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MINIMAL SOLUTION OF FUZZY LINEAR SYSTEMS

M. OTADI AND M. MOSLEH

Abstract. In this paper, we use parametric form of fuzzy number and we

convert a fuzzy linear system to two linear system in crisp case. Conditions
for the existence of a minimal solution to m×n fuzzy linear equation systems

are derived and a numerical procedure for calculating the minimal solution is

designed. Numerical examples are presented to illustrate the proposed method.

1. Introduction

The concept of fuzzy numbers and fuzzy arithmetic operations were first intro-
duced by Zadeh [31], Dubois and Prade [14]. We refer the reader to [20] for more
information on fuzzy numbers and fuzzy arithmetic. Fuzzy systems are used to
study a variety of problems ranging from fuzzy metric spaces [29], fuzzy differential
equations [5] and fuzzy linear systems [3, 4, 11].

One of the major applications of fuzzy number arithmetic is treating fuzzy linear
systems [7, 8, 9, 10, 24, 25, 26, 28]. Several problems in various areas such as
economics, engineering and physics boil down to the solution of a linear system of
equations. Friedman et al. [16] introduced a general model for solving a fuzzy n×n
linear system whose coefficient matrix is crisp and the right-hand side column is an
arbitrary fuzzy number vector. They used the parametric form of fuzzy numbers
and replaced the original fuzzy n×n linear system by a crisp 2n×2n linear system
and studied duality in fuzzy linear systems Ax = Bx + y where A and B are real
n× n matrices, the unknown vector x is vector consisting of n fuzzy numbers and
the constant y is vector consisting of n fuzzy numbers, in [17]. In [1, 3, 4, 11]
the authors presented conjugate gradient, LU decomposition method for solving
general fuzzy linear systems or symmetric fuzzy linear systems. Also, Abbasbandy
et al. [6] investigated the existence of a minimal solution of general dual fuzzy
linear equation system of the form Ax+ f = Bx+ c, where A and B are real m×n
matrices, the unknown vector x is vector consisting of n fuzzy numbers and the
constant f and c are vectors consisting of m fuzzy numbers.

Recently, Ezzati [15] proposed a new method for solving a n × n fuzzy linear
system whose coefficients matrix is crisp and the right-hand side column is an
arbitrary fuzzy number vector by using the embedding method given by Cong-Xin
and Min [13] and replace the original n × n fuzzy linear system by two n × n
crisp linear systems. Since perturbation analysis is very important in numerical
methods, Wang et al. [30] presented the perturbation analysis for a class of fuzzy
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linear systems which could be solved by an embedding method. Now, according
to the presented method in this paper, we can investigate perturbation analysis in
two m× n crisp linear systems.

The paper is organized as follows. In section 2, we introduce the notation, the
definitions and preliminary results that will be used throughout the paper. In this
section, we review the method proposed by Friedman et al. [16], Abbasbandy et
al. [6] and Ezzati [15]. In section 3, the method for solving fuzzy linear system is
proposed. The proposed method is illustrated by solving some examples in section
4 and conclusions are drawn in section 5.

2. Preliminaries

The minimal solution of an arbitrary linear system is formally defined such that:

a) If the system is consistent and has a unique solution, then this solution
is also the minimal solution.
b) If the system is consistent and has a set solution, then the minimal
solution is a member of this set that has the least Euclidean norm.
c) If the system is inconsistent and has a unique least squares solution, then
this solution is also the minimal solution.
d) If the system is inconsistent and has a set of least squares solutions, then
the minimal solution is a member of this set that has the least Euclidean
norm.

Definition 2.1. [21] A fuzzy number is a fuzzy set u : R1 −→ I = [0, 1] such that
i. u is upper semi-continuous;
ii. u(x) = 0 outside some interval [a, d];
iii. There are real numbers b and c, a ≤ b ≤ c ≤ d, for which

1. u(x) is monotonically increasing on [a, b],
2. u(x) is monotonically decreasing on [c, d],
3. u(x) = 1, b ≤ x ≤ c.

The set of all the fuzzy numbers (as given in Definition 2.1) is denoted by E1.
An alternative definition which yields the same E1 is given by Kaleva [19] and

Ming et al. [23].
Parametric form of an arbitrary fuzzy number is given in [23] as follows. A fuzzy

number u in parametric form is a pair (u, u) of functions u(r), u(r), 0 ≤ r ≤ 1,
which satisfy the following requirements:

1. u(r) is a bounded left continuous non-decreasing function over [0, 1],
2. u(r) is a bounded left continuous non-increasing function over [0, 1],
3. u(r) ≤ u(r), 0 ≤ r ≤ 1.

The set of all these fuzzy numbers is denoted by E which is a complete metric space
with Hausdorff distance. A crisp number α is simply represented by u(r) = u(r) =
α, 0 ≤ r ≤ 1.
For arbitrary fuzzy numbers x = (x(r), x(r)), y = (y(r), y(r)) and real number k,
we may define the addition of fuzzy numbers and the multiplication of real number
by fuzzy number by using the extension principle as [23]
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a) x = y if and only if x(r) = y(r) and x(r) = y(r),

b) x+ y = (x(r) + y(r), x(r) + y(r)),

c) kx =

{
(kx, kx), k ≥ 0,
(kx, kx), k < 0.

Remark 2.2. [2] Let u = (u(r), u(r)), 0 ≤ r ≤ 1 be a fuzzy number, we take

uc(r) =
u(r) + u(r)

2
,

ud(r) =
u(r)− u(r)

2
.

It is clear that ud(r) ≥ 0, u(r) = uc(r)− ud(r) and u(r) = uc(r) + ud(r). A fuzzy
number u ∈ E is said symmetric if uc(r) is a constant function of r for all 0 ≤ r ≤ 1.

Remark 2.3. Let u = (u(r), u(r)), v = (v(r), v(r)) and also k, s are arbitrary real
numbers. If w = ku+ sv then

wc(r) = kuc(r) + svc(r),

wd(r) = |k|ud(r) + |s|vd(r).

Definition 2.4. The m× n linear system
a11x1 + a12x2 + · · · + a1nxn = y1,
a21x1 + a22x2 + · · · + a2nxn = y2,
...

...
...

...
am1x1 + am2x2 + · · · + amnxn = ym, (1)

where the matrix of coefficients A = (aij), 1 ≤ i ≤ m and 1 ≤ j ≤ n, is a given
real m× n matrix, yi ∈ E, 1 ≤ i ≤ m, are given fuzzy numbers with the unknowns
xj ∈ E, 1 ≤ j ≤ n is called a fuzzy linear system (FLS). In this paper, we assume
the matrix A is full rank, i.e., rank(A) = m (for m ≤ n) or rank(A) = n (for
n < m).

Finally, we conclude this subsection by reviewing the methods for solving fuzzy
linear system proposed by Friedman et al. [16], Ezzati [15] and Abbasbandy et al.
[6].

3. Solving Fuzzy Linear System

3.1. Solution Method for Square System by Friedman et al. Friedman et
al. [16] wrote the linear system (1) for m = n as follows:

SX̂ = Ŷ , (2)

where sij are determined as follows:

aij ≥ 0 =⇒ sij = aij , si+n,j+n = aij ,
aij < 0 =⇒ si,j+n = −aij , si+n,j = −aij ,

and any sij which is not determined by (2) is zero and

X̂ =



x1

...

xn

−x1

...
−xn


, Ŷ =



y
1

...

y
n

−y1
...
−yn


.
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The structure of S implies that sij ≥ 0, 1 ≤ i, j ≤ 2n and that

S =

(
B C
C B

)
, (3)

where B contains the positive entries of A, and C contains the absolute values of
the negative entries of A, i.e., A = B − C.

Theorem 3.1. [16] The matrix S is nonsingular if and only if the matrices A =
B − C and B + C are both nonsingular.

Theorem 3.2. [16] If S−1 exists it must have the same structure as S, i.e.

S−1 =

(
D E
E D

)
, (4)

where

D =
1

2
[(B + C)−1 + (B − C)−1], E =

1

2
[(B + C)−1 − (B − C)−1].

We know that if S is nonsingular then

X̂ = S−1Ŷ . (5)

3.2. Solution Method for Square System by Ezzati. Ezzati [15] considered
fuzzy linear system (1) for m = n and solved by using the embedding approach.
Unfortunately he has not indicated conditions for the existence of a unique fuzzy
solution to n× n linear system. Ezzati [15] wrote the linear system (1) as follows:

A(x+ x) = y + y, (6)

where h = x + x = (x1 + x1, x2 + x2, . . . , xn + xn)T and y + y = (y
1

+ y1, y2 +

y2, . . . , yn + yn)T .

Theorem 3.3. [15] Suppose the inverse of matrix A in Eq. (1) exists and x =
(x1, x2, . . . , xn)T is a fuzzy solution of this equation. Then x(r)+x(r) is the solution
of the following system

A(x(r) + x(r)) = y(r) + y(r). (7)

We know that if A is nonsingular then

h(r) = A−1(y(r) + y(r)). (8)

Let matrices B and C have defined as equation (3). Using matrix notation for
equation (1), we get {

Bx(r)− Cx(r) = y(r),
Bx(r)− Cx(r) = y(r).

By substituting of x(r) = h(r)−x(r) and x(r) = h(r)−x(r) in the first and second
equation of above system, respectively, we have

(B + C)x(r) = y(r) + Ch(r) (9)
and

(B + C)x(r) = y(r) + Ch(r). (10)
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If B + C is nonsingular then

x(r) = (B + C)−1(y(r) + Ch(r))

and
x(r) = h(r)− x(r).

Therefore, the solution of the fuzzy system (1) can be calculated by formulas (8),
(9) and (10).
Recently, Otadi and Mosleh [27] adopt Ezzati’s method to the non-square system
case. The formulas obtained by Otadi and Mosleh are identical to Ezzati’s formulas.
The only difference is that the adopted method uses pseudo-inverses for non-square
matrices where the original method uses inverses for square matrices.

3.3. Solution Method for Non-square System by Abbasbandy et al. Ab-
basbandy et al. [6] considered fuzzy linear system (1) as follows:

SX̂ = Ŷ . (11)

Corollary 3.4. Let W be a p × q real, full rank matrix. There exists a p × p
orthogonal matrix U , a q × q orthogonal matrix V , and a p× q diagonal matrix Σ
with 〈Σ〉ij = 0 for i 6= j and 〈Σ〉ii = σi > 0 with σ1 ≥ σ2 ≥ · · · ≥ σs > 0, where
s = min{p, q}, such that the singular value decomposition

W = UΣV T ,

is valid. If Σ+ is that q × p matrix whose only nonzero entries are 〈Σ+〉ii = 1/σi
for 1 ≤ i ≤ s, then W+ = V Σ+UT is the unique pseudo-inverse of W .

We refer the reader to [12] for more information on finding pseudo-inverse of an
arbitrary matrix. When we work with full rank matrices, there are not any problem
and all calculations are stable and well-posed.

Theorem 3.5. [6]. The pseudo-inverse of non-negative full rank matrix

S =

(
B C
C B

)
is

S+ =

(
D E
E D

)
, (12)

where

D =
1

2
[(B + C)+ + (B − C)+], E =

1

2
[(B + C)+ − (B − C)+].

We know that the minimal solution is

X̂ = S+Ŷ . (13)

4. A New Solution Method

In this section, we propose a new method for solving the m × n fuzzy linear
system (1).
Consider fuzzy linear system equation (1). By referring to Remark 2 we have{

Axc(r) = yc(r),
Fxd(r) = yd(r) (14)
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where xc(r) = (xc1(r), xc2(r), . . . , xcn(r))T , xd(r) = (xd1(r), xd2(r), . . . , xdn(r))T , yc(r) =
(yc1(r), yc2(r), . . . , ycm(r))T , yd(r) = (yd1(r), yd2(r), . . . , ydm(r))T and F contains the
absolute values of entries of A. Also, we assume that A and F are full rank matri-
ces. The minimal solution of (14) is obtained by [22]{

xc(r) = A+yc(r),

xd(r) = F+yd(r). (15)

Therefore, we can solve fuzzy linear system equation (1) by solving equation (14)
and we have

x(r) = xc(r) − xd(r),
x(r) = xc(r) + xd(r), (16)

where X = ((x1, x1), (x2, x2), . . . , (xn, xn))T is minimal solution vector. If X rep-
resents a fuzzy vector, we name it as minimal fuzzy solution vector.

Theorem 4.1. Vector X defined by equations (15) and (16) is a minimal fuzzy
solution if F+, A+ and F+ −A+ are nonnegative matrices.

Proof. Let F+ ≥ 0, then
x(r) = A+yc(r) − F+yd(r), (17)

x(r) = A+yc(r) + F+yd(r), (18)

and by subtracting equation (17) from equation (18) we get

x(r) − x(r) = 2F+yd(r). (19)

Thus, if y is arbitrary input vector which represents a fuzzy vector, i.e y(r)−y(r) ≥
0, then yd(r) ≥ 0, therefore the necessary condition x(r)−x(r) ≥ 0 is satisfied. By
using equations (17) and (18), we have

x(r) = (F+ + A+)
y(r)

2
− (F+ −A+)

y(r)

2
, (20)

x(r) = (F+ + A+)
y(r)

2
− (F+ −A+)

y(r)

2
. (21)

Since y(r) is monotonically decreasing and y(r) is monotonically increasing, the
previous condition due to equations (20) and (21) is also necessary for x(r) and
x(r) to be monotonically decreasing and increasing, respectively. The bounded left
continuity of x(r) and x(r) is obvious since they are linear combinations of y(r)
and y(r). �

Theorem 4.2. Assume that mA, mO and mM are the numbers of multiplica-
tion operations that are required to calculate X̂ = S+Ŷ (the method proposed by
Abbasbandy et al. [6]), X = (x1, x2, . . . , xn, x1, x2, . . . , xn)T from equations (14)
and (16) and X (the method proposed by Otadi and Mosleh), respectively. Then
mO ≤ mM ≤ mA, mA −mO = 2mn and mM −mO = mn.

Proof. According to equation (12), we have

S+ =

(
D E

E D

)
,

where

D =
1

2
[(B + C)+ + (B − C)+], E =

1

2
[(B + C)+ − (B − C)+].
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Therefore, for determining S+, we need to compute (B+C)+ and (B−C)+. Now,
assume that M is m×n matrix and denote by hm(M) the number of multiplication
operations that are required to calculate M+. It is clear that

hm(S) = hm(B + C) + hm(B − C) = 2hm(A)

and hence
mA = 2hm(A) + 4mn.

For computing X = (x1, x2, . . . , xn, x1, x2, . . . , xn)T , from equations (14) and (16),
the number of multiplication operations are hm(A) +mn and hm(D) +mn. There-
fore

mO = 2hm(A) + 2mn

and hence mA−mO = 2mn. Also, for computing x+x = (x1+x1, x2+x2, . . . , xn+
xn)T and x = (x1, x2, . . . , xn)T from the method proposed by Otadi and Mosleh,
the number of multiplication operations are hm(A) + mn and hm(B + C) + 2mn,
respectively. Clearly hm(B + C) = hm(A), so

mM = 2h(A) + 3mn

and hence mM −mO = mn. This proves Theorem. �

Now, we assume in fuzzy linear system (1) n = m and the coefficients matrix A
is nonsingular, then A+ = A−1. Therefore, we have the following theorem.

Theorem 4.3. Assume that mF , mE and mO are the number of multiplication
operations that are required to calculate X̂ = S−1Ŷ (the method proposed by Fried-
man et al. [16]), X from equations (7)-(9) (the method proposed by Ezzati [15])
and X from equations (14) and (16), respectively. Then mO ≤ mE ≤ mF and
mF −mE = mE −mO = n2.

Proof. According to equation (4), we have

S−1 =

(
D E
E D

)
,

where

D =
1

2
[(B + C)−1 + (B − C)−1], E =

1

2
[(B + C)−1 − (B − C)−1].

Therefore, for determining S−1, we need to compute (B + C)−1 and (B − C)−1.
Now, assume that M is a n × n matrix and denote by hn(M) the number of
multiplication operations that are required to calculate M−1. It is clear that

h(S) = h(B + C) + h(B − C) = 2hn(A)

and hence
mF = 2hn(A) + 4n2.

For computing x + x = (x1 + x1, x2 + x2, . . . , xn + xn)T from equation (7) and
x = (x1, x2, . . . , xn)T from equation (9), the number of multiplication operations
are hn(A) + n2 and hn(B +C) + 2n2, respectively. Clearly hn(B +C) = hn(A), so

mE = 2hn(A) + 3n2

and hence mE − mF = n2. For computing X = (x1, x2, . . . , xn, x1, x2, . . . , xn)T ,
from equations (14) and (16), the number of multiplication operations are hn(A) +
n2 and hn(D) + n2. Therefore



96 M. Otadi and M. Mosleh

mO = 2hn(A) + 2n2

and hence mF −mE = mE −mO = n2. This proves Theorem. �

5. Numerical Examples

Example 5.1. Consider the 2× 3 fuzzy linear system{
x1 − x3 = (−1 + 2r, 4− 3r),
x1 + 2x2 = (1 + 4r, 10− 5r).

By simple calculation

A+ =

 0.5415 0.5122 0.6667
0.8313 −0.4449 −0.3333
−0.1258 −0.7347 0.6667

×
 0.4343 0

0 0.7676
0 0

×
[

0.2898 0.9571
0.9571 −0.2898

]
and

F+ =

 0.5415 0.5122 −0.6667
0.8313 −0.4449 0.3333
0.1258 0.7347 0.6667

×
 0.4343 0

0 0.7676
0 0

×
[

0.2898 0.9571
0.9571 −0.2898

]
.

By using equation (15), we have: xc1(r)
xc2(r)
xc3(r)

 =

 1.2778− 0.2778r
2.1111− 0.1111r
−0.2222 + 0.2222r


and  xd1(r)

xd2(r)
xd3(r)

 =

 1.6111− 1.6111r
1.4444− 1.4444r
0.8889− 0.8889r

 ,
and hence

x1(r) = (−0.3333 + 1.3333r, 2.8889− 1.8889r),
x2(r) = (0.6667 + 1.3333r, 3.5555− 1.5555r),
x3(r) = (−1.1111 + 1.1111r, 0.6667− 0.6667r).

According to this fact that xi ≤ xi, i = 1, 2, 3 are monotonic decreasing functions
then the fuzzy solution xi(r) = (xi(r), xi(r)), i = 1, 2, 3, is a minimal fuzzy solution.

Example 5.2. Consider the 3× 2 fuzzy linear system x1 + x2 = (r, 2− r),
x1 − 2x2 = (2 + r, 3),
2x1 + x2 = (−2,−1− r).
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By a simple calculation

A+ =

[
−0.7071 −0.7071
−0.7071 0.7071

]
×
[

0.378 0 0
0 0.4472 0

]
×

 −0.5345 0.2673 −0.8018
0 −0.9487 −0.3162

−0.8452 −0.169 0.5071


and

F+ =

[
−0.7071 0.7071
−0.7071 −0.7071

]
×
[

0.378 0 0
0 1 0

]
×

 −0.4264 −0.6396 −0.6396
0 −0.7071 0.7071

−0.9045 0.3015 0.3015

 .
By using equation (15), we have:[

xc1(r)
xc2(r)

]
=

[
0.2429− 0.0429r
−0.9571− 0.2429r

]
and [

xd1(r)
xd2(r)

]
=

[
0.2273− 0.2273r
0.2273− 0.2273r

]
,

and hence

x1(r) = (0.0156 + 0.1844r, 0.4702− 0.2702r),
x2(r) = (−1.1844− 0.0156r,−0.7298− 0.4702r).

The fact that x2 is not fuzzy number, therefore the fuzzy linear system is not fuzzy
minimal solution.

Example 5.3. [18] Consider the 3× 2 fuzzy linear system −x1 + 2x2 = (2r − 1, 3− 2r),
3x1 + 4x2 = (2r + 15, 20− 3r),
2x1 − x2 = (r + 2, 6− 3r).

By a simple calculation

A+ =

[
−0.5473 −0.8369
−0.8369 0.5473

]
×
[

0.1952 0 0
0 0.3377 0

]
×

 −0.2199 −0.9742 −0.0503
0.6523 −0.1085 −0.7501
0.7253 −0.1978 0.6594


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and

F+ =

[
−0.627 0.779
−0.779 −0.627

]
×
[

0.1718 0 0
0 0.9442 0

]
×

 −0.3754 −0.8585 −0.3493
−0.4485 −0.1615 0.8791
−0.8111 0.4867 −0.3244

 .
By using equation (15), we have:[

xc1(r)
xc2(r)

]
=

[
3.0674− 0.2848r
2.0696 + 0.0609r

]
and [

xd1(r)
xd2(r)

]
=

[
0.7237− 0.7237r
0.2105− 0.2105r

]
,

and hence
x1(r) = (2.3437 + 0.4389r, 3.7911− 1.0085r),
x2(r) = (1.8591 + 0.2714r, 2.2801− 0.1496r).

6. Conclusions

In this paper, we propose a general model for solving fuzzy linear system. The
original system with crisp coefficient matrix A is replaced by two m × n crisp
linear systems. Also, conditions for the existence of a minimal fuzzy solution to the
fuzzy linear system, is presented. The proposed method possesses several properties
which makes it better, or at least more suitable, than the existing methods.
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