A NEW PERSPECTIVE TO THE MAZUR-ULAM PROBLEM IN 2-FUZZY 2-NORMED LINEAR SPACES

C. ALACA

Abstract. In this paper, we introduce the concepts of 2-isometry, collinearity, 2-Lipschitz mapping in 2-fuzzy 2-normed linear spaces. Also, we give a new generalization of the Mazur-Ulam theorem when X is a 2-fuzzy 2-normed linear space or \(S(X) \) is a fuzzy 2-normed linear space, that is, the Mazur-Ulam theorem holds, when the 2-isometry mapped to a 2-fuzzy 2-normed linear space is affine.

1. Introduction

The theory of fuzzy sets was introduced by Zadeh [25]. A satisfactory theory of 2-norms and n-norms on a linear space has been introduced and developed by Gähler in [9, 10]. Different authors introduced various definitions of fuzzy norms on a linear space. For reference, one may see [8, 11, 13, 14, 21, 23]. Following Cheng and Mordeson [3], Bag and Samanta [1] introduced a concept of fuzzy norm on a linear space.

Recently, Somasundaram and Beaula [20] introduced a concept of 2-fuzzy 2-normed linear space or fuzzy 2-normed linear space of the set of all fuzzy sets of a set. The authors gave the notion of \(\alpha \)-2-norm on a linear space corresponding to the 2-fuzzy 2-norm by using some ideas of [1] and also gave some fundamental properties of this space.

In 1932, Mazur and Ulam [15] proved the following theorem.

Mazur-Ulam Theorem. Every isometry of a real normal linear space onto a real normed linear space is a linear mapping up to translation.

Baker [2] showed an isometry from a real normed linear space into a strictly convex real normed linear space is affine. Also, Jian [12] investigated the generalizations of the Mazur-Ulam theorem in \(F^\alpha \)-spaces. Rassias and Wagner [19] described all volume preserving mappings from a real finite dimensional vector space into itself and Väisälä [22] gave a short and simple proof of the Mazur-Ulam theorem. Chu [6] proved that the Mazur-Ulam theorem holds when X is a linear 2-normed space. Chu et al. [7] generalized the Mazur-Ulam theorem when X is a linear n-normed space, that is, the Mazur-Ulam theorem holds, when the n-isometry mapped to a linear n-normed space is affine. In addition, Moslehian and Sadeghi [16] investigated the Mazur-Ulam theorem in non-archimedean spaces. Chu et al. [7] also

Received: June 2009; Revised: September 2009; Accepted: October 2009

Key words and phrases: \(\alpha \)-2-Norm, 2-Fuzzy 2-Normed linear spaces, 2-Isometry, 2-Lipschitz mapping.
obtained extensions of Rassias and Šemrl’s theorem [18]. Cho et al. [5] investigated the Mazur–Ulam theorem in probabilistic 2-normed spaces. The Mazur–Ulam theorem has been extensively studied by many authors (see [17, 19, 24]). In the present paper, we introduce the concepts of 2-isometry, collinearity, 2-Lipschitz mapping in 2-fuzzy 2-normed linear spaces. Also, we give a new generalization of the Mazur–Ulam theorem when \(X \) is a 2-fuzzy 2-normed linear space or \(\mathcal{S}(X) \) is a fuzzy 2-normed linear space, that is, the Mazur–Ulam theorem holds, when the 2-isometry mapped to a 2-fuzzy 2-normed linear space is affine.

2. On 2-Fuzzy 2-Normed Linear Spaces

In this section at first we give a concept of linear 2-normed space and later a concept of 2-fuzzy 2-normed linear space and it’s fundamental properties by using some ideas of [20]. For more details we refer the readers to [1, 4, 20].

Definition 2.1. [4] Let \(X \) be a real vector space of dimension greater than 1 and let \(\|\cdot,\cdot\| \) be a real valued function on \(X \times X \) satisfying the following four properties:

1. \(\|x, y\| = 0 \) if and only if \(x \) and \(y \) are linearly dependent,
2. \(x, y \| = \| y, x \| \),
3. \(\| x, \alpha y \| = \| x \| \) for any \(\alpha \in \mathbb{R} \),
4. \(\| x, y + z \| \leq \| x, y \| + \| x, z \| \).

\(\| \cdot, \cdot \| \) is called a 2-norm on \(X \) and the pair \((X, \| \cdot, \cdot \|)\) is called a linear 2-normed space.

Definition 2.2. [1] Let \(X \) be a linear space over \(S \) (field of real or complex numbers). A fuzzy subset \(N \) of \(X \times \mathbb{R} \) (the set of real numbers) is called a fuzzy norm on \(X \) if and only if:

1. For all \(t \in \mathbb{R} \) with \(t \leq 0 \), \(N(x, t) = 0 \).
2. For all \(t \in \mathbb{R} \) with \(t > 0 \), \(N(x, t) = 1 \) if and only if \(x = 0 \).
3. For all \(t \in \mathbb{R} \) with \(t > 0 \), \(\lambda N(x, t) = N(x, \frac{t}{|\lambda|}) \) if \(\lambda \neq 0 \), \(\lambda \in S \).
4. For all \(s, t \in \mathbb{R} \), \(x, y \in X \), \(N(x + y, s + t) \geq \min \{ N(x, s), N(y, t) \} \).
5. \(N(x, \cdot) \) is a non-decreasing function of \(t \in \mathbb{R} \) and \(\lim_{t \to \infty} N(x, t) = 1 \).

Then \((X, N)\) is called a fuzzy normed linear space or in short f-NLS.

Theorem 2.3. [1] Let \((X, N)\) be a f-NLS. Assume the condition that

1. \(N(x, t) > 0 \) for all \(t > 0 \) implies \(x = 0 \).
2. Define \(\| x \|_\alpha = \inf \{ t : N(x, t) \geq \alpha \} \), \(\alpha \in (0, 1) \). Then \(\{ \| \cdot \|_\alpha : \alpha \in (0, 1) \} \) is an ascending family of norms on \(X \). We call these norms as \(\alpha \)-norms on \(X \) corresponding to the fuzzy norm on \(X \).

Definition 2.4. Let \(X \) be any non-empty set and \(\mathcal{S}(X) \) be the set of all fuzzy sets on \(X \). For \(U, V \in \mathcal{S}(X) \) and \(\lambda \in S \) the field of real numbers, define

\[U + V = \{ (x + y, \lambda \nu) : (x, \nu) \in U, (y, \mu) \in V \} \]

and \(\lambda U = \{ (\lambda x, \nu) : (x, \nu) \in U \} \).
Definition 2.5. A fuzzy linear space $\tilde{X} = X \times (0, 1]$ over the number field S where the addition and scalar multiplication operation on X are defined by $(x, \nu) + (y, \mu) = (x + y, \nu \land \mu)$, $\lambda (x, \nu) = (\lambda x, \nu)$ is a fuzzy normed space if to every $(x, \nu) \in \tilde{X}$ there is associated a non-negative real number, $|| (x, \nu) ||$, called the fuzzy norm of (x, ν), in such away that

(i) $|| (x, \nu) || = 0$ iff $x = 0$ the zero element of X, $\nu \in (0, 1]$,
(ii) $|| \lambda (x, \nu) || = |\lambda| || (x, \nu) ||$ for all $(x, \nu) \in \tilde{X}$ and all $\lambda \in S$,
(iii) $|| (x, \nu) + (y, \mu) || \leq || (x, \nu) || + || (y, \mu) ||$ for all $(x, \nu), (y, \mu) \in \tilde{X}$,
(iv) $|| (x, \lor (x, v_i)) || = \lor_i || (x, v_i) ||$ for all $v_i \in (0, 1]$.

Definition 2.6. [20] Let X be a non-empty set and $\mathcal{S}(X)$ be the set of all fuzzy sets in X. If $f \in \mathcal{S}(X)$ then $f = \{(x, \mu) : x \in X$ and $\mu \in (0, 1]\}$. Clearly f is a bounded function, since $|f(x)| \leq 1$. Let S be the space of real numbers, then $\mathcal{S}(X)$ is a linear space over the field S where the addition and scalar multiplication are defined by

$$f + g = \{(x, \mu) + (y, \eta)\} = \{(x + y, \mu \land \eta) : (x, \mu) \in f$ and $(y, \eta) \in g\}$$

and

$$\lambda f = \{(\lambda x, \mu) : (x, \mu) \in f\}$$

where $\lambda \in S$.

The linear space $\mathcal{S}(X)$ is said to be normed linear space if, for every $f \in \mathcal{S}(X)$, there exists an associated non-negative real number $||f||$ (called the norm of f) that satisfies

(i) $||f|| = 0$ if and only if $f = 0$. For

$$||f|| = 0$$

$\iff \{(x, \mu) : (x, \mu) \in f\} = 0$

$\iff x = 0, \mu \in (0, 1] \iff f = 0.$

(ii) $||\lambda f|| = |\lambda| ||f||$, $\lambda \in S$. For

$$||\lambda f|| = \{|\lambda| (x, \mu) : (x, \mu) \in f, \lambda \in S\}$$

$$= \{|\lambda| (x, \mu) : (x, \mu) \in f\} = |\lambda| ||f||.$$

(iii) $||f + g|| \leq ||f|| + ||g||$ for all $f, g \in \mathcal{S}(X)$. For

$$||f + g|| = \{|(x, \mu) + (y, \eta) : x, y \in X, \mu, \eta \in (0, 1]\}$$

$$= \{|(x + y, (\mu \land \eta)) : x, y \in X, \mu, \eta \in (0, 1]\}$$

$$= \{|(x, \mu \land \eta) + (y, \mu \land \eta) : (x, \mu) \in f, (y, \eta) \in g\}$$

$$= ||f|| + ||g||.$$
(2-N1) for all $t \in \mathbb{R}$ with $t \leq 0$, $N(f_1, f_2, t) = 0$.
(2-N2) for all $t \in \mathbb{R}$ with $t > 0$, $N(f_1, f_2, t) = 1$ if and only if f_1 and f_2 are linearly dependent.
(2-N3) $N(f_1, f_2, t)$ is invariant under any permutation of f_1, f_2.
(2-N4) for all $t \in \mathbb{R}$ with $t > 0$, $N(f_1, \lambda f_2, t) = N(f_1, f_2, \frac{t}{\lambda})$, if $\lambda \neq 0$, $\lambda \in S$.
(2-N5) for all $s, t \in \mathbb{R}$,
$$N(f_1, f_2 + f_3, s + t) \geq \min \{N(f_1, f_2, s), N(f_1, f_3, t)\}.$$
(2-N6) $N(f_1, f_2, \cdot) : (0, \infty) \to [0, 1]$ is continuous.
(2-N7) $\lim_{t \to \infty} N(f_1, f_2, t) = 1$.

Then $(\mathfrak{N}(X), N)$ is a fuzzy 2-normed linear space or (X, N) is a 2-fuzzy 2-normed linear space.

Remark 2.9. In a 2-fuzzy 2-normed linear space (X, N), $N(f_1, f_2, \cdot)$ is a non-decreasing function of t for all $f_1, f_2 \in \mathfrak{N}(X)$.

Theorem 2.10. [20] Let $(\mathfrak{N}(X), N)$ be a fuzzy 2-normed linear space. Assume that
(2-N8) $N(f_1, f_2, t) > 0$ for all $t > 0$ implies that f_1 and f_2 are linearly dependent.

Define $\|f_1, f_2\|_\alpha = \inf \{t : N(f_1, f_2, t) \geq \alpha, \alpha \in (0, 1)\}$.
Then $\{\|\cdot, \cdot\|_\alpha : \alpha \in (0, 1)\}$ is an ascending family of 2-norms on $\mathfrak{N}(X)$. These 2-norms are called α-2-norms on $\mathfrak{N}(X)$ corresponding to the 2-fuzzy 2-norm on X.

3. On the Mazur-Ulam Problem

In this section, we give a new generalization of the Mazur-Ulam theorem when X is a 2-fuzzy 2-normed linear space or $\mathfrak{N}(X)$ is a fuzzy 2-normed linear space. Hereafter we use the notion of fuzzy 2-normed linear space on $\mathfrak{N}(X)$ instead of 2-fuzzy 2-normed linear space on X.

Lemma 3.1. For all $f, h \in \mathfrak{N}(X)$, $\alpha \in (0, 1)$ and $\lambda \in \mathbb{R}$. Then
$$\|f, h\|_\alpha = \|f, h + \lambda f\|_\alpha.$$

Proof. The proof of Lemma is clear from [4, Theorem 2.1.6]. □

As an immediate consequence of Lemma 3.1, we have the following.

Remark 2.3. For all $f, g, h \in \mathfrak{N}(X)$, $\alpha \in (0, 1)$,
$$\|f - h, f - g\|_\alpha = \|f - h, g - h\|_\alpha.$$

Lemma 3.3. For $g, h \in \mathfrak{N}(X)$, if g and h are linearly dependent with the same direction, that is, $h = \lambda g$ for some $\lambda > 0$, then
$$\|f, g + h\|_\alpha = \|f, g\|_\alpha + \|f, h\|_\alpha$$
for all $f \in \mathfrak{N}(X), \alpha \in (0, 1)$.

Proof. For all $f \in \mathfrak{N}(X)$, $\|f, g + h\|_\alpha = \|f, g + \lambda g\|_\alpha = \|f, (1 + \lambda)g\|_\alpha = (1 + \lambda)\|f, g\|_\alpha + \lambda\|f, g\|_\alpha = \|f, g\|_\alpha + \|f, h\|_\alpha$. □
Definition 3.4. Let $\mathcal{Z}(X)$ and $\mathcal{Z}(Y)$ be fuzzy 2-normed linear spaces and $\Psi : \mathcal{Z}(X) \to \mathcal{Z}(Y)$ a mapping. We call Ψ a 2-isometry if

$$\|f - h, g - h\|_\alpha = \|\Psi(f) - \Psi(h), \Psi(g) - \Psi(h)\|_\beta$$

for all $f, g, h \in \mathcal{Z}(X)$ and $\alpha, \beta \in (0, 1)$.

For a map Ψ, consider the following condition which is called the Area One Preserving Property (AOPP).

(AOPP) Let f, g, $h \in \mathcal{Z}(X)$ with $\|f - h, g - h\|_\alpha = 1$.

Then $\|\Psi(f) - \Psi(h), \Psi(g) - \Psi(h)\|_\beta = 1$.

Definition 3.5. The elements f, g and h are said to be collinear if and only if $g - h = r(f - h)$ for some real number r.

Now we define the concept of 2-Lipschitz mapping.

Definition 3.6. We call Ψ a 2-Lipschitz mapping if there is a $\kappa \geq 0$ such that

$$\|\Psi(f) - \Psi(h), \Psi(g) - \Psi(h)\|_\beta \leq \kappa\|f - h, g - h\|_\alpha$$

for all $f, g, h \in \mathcal{Z}(X)$ and $\alpha, \beta \in (0, 1)$. The constant κ is called the 2-Lipschitz constant.

Lemma 3.7. Assume that if f, g and h are collinear, then $\Psi(f), \Psi(g)$ and $\Psi(h)$ are collinear, and that Ψ satisfies (AOPP). Then Ψ preserves the area k for each $k \in \mathbb{N}$.

Proof. Suppose that there exist f, $g \in \mathcal{Z}(X)$ with $f \neq g$ such that $\Psi(f) = \Psi(g)$. Since $\dim\mathcal{Z}(X) \geq 2$, there is $h' \in \mathcal{Z}(X)$ such that $g - f$ and $h' - f$ are linearly independent. Since $\|h' - f, g - f\|_\alpha \neq 0$, we can set

$$h = f + \frac{1}{\|h' - f, g - f\|_\alpha}(h' - f).$$

Then we have

$$\|h - f, g - f\|_\alpha = \left\|\frac{1}{\|h' - f, g - f\|_\alpha}(h' - f), g - f\right\|_\alpha = 1.$$

Since Ψ preserves the unit distance, $\|\Psi(h) - \Psi(f), \Psi(g) - \Psi(f)\|_\beta = 1$. But it follows from $\Psi(f) = \Psi(g)$ that

$$\|\Psi(h) - \Psi(f), \Psi(g) - \Psi(f)\|_\beta = 0,$$

which is a contradiction. Thus Ψ is injective.

Let f, g and h be elements of $\mathcal{Z}(X)$ and $k \in \mathbb{N}$ and $\|h - f, g - f\|_\alpha = k$. We put

$$f_i = f + \frac{i}{k}(g - f), \quad i = 0, 1, \ldots, k.$$
Thus
\[\| h - f_i f_{i+1} - f_i \|_{\alpha} = \left\| h - f, f + \frac{i+1}{k} (g - f) - \left(f + \frac{i}{k} (g - f) \right) \right\|_{\alpha} \]
\[= \left\| h - f, f + \frac{1}{k} (g - f) \right\|_{\alpha} = \frac{1}{k} \| h - f, g - f \|_{\alpha} = \frac{k}{k} = 1 \]

for all \(i = 0, 1, \ldots, k \). Since \(\Psi \) satisfies (AOPP),
\[\| \Psi (h) - \Psi (f), \Psi (f_{i+1}) - \Psi (f_i) \|_{\beta} = 1 \]

for all \(i = 0, 1, \ldots, k \). Since \(f_0, f_1 \) and \(f_2 \), are collinear, \(\Psi (f_0), \Psi (f_1) \) and \(\Psi (f_2) \) are also collinear. Thus there is a real number \(r_0 \) such that \(\Psi (f_2) = \Psi (f_1 + \Psi (f_0)) \).

Since
\[\| \Psi (h) - \Psi (f), \Psi (f_1) - \Psi (f_0) \|_{\beta} = \| \Psi (h) - \Psi (f), \Psi (f_1) - \Psi (f) \|_{\beta} \]
\[\| (\Psi (h) - \Psi (f)) r_0 (\Psi (f_1) - \Psi (f_0)) \|_{\beta} = r_0 \| \Psi (h) - \Psi (f), \Psi (f_1) - \Psi (f_0) \|_{\beta} , \]

we have \(r_0 = 1 \) or \(-1\). If \(r_0 = -1 \), \(\Psi (f_2) - \Psi (f_1) = -\Psi (f_1) + \Psi (f_0) \), that is, \(\Psi (f_2) = \Psi (f_0) \). Since \(\Psi \) is injective, \(f_2 = f_0 \), which is a contradiction. Thus \(r_0 = 1 \). Then we have \(\Psi (f_2) - \Psi (f_1) = \Psi (f_1) - \Psi (f_0) \). Similarly, one can obtain that \(\Psi (f_{i+1}) - \Psi (f_i) = \Psi (f_i) - \Psi (f_{i-1}) \) for all \(i = 0, 1, \ldots, k - 1 \). Thus
\[\Psi (g) - \Psi (f) = \Psi (f_k) - \Psi (f_0) \]
\[= \Psi (f_k) - \Psi (f_{k-1}) + \Psi (f_{k-1}) - \Psi (f_0) + \ldots + \Psi (f_1) - \Psi (f_0) \]
\[= k (\Psi (f_1) - \Psi (f_0)) . \]

Hence we obtain
\[\| \Psi (h) - \Psi (f), \Psi (g) - \Psi (f) \|_{\beta} = \| \Psi (h) - \Psi (f), k (\Psi (f_1) - \Psi (f_0)) \|_{\beta} \]
\[= k \| \Psi (h) - \Psi (f), \Psi (f_1) - \Psi (f_0) \|_{\beta} = k. \]

This completes the proof.

Theorem 3.8. Let \(\Psi \) be a 2-Lipschitz mapping with the 2-Lipschitz constant \(\kappa \leq 1 \). Assume that if \(f, g \) and \(h \) are collinear, then \(\Psi (f), \Psi (g) \) and \(\Psi (h) \) are collinear, and that \(\Psi \) satisfies (AOPP). Then \(\Psi \) is a 2-isometry.

Proof. From Lemma 3.7, \(\Psi \) preserves distances \(k \) for all \(k \in \mathbb{N} \). For \(f, g, h \in \mathcal{H} (X) \), there are two cases depending on whether \(\| h - f, g - f \|_{\alpha} = 0 \) or not.

In the first case \(\| h - f, g - f \|_{\alpha} = 0 \), \(h - f \) and \(g - f \) are linearly dependent. So \(f, g \) and \(h \) are collinear. Thus \(\Psi (f), \Psi (g) \) and \(\Psi (h) \) are collinear, that is, \(\Psi (h) - \Psi (f) \) and \(\Psi (g) - \Psi (f) \) are linearly dependent. Hence \(\| \Psi (h) - \Psi (f), \Psi (g) - \Psi (f) \|_{\beta} = 0 \).

In the case \(\| h - f, g - f \|_{\alpha} > 0 \), there exists an \(r_0 \in \mathbb{N} \) such that \(r_0 > \| h - f, g - f \|_{\alpha} \). Assume that
\[\| \Psi (h) - \Psi (f), \Psi (g) - \Psi (f) \|_{\beta} < \| h - f, g - f \|_{\alpha} . \]
We can set
\[w = f + \frac{n_0}{\|h - f, g - f\|_\alpha} (g - f). \]

Then we get
\[
\|h - f, w - f\|_\alpha = \left\| h - f, f + \frac{n_0}{\|h - f, g - f\|_\alpha} (g - f) - f \right\|_\alpha
\]
\[= \frac{n_0}{\|h - f, g - f\|_\alpha} \|h - f, g - h\|_\alpha = n_0. \]

Thus,
\[\|\Psi(h) - \Psi(f), \Psi(w) - \Psi(g)\|_\beta = n_0. \]

By the definition of \(w \),
\[w - g = \left(\frac{n_0}{\|h - f, g - f\|_\alpha} - 1 \right) (g - f). \]

Since
\[\frac{n_0}{\|h - f, g - f\|_\alpha} > 1, \]
\(h - f_1 \) and \(f_1 - f_0 \) have the same direction. From Lemma 3.3,
\[\|h - f, w - f\|_\alpha = \|h - f, w - g\|_\alpha + \|h - f, g - f\|_\alpha. \]

Thus we have
\[
\|\Psi(h) - \Psi(f), \Psi(w) - \Psi(g)\|_\beta \\
\leq \|h - f, w - g\|_\alpha \\
= n_0 - \|h - f, g - f\|_\alpha.
\]

By the assumption,
\[n_0 = \|\Psi(h) - \Psi(f), \Psi(w) - \Psi(g)\|_\beta \\
\leq \|\Psi(h) - \Psi(f), \Psi(w) - \Psi(g)\|_\beta + \|\Psi(h) - \Psi(f), \Psi(g) - \Psi(f)\|_\beta \\
< n_0 - \|h - f, g - f\|_\alpha + \|h - f, g - f\|_\alpha = n_0,
\]
which is a contradiction. Hence \(\Psi \) is a 2-isometry. This completes the proof. \(\square \)

Lemma 3.9. Let \(f, g \) be elements of \(\mathcal{S}(X) \). Then \(v = \frac{f + g}{2} \) is the unique element of \(\mathcal{S}(X) \) satisfying
\[\|f - h, f - v\|_\alpha = \|g - v, g - h\|_\alpha = \frac{1}{2} \|f - h, g - h\|_\alpha \]
for some \(h \in \mathcal{S}(X) \) with \(\|f - h, g - h\|_\alpha \neq 0 \) and \(v, f, g \) are collinear.

Proof. Let \(\|f - h, g - h\|_\alpha \neq 0 \) and \(v = \frac{f + g}{2} \). Then \(v, f, g \) are 2-collinear. From Lemma 3.1, \(v \) satisfies
\[\|f - h, f - v\|_\alpha = \|g - v, g - h\|_\alpha = \frac{1}{2} \|f - h, g - h\|_\alpha \]
for all \(h \in \mathcal{S}(X) \) with \(\|f - h, g - h\|_\alpha \neq 0 \).

Now we prove the uniqueness.
Let u be an element of $\mathfrak{Z}(X)$ satisfying the above properties. That is,
\[\| f - h, f - u \|_\alpha = \| g - u, g - h \|_\alpha = \frac{1}{2} \| f - h, g - h \|_\alpha \]
for some $h \in \mathfrak{Z}(X)$ with $\| f - h, g - h \|_\alpha \neq 0$ and u, f, g are collinear. Since u, f, g are collinear, there exists a real number t such that $u = tf + (1 - t)g$. From Lemma 3.1, we get

\[
\begin{align*}
\frac{1}{2} \| f - h, g - h \|_\alpha &= \| f - h, f - u \|_\alpha \\
&= \| f - h, f - (tf + (1 - t)g) \|_\alpha \\
&= \| 1 - t \| f - h, f - g \|_\alpha \\
&= \| 1 - t \| f - h, g - h \|_\alpha \\
\end{align*}
\]
and

\[
\begin{align*}
\frac{1}{2} \| f - h, g - h \|_\alpha &= \| g - u, g - h \|_\alpha \\
&= \| g - (tf + (1 - t)g), g - h \|_\alpha \\
&= \| -tf + tg, g - h \|_\alpha \\
&= |t| \| f - g, g - h \|_\alpha \\
&= |t| \| f - h, g - h \|_\alpha.
\end{align*}
\]

Since $\| f - h, g - h \|_\alpha \neq 0$, thus we have $\frac{1}{2} = |1 - t| = |t|$. Therefore, we get $t = \frac{1}{2}$ and hence $v = u$. This completes the proof. \(\Box\)

Theorem 3.10. Assume that $\Psi(f)$, $\Psi(g)$ and $\Psi(h)$ are collinear when f, g and h are collinear. If Ψ is a 2-isometry, then Ψ is affine.

Proof. Let Ψ be a 2-isometry and $\Phi(f) = \Psi(f) - \Psi(0)$. Then Φ is a 2-isometry and $\Phi(0) = 0$. Thus we may assume that $\Psi(0) = 0$. Hence it suffices to show that Ψ is linear.

Let $f, g \in \mathfrak{Z}(X)$ with $f \neq g$. Since $\dim \mathfrak{Z}(X) > 1$, there exist an element $h \in \mathfrak{Z}(X)$ such that

\[\| f - h, g - h \|_\alpha \neq 0. \]

Since Ψ is a 2-isometry, we have
\[
\begin{align*}
\left\| \Psi(f) - \Psi(h), \Psi(f) - \Psi\left(\frac{f + g}{2}\right) \right\|_\beta \\
&= \left\| f - h, f - \frac{f + g}{2} \right\|_\alpha \\
&= \left\| f - h, \frac{f - g}{2} \right\|_\alpha \\
&= \frac{1}{2} \left\| f - h, f - g \right\|_\alpha \\
&= \frac{1}{2} \left\| f - h, g - h \right\|_\alpha = \frac{1}{2} \left\| \Psi(f) - \Psi(h), \Psi(g) - \Psi(h) \right\|_\beta
\end{align*}
\]
from Remark 3.2. Similarly, we can obtain
\[
\left\| \Psi(g) - \Psi \left(\frac{f + g}{2} \right), \Psi(g) - \Psi(h) \right\|_\beta = \frac{1}{2} \left\| \Psi(f) - \Psi(h), \Psi(g) - \Psi(h) \right\|_\beta.
\]
Since \(\frac{f + g}{2} \), \(f \) and \(g \) are collinear, \(\Psi \left(\frac{f + g}{2} \right) \), \(\Psi(f) \) and \(\Psi(g) \) are also collinear. By Lemma 3.9 we have
\[
\Psi \left(\frac{f + g}{2} \right) = \frac{\Psi(f) + \Psi(g)}{2}
\]
for all \(f, g \in \mathcal{Y}(X) \), \(\alpha, \beta \in (0, 1) \). Since \(\Psi(0) = 0 \), we can easily show that \(\Psi \) is additive. It follows that \(\Psi \) is \(\mathbb{Q} \)-linear.

Let \(r \in \mathbb{R}^+ \) with \(r \neq 1 \) and \(f \in \mathcal{Y}(X) \). Since \(0, f \) and \(rf \) are collinear, \(\Psi(0), \Psi(f) \) and \(\Psi(rf) \) are also collinear. Since \(\Psi(0) = 0 \), there exists a real number \(k \) such that \(\Psi(rf) = k \Psi(f) \). Since \(\dim \mathcal{Y}(X) > 1 \), there exist an element \(g \) of \(\mathcal{Y}(X) \) such that \(\| r, g \|_\alpha \neq 0 \). Then we get
\[
r \| r, g \|_\alpha = \| rf - 0, g - 0 \|_\alpha
= \| \Psi(rf) - \Psi(0), \Psi(g) - \Psi(0) \|_\beta
= \| \Psi(rf), \Psi(g) \|_\beta = k \| \Psi(f), \Psi(g) \|_\beta
= \| k \| \| \Psi(f) - \Psi(0), \Psi(g) - \Psi(0) \|_\beta
= \| k \| \| f - 0, g - 0 \|_\alpha = \| k \| \| f, g \|_\alpha.
\]
Since \(\| f, g \|_\alpha \neq 0 \), \(|k| = r \). Then \(\Psi(rf) = r \Psi(f) \) or \(\Psi(rf) = -r \Psi(f) \). Firstly, assume that \(k = -r \), that is, \(\Psi(rf) = -r \Psi(f) \). Then there exist positive rational numbers \(q_1, q_2 \) such that \(0 < q_1 < r < q_2 \). Since \(\dim \mathcal{Y}(X) > 1 \), there exist an element \(h \in \mathcal{Y}(X) \) such that \(\| rf - q_2f, h - q_2f \|_\alpha \neq 0 \). Then we have
\[
(q_2 + r) \| \Psi(f), \Psi(h) - \Psi(q_2f) \|_\beta
= \| r \Psi(f) + q_2 \Psi(f), \Psi(h) - \Psi(q_2f) \|_\beta
= \| \Psi(rf) - q_2f, h - q_2f \|_\beta
= \| rf - q_2f, h - q_2f \|_\alpha
= \| r - q_2 \| f, h - q_2f \|_\alpha
= \| q_2 - r \| f, h - q_2f \|_\alpha
\leq (q_2 - r) \| f, h - q_2f \|_\alpha
= \| q_1f - q_2f, h - q_2f \|_\alpha
= \| \Psi(q_1f) - \Psi(q_2f), \Psi(h) - \Psi(q_2f) \|_\beta
= \| q_1 \Psi(f) - q_2 \Psi(f), \Psi(h) - \Psi(q_2f) \|_\beta
= \| q_1 - q_2 \| \Psi(f), \Psi(h) - \Psi(q_2f) \|_\beta
= \| q_1 - q_2 \| \Psi(f), \Psi(h) - \Psi(q_2f) \|_\beta.
\]
Since \(\| rf - q_2f, h - q_2f \|_\alpha \neq 0 \),
\[
\| \Psi(rf) - \Psi(q_2f), \Psi(h) - \Psi(q_2f) \|_\beta \neq 0.
\]
Thus we have \(r + q_2 \leq q_2 - q_1 \), which is a contradiction. Hence \(k = r \), that is, \(\Psi(rf) = r\Psi(f) \) for all positive real number \(r \). Thus for every real number \(r \), \(\Psi(rf) = r\Psi(f) \). This completes the proof. \(\square \)

We get the following corollary from Theorem 3.8 and Theorem 3.10.

Corollary 3.11. Let \(\Psi \) be a 2-Lipschitz mapping with the 2-Lipschitz constant \(\kappa \leq 1 \). Suppose that \(\Psi(f), \Psi(g) \) and \(\Psi(h) \) are collinear when \(f, g \) and \(h \) are collinear. If \(\Psi \) satisfies (AOPP), then \(\Psi \) is an affine 2-isometry.

Acknowledgements. The author would like to express his sincere thanks to the referees for their valuable suggestions and comments.

References

Cihatır Alaca, Department of Mathematics, Faculty of Science and Arts, Sinop University, 57000 Sinop, Turkey
E-mail address: cihatiralaca@yahoo.com.tr