LOCAL BASES WITH STRATIFIED STRUCTURE IN $I$-TOPOLOGICAL VECTOR SPACES

Document Type: Research Paper

Author

School of Mathematical Science, Nanjing Normal University, Nanjing, Jiangsu 210097, P. R. China

Abstract

In this paper, the concept of {sl local base with  stratified
structure} in $I$-topological vector spaces is introduced. We
prove that every $I$-topological vector space has a balanced local
base with stratified structure. Furthermore, a new
characterization of $I$-topological vector spaces by means of the
local base with stratified structure is given.

Keywords


bibitem{Chang} C. L. Chang, {it Fuzzy topological spaces}, J. Math. Anal. Appl.,
{bf 24} (1968), 182-190.

bibitem{Fang1} J. X. Fang, {it On local bases of fuzzy topological vector
spaces}, Fuzzy Sets and Systems, {bf 87} (1997), 341-347.

bibitem{Fang2} J. X. Fang, {it Fuzzy linear order-homomorphism and its
structures}, J. Fuzzy Math., {bf 4}textbf{(1)} (1996), 93-102.

bibitem{Fe} C. Felbin, {it Finite dimensional fuzzy normed linear space},
Fuzzy Sets and Systems, {bf 48} (1992), 239-248.

bibitem{HR} U. H"{o}hle and S. E. Rodabaugh (Eds.), {it Mathematics of
fuzzy sets: logic, topology and measure theory}, The Handbooks of
Fuzzy Sets Series, Kluwer Academic Publishers, Dordrecht,
{bf 3} (1999).

bibitem{JY} S. Q. Jing and C. H. Yan, {it Fuzzy bounded sets and totally fuzzy bounded
sets in $I$-topological vector spaces}, Iranian Journal of Fuzzy
Systems, {bf 4}textbf{(1)} (2009).

bibitem{KL} A. K. Katsaras and D. B. Liu, {it Fuzzy vector spaces and fuzzy topological vector spaces}, J.
Math. Anal. Appl., {bf 58} (1997), 135-146.

bibitem{Ka} A. K. Katsaras, {it Fuzzy topological vector spaces I}, Fuzzy
Sets and Systems, {bf 6} (1981), 85-95.

bibitem{PL} P. M. Pu and Y. M. Liu, {it Fuzzy topology I, neighborhood
structures of a fuzzy points and Moore-Smith convergence}, J.
Math. Anal. Appl., {bf 76} (1980), 571-599.

bibitem{Wan} G. J. Wang, {it Order-homomorphism of fuzzes}, Fuzzy Sets and
Systems, {bf 12} (1982), 281-288.

bibitem{War} R. H. Warren, {it Neighborhoods bases and continuity in fuzzy
topological spaces}, Rocky Mountain J. Math., {bf 8} (1978),
459-470.

bibitem{WF} C. X. Wu and J. X. Fang, {it Redefine of fuzzy topological
vector space}, Since Exploration, in Chinese, {bf 2}textbf{(4)} (1982),
113-116.



bibitem{XF} G. H. Xu and J. X. Fang, {it A new $I$-vector topology
generated by a fuzzy norm}, Fuzzy Sets and Systems, {bf 158}
(2007), 2375-2385.

bibitem{YF} C. H. Yan and J. X. Fang, {it $L$-fuzzy bilinear operator and its
continuity}, Iranian Journal of Fuzzy Systems, {bf 4}textbf{(1)}
(2007), 65-73.