences on Fuzzy Complete Lattice

In this section, we introduce the fuzzy complete congruences of the fuzzy com-
plete lattice and characterize them in terms of the fuzzy complete lattice homomor-
phisms.

Definition 5.1. Let (X, e) be a fuzzy complete lattice, R a fuzzy equivalence
relation on X. R is called a fuzzy complete congruence on (X, e) if it satisfies
1. R is a fuzzy order congruence on (X, e);
2. RTe (

⊔
A, y) =

∧
x∈X A(x)→ RTe (x, y) and RTe (y,

d
A) =

∧
x∈X A(x)→ RTe (y, x)

hold for every A ∈ LX , y ∈ X.
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Remark 5.2. Let (X, e) be a fuzzy complete lattice and R a fuzzy complete con-
gruence on (X, e). Then the classical relation R1 is a complete congruence for the
underlying complete lattice X0.

Naturally, we have the following proposition discussing relationship between the
fuzzy complete congruence and the quotient fuzzy poset.

Proposition 5.3. Let (X, e) be a fuzzy complete lattice, R a fuzzy complete con-
gruence. Then the quotient fuzzy poset is a fuzzy complete lattice and the fuzzy
quotient map is a fuzzy complete lattice homomorphism.

Proof. For every U ∈ LX/R, x ∈ X, we could define A ∈ LX by A(x) = U (Rx).
Since (X, e) is a fuzzy complete lattice, we may assume

⊔
A = x0. We prove⊔

U = Rx0
. This is an easy verification in terms of the Definitions 2.5 and 5.1.

The meet of every fuzzy set of LX/R can be found similarly.
For every B ∈ LX , we may assume

⊔
B = y0. For every y ∈ X, we have∧

a∈X
η̃R
→
∗ (B)(Ra)→ eR(Ra, Ry) =

∧
a∈X

(
∨
x∈X

(B(x) ∗RTe (a, x)))→ RTe (a, y),

=
∧
x∈X

B(x)→ (
∧
a∈X

RTe (a, x)→ RTe (a, y)),

=
∧
x∈X

B(x)→ RTe (x, y),

= RTe (
⊔
B, y).

That is to say, the fuzzy quotient map is fuzzy join-preserving. Similarly, we could
prove that it is fuzzy meet-preserving. �

Example 5.4. Let X = {x1, x2, x3, x4, x5, x6} and L = {0, 0.5, 1}.
(1) A fuzzy partial order e : X ×X → L is defined as follows:

e = (eij) =


1 1 1 1 1 1
0 1 1 1 1 1
0 0.5 1 0.5 1 1
0 0.5 0.5 1 1 1
0 0.5 0.5 0.5 1 1
0 0 0 0 0 1


And (X, e) is verified to be a fuzzy complete lattice[32].

(2) We define R : X ×X → L as follows:

R = (Rij) =


1 1 1 0.5 0.5 0
1 1 1 0.5 0.5 0
1 1 1 0.5 0.5 0
0.5 0.5 0.5 1 0.5 0
0.5 0.5 0.5 0.5 1 0
0 0 0 0 0 1


According to the definition, R is a fuzzy equivalence relation. We illustrate that

it is a fuzzy order congruence above all. Through direct computation, we have

Re =


1 1 1 1 1 1
1 1 1 1 1 1
1 0.5 1 0.5 1 1
0.5 0.5 0.5 1 1 1
0.5 0.5 0.5 0.5 1 1
0 0 0 0 0 1

 and R
T
e =


1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
0.5 0.5 0.5 1 1 1
0.5 0.5 0.5 0.5 1 1
0 0 0 0 0 1


It is easy to see that Re 6= RTe and R = RTe ∧ (RTe )−1. So R is a fuzzy order

congruence on the fuzzy poset (X, e). And the corresponding fuzzy quotient set
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is X/R = {Rx1
= Rx2

= Rx3
, Rx4

, Rx5
, Rx6

}, the fuzzy partial order on X/R
is defined by eX/R(Rx, Ry) = RTe (x, y), where eX/R is described by the following
matrix:

eX/R =


1 1 1 1

0.5 1 1 1
0.5 0.5 1 1

0 0 0 1

 .

Moreover, we can verify that it is a fuzzy complete congruence. According to
Definition 5.1, we have to show that

RTe (
⊔
A, y) =

∧
x∈X

A(x)→ RTe (x, y) and RTe (y,
l
A) =

∧
x∈X

A(x)→ RTe (y, x)

hold for every A ∈ LX , y ∈ X. By definition of RTe , this is equivalent to prove the
quotient fuzzy poset is a fuzzy complete lattice. Let φ : X/R→ L be any fuzzy set
of X/R, we have to show that the join exists for every φ in terms of Proposition
2.7. In the following, we denote X/R = {a1, a2, a3, a4} for convenience and φ by a
vector of dimension 4 as follows:
φ1 =

(
0 0 0 0

)
φ28 =

(
0.5 0 0 0

)
φ55 =

(
1 0 0 0

)
φ2 =

(
0 0.5 0 0

)
φ29 =

(
0.5 0.5 0 0

)
φ56 =

(
1 0.5 0 0

)
φ3 =

(
0 0 0.5 0

)
φ30 =

(
0.5 0 0.5 0

)
φ57 =

(
1 0 0.5 0

)
φ4 =

(
0 0 0 0.5

)
φ31 =

(
0.5 0 0 0.5

)
φ58 =

(
1 0 0 0.5

)
φ5 =

(
0 1 0 0

)
φ32 =

(
0.5 1 0 0

)
φ59 =

(
1 1 0 0

)
φ6 =

(
0 0 1 0

)
φ33 =

(
0.5 0 1 0

)
φ60 =

(
1 0 1 0

)
φ7 =

(
0 0 0 1

)
φ34 =

(
0.5 0 0 1

)
φ61 =

(
1 0 0 1

)
φ8 =

(
0 0 0.5 0.5

)
φ35 =

(
0.5 0 0.5 0.5

)
φ62 =

(
1 0 0.5 0.5

)
φ9 =

(
0 0 0.5 1

)
φ36 =

(
0.5 0 0.5 1

)
φ63 =

(
1 0 0.5 1

)
φ10 =

(
0 0 1 0.5

)
φ37 =

(
0.5 0 1 0.5

)
φ64 =

(
1 0 1 0.5

)
φ11 =

(
0 0 1 1

)
φ38 =

(
0.5 0 1 1

)
φ65 =

(
1 0 1 1

)
φ12 =

(
0 0.5 0 0.5

)
φ39 =

(
0.5 0.5 0 0.5

)
φ66 =

(
1 0.5 0 0.5

)
φ13 =

(
0 0.5 0.5 0

)
φ40 =

(
0.5 0.5 0.5 0

)
φ67 =

(
1 0.5 0.5 0

)
φ14 =

(
0 0.5 1 0

)
φ41 =

(
0.5 0.5 1 0

)
φ68 =

(
1 0.5 1 0

)
φ15 =

(
0 0.5 0 1

)
φ42 =

(
0.5 0.5 0 1

)
φ69 =

(
1 0.5 0 1

)
φ16 =

(
0 1 0.5 0

)
φ43 =

(
0.5 1 0.5 0

)
φ70 =

(
1 1 0.5 0

)
φ17 =

(
0 1 0 0.5

)
φ44 =

(
0.5 1 0 0.5

)
φ71 =

(
1 1 0 0.5

)
φ18 =

(
0 1 1 0

)
φ45 =

(
0.5 1 1 0

)
φ72 =

(
1 1 1 0

)
φ19 =

(
0 1 0 1

)
φ46 =

(
0.5 1 0 1

)
φ73 =

(
1 1 0 1

)
φ20 =

(
0 0.5 0.5 0.5

)
φ47 =

(
0.5 0.5 0.5 0.5

)
φ74 =

(
1 0.5 0.5 0.5

)
φ21 =

(
0 0.5 0.5 1

)
φ48 =

(
0.5 0.5 0.5 1

)
φ75 =

(
1 0.5 0.5 1

)
φ22 =

(
0 0.5 1 0.5

)
φ49 =

(
0.5 0.5 1 0.5

)
φ76 =

(
1 0.5 1 0.5

)
φ23 =

(
0 0.5 1 1

)
φ50 =

(
0.5 0.5 1 1

)
φ77 =

(
1 0.5 1 1

)
φ24 =

(
0 1 0.5 0.5

)
φ51 =

(
0.5 1 0.5 0.5

)
φ78 =

(
1 1 0.5 0.5

)
φ25 =

(
0 1 0.5 1

)
φ52 =

(
0.5 1 0.5 1

)
φ79 =

(
1 1 0.5 1

)
φ26 =

(
0 1 1 0.5

)
φ53 =

(
0.5 1 1 0.5

)
φ80 =

(
1 1 1 0.5

)
φ27 =

(
0 1 1 1

)
φ54 =

(
0.5 1 1 1

)
φ81 =

(
1 1 1 1

)
Obviously, we have

e(a1, ) =
(
1 1 1 1

)
, e(a2, ) =

(
0.5 1 1 1

)
,

e(a3, ) =
(
0.5 0.5 1 1

)
, e(a4, ) =

(
0 0 0 1

)
.

Although it is not obvious but easy to calculate that
•
∧
a∈X/R φi(a)→ eX/R(a, ) =

(
1 1 1 1

)
= eX/R(a1, )

for i = 1, 2, 3, 13, 28, 29, 30, 40, 55, 56, 57, 67, so
⊔
φi = a1 for these i;
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•
∧
a∈X/R φi(a)→ eX/R(a, ) =

(
0 0 0 1

)
= eX/R(a4, )

for i = 4, 7−12, 15, 17, 19−27, 31, 34−39, 42, 44, 46−54, 58, 61−66, 69, 71, 73−81,
so
⊔
φi = a4 for these i;

•
∧
a∈X/R φi(a)→ eX/R(a, ) =

(
0.5 1 1 1

)
= eX/R(a2, )

for i = 5, 16, 32, 43, 59, 70, so
⊔
φi = a2 for these i;

•
∧
a∈X/R φi(a)→ eX/R(a, ) =

(
0.5 0.5 1 1

)
= eX/R(a3, )

for i = 6, 14, 18, 33, 41, 45, 60, 68, 72, so
⊔
φi = a3 for these i.

Then we come to the conclusion that the join of every fuzzy set φi exists and
(XR, eX/R) is a fuzzy complete lattice in terms of Proposition 2.7. So we have
verified that the fuzzy order congruence R defined above is a fuzzy complete con-
gruence.

Proposition 5.5. Let (X, e), (Y, eY ) be fuzzy complete lattices and f : (X, e) →
(Y, eY ) a fuzzy complete lattice homomorphism. Then (X/kf , ekf ) is a fuzzy com-
plete lattice and the fuzzy quotient map is a fuzzy complete lattice homomorphism.
Moreover, there exists a fuzzy complete lattice homomorphism h : (X/kf , ekf ) →
(Y, eY ) such that f = h ◦ ηkf . If f is surjective, then (X/kf , ekf ) is fuzzy order
isomorphic with (Y, eY ).

Proof. We make R = kf for the convenience.

(1). For every U ∈ LX/R and x ∈ X, we could define A ∈ LX by A(x) = U (Rx).
Since (X, e) is a fuzzy complete lattice, we may assume

⊔
A = x0. Next we prove⊔

U = Rx0
, i.e. for ∀y ∈ X,∧

x∈X

U (Rx)→ eR(Rx, Ry) = eR(Rx0 , Ry).

We only have to prove
∧
x∈X A(x)→ eY (f(x), f(y)) = eY (f(x0), f(y)).

Since f is fuzzy join-preserving, we have f(x0) = f(
⊔
A) =

⊔
f̃→∗ (A). Then for

every u ∈ Y ,

eY (f(x0), u) =
∧
v∈Y

f̃→∗ (A)(v)→ eY (v, u),

=
∧
v∈Y

(
∨
x∈X

A(x) ∗ eY (v, f(x)))→ eY (v, u).

We have
eY (f(x0), f(y)) =

∧
v∈Y

(
∨
x∈X

A(x) ∗ eY (v, f(x)))→ eY (v, f(y)),

=
∧
x∈X

A(x)→ (
∧
v∈Y

eY (v, f(x))→ eY (v, f(y))),

=
∧
x∈X

A(x)→ eY (f(x), f(y)).

Therefore, (X/R, eR) is a fuzzy complete lattice.
(2). We prove that the fuzzy quotient map ηR is fuzzy complete lattice homo-

morphism. We just prove it is fuzzy join-preserving. For every A ∈ LX , we assume⊔
A = x0. We have to verify Rx0

=
⊔
η̃R
→
∗ (A). For every a ∈ X,

η̃R
→
∗ (A)(Ra) =

∨
x∈X

A(x) ∗ eR(Ra, Rx),
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=
∨
x∈X

A(x) ∗ eY (f(a), f(x)),

= f̃→∗ (A)(f(a)).

For every y ∈ X, we have∧
a∈X

η̃R
→
∗ (A)(Ra)→ eR(Ra, Ry) =

∧
a∈X

f̃→∗ (A)(f(a))→ eY (f(a), f(y)),

=
∧
x∈X

A(x)→ eY (f(x), f(y)),

= eY (f(x0), f(y)) = eR(Rx0 , Ry).

That is to say Rx0 =
⊔
η̃R
→
∗ (A).

We define h(Rx) = f(x) for every x ∈ X. It is tedious but easy to verify that
h is a fuzzy complete lattice homomorphism. If f is surjective, then (X/kf , ekf ) is
fuzzy order isomorphic to (Y, eY ) in terms of Theorem 3.9. �

From Propositions 5.3 and Propositions 5.5, we could obtain the following the-
orem that characterizes the fuzzy complete congruence on fuzzy complete lattice.

Theorem 5.6. Let (X, e) be a fuzzy complete lattice, R a fuzzy equivalence relation
on X. Then the following are equivalent:
i. R is a fuzzy complete congruence on (X, e);
ii. There exists a fuzzy preorder σ with e ≤ σ such that
(1). R = σ ∧ σ−1;
(2). σ(

⊔
A, y) =

∧
x∈X A(x) → σ(x, y), σ(y,

d
A) =

∧
x∈X A(x) → σ(y, x) hold

for every A ∈ LX , y ∈ X;
iii. There exists a fuzzy complete lattice (Y, eY ) and a fuzzy complete lattice homo-
morphism f : (X, e)→ (Y, eY ) with R = kf .

Proof. (i⇔ii) It follows from Theorem 3.5 and the definition of fuzzy complete
congruence.

(ii⇔iii) This can be verified by Proposition 5.3 and Proposition 5.5. �

In the following, we will discuss the correspondence between the subcontext and
the fuzzy complete congruence.

Definition 5.7. If (X,Y, I) is an L-context and ifH ⊆ X,N ⊆ Y , then (H,N, I|H×N )
is called an L-subcontext.

In the sequel, we focus on how the concept system of (X,Y, I) is related to the
L-subcontext.

Proposition 5.8. If N ⊆ Y , then every extent of (X,N, I ∩X ×N) is an extent
of (X,Y, I).

This means that the omission of attributes is equivalent to coarsen the closure
system of the extents. Certainly, the similar result holds for the case of the omission
of objects.
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Proposition 5.9. If N ⊆ Y , then the map

B(X,N, I ∩X ×N) → BI

〈A,B〉 7→ 〈A,A↑〉

is a fuzzy meet-preserving order embedding. Dually, if H ⊆ X, the map

B(H,Y, I ∩H × Y ) → BI

〈A,B〉 7→ 〈B↓, B〉

is a fuzzy join-preserving order embedding.

According to the Propositions 5.8 and 5.9, we have the following proposition.

Proposition 5.10. If H ⊆ X,N ⊆ Y , then the map

B(H,N, I|H×N ) → BI

〈A,B〉 7→ 〈(i→H (A))↑↓, (i→H (A))↑〉

is a fuzzy order-embedding, and so is the map

B(H,N, I|H×N ) → BI

〈A,B〉 7→ 〈(i→N (B))↓, (i→N (B))↓↑〉,

where iH : H → X, iN : N → Y .

Corollary 5.11. If 〈A,B〉 ∈ B(H,N, I|H×N ), then B = (i→H (A))↑|N , A =
(i→N (B))↓|H .

An L-subcontext (H,N, I|H×N ) is called a dense L-subcontext of (X,Y, I) if γH
is join-dense in BI and µN is meet-dense in B(X,Y, I). The maps in Proposition
5.10 are bijective if (H,N, I|H×N ) is a dense L-subcontext of (X,Y, I).

Proposition 5.12. A fuzzy order-embedding of BI in a given fuzzy complete lattice
(V, eV ) exists if and only if there exist α : X → V and β : Y → V with I(x, y) =
eV (α(x), β(y)) for every x ∈ X, y ∈ Y .

Remark 5.13. The fuzzy concept lattice of an L-subcontext is isomorphic to a
sub fuzzy poset of the entire fuzzy concept lattice.

Next, we will introduce the compatible L-subcontext and investigate the con-
nection between the fuzzy complete congruences and compatible L-subcontexts.

Definition 5.14. An L-subcontext (H,N, I|H×N ) is said to be compatible if 〈A|H , B|N 〉 ∈
B(H,N, I|H×N ) for every concept 〈A,B〉 ∈ BI .

Proposition 5.15. An L-subcontext (H,N, I|H×N ) of (X,Y, I) is compatible if
and only if the map

ΠH,N : BI → B(H,N, I|H×N )

〈A,B〉 7→ 〈A|H , B|N 〉

is a surjective fuzzy complete lattice homomorphism.
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Proof. According to Definition 5.14, (H,N, I|H×N ) is compatible if and only if ΠH,N

is a map. Now, we prove that the ΠH,N surjective. We assume 〈A, (i→H (A))↑|N 〉 ∈
B(H,N, I|H×N ) in terms of Corollary 5.11. Then we have 〈(i→H (A))↑↓, (i→H (A))↑〉 ∈
BI and ΠH,N (〈(i→H (A))↑↓, (i→H (A))↑〉) = 〈(i→H (A))↑↓|H , (i→H (A))↑〉|N . And the two
concepts have the same intent, so they are the same.

Assume ∀U  LBI , we prove ΠH,N is fuzzy meet-preserving, i.e.

ΠH,N (
l

U ) =
l

Π̃∗→H,N (U ).

For every 〈A′, B′〉 ∈ B(H,N, I|H×N ),∧
〈C′,D′〉∈BI|H×N

Π̃∗→H,N (U )(〈C ′, D′〉)→ ẽH,N (A′, C ′)

=
∧

〈C,D〉∈BI

U (〈C,D〉)→ ẽH,N (〈A′, C|H〉)

= ẽH,N (A′, (
∧

〈A,B〉∈BI

U (〈A,B〉)→ A)|H)

= EH,N (〈A′, B′〉,ΠH,N (
l

U )).

The last equation is due to Equation (2). Similarly, we can prove ΠH,N is fuzzy
join-preserving. �

The next proposition characterizes the compatible L-subcontext.

Proposition 5.16. An L-subcontext (H,N, I|H×N ) is a compatible L-subcontext
of (X,Y, I) if and only if:
(1) (i→N (A↑|N ))↓|H ⊆ A↑↓ for all A ∈ LX ;
(2) (i→H (B↓|H))↑|N ⊆ B↓↑ for all B ∈ LY

Proof. According to Corollary 5.11, the necessity is obvious. For the sufficiency,
let 〈A,B〉 ∈ BI , then (i→H (A|H))↑|N ⊇ A↑|N = B|N . According to condition (2),
(i→H (A|H))↑|N = (i→H (B↑|H))↑|N ⊆ B↓↑. So we have (i→H (A|H))↑|N = B|N . Dually,
(i→N (B|N ))↓|H = A|H . Therefore, 〈A|H , B|N 〉 ∈ BI|H×N

. �

We naturally obtain the fuzzy complete congruences induced by compatible L-
subcontexts.

Corollary 5.17. Let (H,N, I|H×N ) be a compatible L-subcontext of (X,Y, I).
Then the map ΠH,N induces a fuzzy complete congruence ΘH,N = kΠH,N

on BI ,
and BI/ΘH,N is fuzzy order-isomorphic to BI|H×N

.

For 〈Ai, Bi〉 ∈ BI , i = 1, 2, ΘH,N (〈A1, B1〉, 〈A2, B2〉) = 1 ⇔ A1|H = A2|H ⇔
B1|N = B2|N according to the Corollary 5.17.

6. Concluding Remarks

In this paper, we propose fuzzy order congruence on fuzzy poset, which is a
generalization of order congruence. Then we characterize them in terms of fuzzy
preorders. Moreover, we apply this to more particular structure–fuzzy complete
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lattice and introduce fuzzy complete congruence. Since the fuzzy complete congru-
ence is closely related to fuzzy concept lattice, we obtain some connection between
the fuzzy complete congruence and the compatible L-subcontext.

In the future, we will focus on investigating the connection between the fuzzy
complete lattice and fuzzy concept analysis. The theory of fuzzy complete congru-
ence maybe applied to more practical areas, so we try to study their applications
in other fields. Other fields will also be studied, such as the fuzzy partially ordered
algebras and we will discuss the role that fuzzy order congruences play in them.
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