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SOME PROPERTIES OF FUZZY HILBERT SPACES AND NORM
OF OPERATORS

A. HASANKHANI, A. NAZARI AND M. SAHELI

ABSTRACT. In the present paper we define the notion of fuzzy inner product
and study the properties of the corresponding fuzzy norm. In particular, it is
shown that the Cauchy-Schwarz inequality holds. Moreover, it is proved that
every such fuzzy inner product space can be imbedded in a complete one and
that every subspace of a fuzzy Hilbert space has a complementary subspace.
Finally, the notions of fuzzy boundedness and operator norm are introduced
and the relationship between continuity and boundedness are investigated. It
is shown also that the space of all fuzzy bounded operators is complete.

1. Introduction

The concept of fuzzy metric spaces was initially introduced by O. Kaleva and S.
Seikkla [5], who proved a fixed point theorem for such spaces. C. Felbin [3] intro-
duced the concept of fuzzy norm and showed that every finite dimensional normed
linear space has a completion. J. Xiao and X. Zhu [11] modified the definition of
fuzzy norm and studied the topological properties of fuzzy normed linear spaces.
we introduce the concept of a fuzzy inner product and show that the resulting norm
satisfies the Cauchy-Schwarz inequality. Moreover, every fuzzy inner product space
can be imbedded in a complete fuzzy inner product space and that every subspace
of a fuzzy Hilbert space has a complementary subspace.

Finally, We note that the definition of the fuzzy norm of an operator was given
in [1] and [10]; do not satisfy the basic properties

[Tzl < I TNll=ll and TS| <[IT]]S]l

for operators T', S and vector z in general. the notions of fuzzy boundedness and
operator norm are introduced and it is shown that any operator on a finite di-
mensional fuzzy normed linear spaces is fuzzy bounded. Moreover, the relationship
between continuity and boundedness of this are investigated. It is shown also that
the space of all fuzzy bounded operators with the new norm is complete.

2. Preliminaries

Definition 2.1. [11] A mapping 7 : R — [0, 1] is called a fuzzy real number with
a-level set [n], = {t: n(t) > o}, if it satisfies the following conditions:
(N1) there exists tg € R such that n(tg) = 1.
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(N2) for each v € (0,1], there exist real numbers 7, < 77 such that the a—level
set [n]a is equal to the closed interval [n; ,nt].

The set of all fuzzy real numbers is denoted by F'(R). Since each r € R can be
considered as the fuzzy real number 7 € F'(R) defined by

. 1, t=r
r(t) = { 0 , t#m,
it follows that R can be embedded in F(R).

Definition 2.2. [11] A mapping  : R — [0,1] is called convex if n(t) >
min(n(s),n(r)) where s < ¢t < r. If there exists a tp € R such that n(ty) = 1,
then 7 is called normal.

Remark 2.3. A mapping 7 is convex if and only if each of its a-level sets [1]q,
0 < a<1,is aconvex set in R.

Lemma 2.4. n € F(R) if and only if n satisfies:
(1) n is normal, convex and upper semicontinuous.

(2) lim n(t) = lim o(t)=0.
Proof. Lemma 2.1 [11]. O

Definition 2.5. [5] The arithmetic operations +, —, x and / on F(R) x F(R) are
defined by

(m+Nt) = tig_lgy(min(n(x)w(y))),
(=) = sup (min(n(z),7(y))),
(mx)(t) = tszllag(min(n(fc%v(y))),
(n/y)(t) = sup (min(n(z),7(y))),

t=z/y

which are special cases of Zadeh’s extension principle.
Definition 2.6. [5] The absolute value |n| of n € F(R) is defined by

|77|(t> — { Bnax(n(t)’n(_t)) : iig

Definition 2.7. [5] Let n € F(R). If n(t) = 0 for all ¢ < 0, then 7 is called a
positive fuzzy real number. The set of all positive fuzzy real numbers is denoted
by F*(R).

Note: real number 7, > 0 for all n € FT(R) and all a € (0, 1].

Lemma 2.8. Let n,v € F(R) and [n]a = [n5,101], [V]la = [v4,74]. Then

i) [ +a = e +7am8 +7d]

i) =l = [Ma — 7274 = Val

iii) [ x Vo = N3 75 ndE] for m,y € FH(R)
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o 1 1. _
“)) [1/77]04 = [T7 T] ana >0
« «
) Il = bmax(0, 5., —n), max(oz i )
Proof. Lemma 2.1 [5]. O
Lemma 2.9. Let [a*,b%], 0 < a < 1, be a given family of non-empty intervals.
Assume

a)la®,b*] D [a®2,b6*?] for all 0 < aq < g,
b)[k lim aa’“,klim Y] = [a%, b*] whenever {ay} is an increasing sequence in (0, 1]

converging to a,

¢)—oo < a® < b* < 400, for all a € (0,1].

Then the family [a®, b®] represents the a-level sets of a fuzzy real numbern € F(R).
Conversely if [a®,b%], 0 < o < 1, are the a-level sets of a fuzzy numbern € F(R),

then the conditions (a),(b) and (c) are satisfied.

Proof. Lemma 2.2 [5]. O

Definition 2.10. [5] Let n,7 € F(R) and [n]o = 15,721, [V]a = [v4 721, for all
a € (0,1]. Define a partial ordering by n <~ if and only if 5, <~, and nf <~F,
for all @ € (0,1]. Strict inequality in F'(R) is defined by n < « if and only if
ne <7, and nt < ~F, for all a € (0,1].

Lemma 2.11. Let n € F(R). Thenn € FH(R) if and only if 0 < 7.

Proof. The proof follows immediately from Definition 2.10. ]

Theorem 2.12. Let n € F*(R) and [n]o = [n,,nt], for all « € (0,1]. Further-
more, let {\/77;, \/T];f} , 0< a<1, be a family of non-empty intervals. Then the
conditions (a),(b) and (c) of Lemma 2.9 are satisfied.

Remark 2.13. Let n € FT(R) and [n], = [n,,nt], for all @ € (0,1]. Then
by Theorem 2.12 and Lemma 2.9, the family {\/n;, \/7707}7 a € (0,1], represents
the a-level sets of a fuzzy number v in F'7(R). Thus we conclude the following

definition.

Definition 2.14. For a positive fuzzy real number 1 we define ,/n = v, where
Ml = [\/noi, \/nﬂ, a € (0,1].

Lemma 2.15. Letn € F*(R) and v € F(R). Then

(i) (Vi) =,

(ii) v < |y].

Definition 2.16. The sequence {7, } in F(R) converges to n in F(R) ( lim 7, =

n—oo

n), if lim |n, —n|f =0, for all a € (0, 1].

Definition 2.17. [11] Let X be a vector space over R. Assume the mappings
L,R:[0,1] x [0,1] — [0, 1] are symmetric and non-decreasing in both arguments,
and that L(0,0) = 0 and R(1,1) = 1. Let ||.|| : X — FT(R). The quadruple
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(X, |Ill, L, R) is called a fuzzy normed linear space (briefly, FNS) with the fuzzy
norm ||.||, if the following conditions are satisfied:
(Fy) if  # 0 then . inf<1 lz]lo >0,

<a<

(Fy) ||| = 0 if and only if x = 0,

(F3) |lrz|| = |7|||z|| for € X and r € R,

(Fy) for all z,y € X,

(FiL)llz + ol (s + ) > L(Jel(), gl (1)) whenever s < [lz]7, ¢ < lyll7 and s +¢ <
o+ 9l

(PRl yls-+1) S BI040 whenever 2 sl 2 ol and s+
T+ Yl -

Lemma 2.18. Let (X, ||.||,L,R) be an FNS.

(1) If L < min, then (F4L) holds whenever ||x+y||; < ||z|l5 +yll, for alla € (0,1]
and z,y € X.

(2) If L > min, then ||z +y|, < ||zl + llylla for all « € (0,1] and z,y € X
whenever (FyL) holds.

(3) If R > max, then (F4R) holds whenever ||z + y||2 < ||z||F + |lylE for all
a € (0,1] and z,y € X.

(4) If R < max, then ||z, yl|t < ||lz|Z + lyll} for all @ € (0,1] and z,y € X
whenever (F4R) holds.

In the sequel we fix L(s,t) = min(s,t) and R(s,t) = max(s,t) for all s,¢ € [0,1]
and we write (X, ||.||) or simply X when L and R are as indicated above.

The following result is an analogue of the triangle inequality.

Theorem 2.19. In a fuzzy normed linear space (X, |.||), the condition (Fy) is
equivalent to
o +yll < =l & [lyll-

Definition 2.20. [11] Let (X, ||.||) be a FNS.

i) A sequence {x,} C X is said to converge to z € X ( lim x, = z), if lim |z, —
n—0oo n—oo

z||Z =0, for all a € (0,1].

ii) A sequence {z,} C X is called Cauchy, if lim |z, — 2,||f = 0, for all

a € (0,1).

Definition 2.21. [11] Let (X, ||.||) be a FNS. A subset A of X is said to be

complete, if every Cauchy sequence in A converges in A.

Definition 2.22. [11] Let (X, ||.||) and (Y, ||.||) be fuzzy normed linear spaces. A

function ¢ : X — Y is said to be continuous at z € X, if lim p(z,) = ¢(x)

n—oo
whenever {z,} C X and lim z, = z.

Theorem 2.23. Let (X, |.||) be a fuzzy normed linear space. Then, for all a €
0,1], (X, ||.Il5) and (X, ||.|%) are normed linear spaces.

Proof. Let a € (0,1] and z,y € X.
(1) By Definition 2.17 (Fy), ||| 5 > 0.
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(2) If ||z||, = 0 then by Definition 2.17 (F}), z = 0.
If # = 0 then by Definition 2.17 (F»), ||z|| = 0 and hence ||z||;, = 0.
(3) Let r € R. By Definition 2.17 (F3), we have ||rz| = |r|||z||. Hence

lirzlig, Irli5] = (Irzlls = (Irlll=lls = [rllllls, Irll=ll], for all 3 € (0,1].

And thus ||rz||, = |r|llzll, -
(4) By Theorem 2.19 we have

lz+yll <[zl & [yl
hence
lz+yllg < llzlz + llyllz and lz+yllF < =} + [lyll§ for all 3 € (0,1].

And so |lz +yllz < zlz + s

By (1) to (4) (X, ||.|l5) is a normed linear space.

(5) Since ||z||; < ||lz||f, By Definition 2.17 (Fy), ||z||Z > 0.

(6) Let ||z||f = 0. Since ||z|; < |lz||T it follows that |z||, = 0. Then by
Definition 2.17 (F}), = 0.
If z = 0 then by Definition 2.19 (F»), ||z|| = 0 and hence ||z|f = 0.

(7) Let r € R. By Definition 2.17 (F3), we have ||rz| = |r|||z||. Hence

llrzlig, Irli5] = (Irzlls = (Irlllzlls = [rllllls, Irllll], for all 3 € (0,1].

And thus |rz||E = |r|||z|.
(8) By Theorem 2.19 we have

lz+yll < llz] & |lyll
hence
lz+yll <llzlz +llylz and |lz +ylIF < llzlI5 + [yl for all 5 € (0,1].

And so [lz +yllg < [l2ll§ + llyll3-
By (5) to (8) (X,].|I) is a normed linear space. O

3. Fuzzy Hilbert Space

Definition 3.1. Let X be a vector space over R. A fuzzy inner product on X is a
mapping (.,.) : X x X — F(R) such that for all vectors x,y,z € X and all r € R,
we have:

(IPs) (z,2) =0 if and only if x=0.
The vector space X equipped with a fuzzy inner product is called a fuzzy inner
product space.
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A fuzzy inner product on X defines a fuzzy number

llz|| = \/W, for all x € X. (1)
The following Lemma shows that the function ||.|| is a well-defined fuzzy norm.

Lemma 3.2. A fuzzy inner product space X together with its corresponding norm
I.|| satisfy the Schwarz inequality

[zl < llzll vl for all  z,yeX.

Proof. Let x,y # 0, and [(z,y)]o = [(m y>a,< ,y) 4], € (0,1]. Suppose that
ma = max(0, (2,407, —(z,y)%) and mi, = max(l(z,y)z],|(z5)%]). Then, by
Lemma 2.8,

[|<z,y>|]a = [mOum/aL Q€ (0’ 1]

Let [(z,2)]a = [(z,2)5, (z,2)¢] and [(y,9)]a = [{y,¥)a (v, > ] a € (0,1].
Definition 2.14, [||z]]o = [\/<x,x>a, V{2t and [yl . <y,y
a € (0,1].
We show that mq < ¢/ (2, Z)a\/ (Y, y)a. By Definition 3.1,
0< (z+ry,z+ry) = (z,2) + 2rlz,y) + r2(y.y), (2)
then
R o et Sy TR

Case 1: Assume (z,y)T < 0. Let r < 0. The following conditions are equiv-
alent:
i) 2r{z,y)t < —2rmg,,
i) 2r((z,y)f +ma) <0,
i) (x, y> +meq > 0.
Since my, = max(0, —(z,y)F, (x,y);) = —(z,y)L, it follows that

<3’3 y> + Mg = <$,y>l_ - (x,y)i > 0

and hence
2r(z,y)t < —2rmg, Vr <O0. (4)

Next, let » > 0. The following condition are equivalent:
1) 2r<x Yo < —2rmeg,
i) 2r({z,y)q +ma) <0,
144) (x,y); +mq <0,
w) (2,y)q — (z,)§ <0.
Hence
2r(z,y), < —2rmg, Yr >0. (5)



Some Properties of Fuzzy Hilbert Spaces and Norm of Operators 135

Then, by (3), (4) and (5),
0 < (z,z), —2rma +7r*(y,y)n, Vr€R.

Let r = ma/(y,y), € R. Since (y,y), > 1r(1f ]<y , Yo > 0, ris well defined
a€(0

and thus m?2 < (z,2); (y,y); . Alsosince mg, > 0, ma < A/ {7, 2)ar/ (Y, ¥)a

Case 2: Assume (z,y)T > 0. Let r < 0. The following conditions are equiv-

alent:
1) 2r{z,y)T < 2rmg,
i1) 2r((z,y)t —mey) <0,
i11) (z,y)t —mq > 0.
Since mq = max(0, —(z, y){, (,9)5) = max(0, (z, )5 ),

2r(z,y)t < 2rm,, Vr <O0. (6)
Next, let » > 0. The following conditions are equivalent:
1) 2r<x Yo < 2rmeg,
1) (z,y); < Mme.
Hence

2r(z,y), < 2rmy, Vr>0. (7)
Then, by (3),(6) and (7),

0 < (x,2); +2rma +7r%(y,y),, VrcR.

Let 7 = —ma/(y,y)s - Since (y,y), > iI(lOf ]<y \Y)e > 0, 7 is well defined
a€e(0,1

and thus m?2 < (z,z), (y,y), . Also since m, > 0, m, < \/(az,xﬁ\/(y,y);.
Now we show that m/, < 1\/{(z,2)d\/(y,y)&. By (2

< + _ <J}, > + 2’/‘<.%' y> +r <y7y>a7 r > 0
0<{zt+ry,z+ry), { (x,2)F +2r{x,y)y +r(y,y)f, r<O0. (8)
From (3), we have

0 < (m,2)f +2r{z,y); +7%y,y)L, >0
0 < (z,z)f +2r(z,y)5 +r*(y,y)d, r<O0. )
Then, by (8) and (9),

0 < (x,z)} +2r(z,y), + 7%y, y)F, VreR.
Let r = —(2,y)5/(y,y)&- Then ((z,9)5)* < (z,2){(y,y)d and hence
[z, 9)al <A/ (@, 2)d\/ (v, v)d- (10)
By (8) and (9), we have
0 < (w,2)] +2r(x,y)d +7°(y,y)E,vr € R,
Let r = —(,y)4/(y,y)d- Then ((z,9)%)* < (z,2){{y,y)d and hence

o)l < i vty . ()
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Now, by (10) and (11), m/, < WW

Hence, by Deﬁmtlon 2.10 and Lemma 2.8,

[z )| < [l]] [lyll-
If y =0, then (z,0) = (x,0)+(x,0) and hence (z,0),
Thus, (z,0), =0, for all « € (0,1]. Similarly (z,0)
(z,y) = (x,0) = 0, which implies that

(@) =0=<0=|=] yll

Vo = (2,005 +(z,0)5.
T = 0. Consequently,

Theorem 3.3. The function ||.|| defined in Definition 3.1 is a fuzzy norm.
Proof. (F1) By Definition 3.1(IP5), O<inf<1 llz||; > 0, if = # 0.
ax
(F2) ||z|| = 0 if and only if (z,2) = 0 if and only if 2 = 0.

(F3) ||ral| = \/(ra, ra) = /7w, ) = Vi2/{e,2) = [F|\/(z,2) = || ||z].

(F4) By Theorem 2.19, it is sufficient to show that lz+y|l < [|z]| + ||y|.We have
lz +yl> (@ +y,2+y) = (w,2) +2(x,y) + (v.9)

ll]* + 2(z, y) + [yl

l]* + 2[¢z, y)| + llylI?

2l + 2l Iyl + lyl*

(llll + 1yl

IN N

and hence
2 +yll < [zl + [yl
O

A fuzzy Hilbert space is a complete fuzzy inner product space with the fuzzy
norm defined by (1).

Theorem 3.4. Let X be a fuzzy inner product space. For all x,y € X, ifx,, —
and y, — y, then (Tn,yn) — (z,9).

Proof. Let [(zn,yn)la = [(Tn,Yn)as (@n,yn)d] and [((z,9)]e = [(z,9)5, (z,9)d]-
Consider

[znsyn)a — (@ 9)dl < [on,ynda — (@n )41+ Kan y)d — (@, 0)d |
= |<$nayn_y>;|+|<$my>z_<$7ZU>I|
< lzall&llyn = wlla + on vda = (@ v)al- (12)

We show that [(zn,y)q — (z,9)4| < [yl lzn — 2[5

A

Case 1: If 0 < <-Tnvy>3¢_ - <.’E7y>l_, we have 0 < <='13n, y>l_ - <$,y>l_ < <xn7y>;t -
(x,y), and thus

[z, 9)d = (@) d <l @n, v)d — (2. 9)al = (20 — 2, 9)d [<l2n — 2] Syl -
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Case 2: If 0 < (,y); — (zn,y)&, we have 0 < (z,9) 5 — (¥n,¥)q < (2, 9)d —
(xn,y), and thus

(2o, y)a — (@ w)al <z 9)a = (2ny)a| = [ — 20, 9)E I<le — 2l S llyllS-
Hence
(zn, v)d — ()] < lyllElen —2]f. (13)
Then, by (12), (13)
(2 ynda — (@ m)a| < lznlldlyn —ylld + Iyl llen — )13
Since z,, — z and y,, — ¥, it follows from Definition 2.20 that

lim [lz, —z|F = lm |y, —yllZ =0,
n—oo n—oo

and hence
lim (2, Yn)s — (z, )| =0, Va e (0,1]. (14)
Similarly we have
lim (@, yn)t — (z,y),| = 0,Va € (0,1]. (15)
n—oo

Now, we have
(Zn:yn) — (@, 9)]a = [(TnsYn)a — <x7y>;rv <:‘cnvyn>;zr — (.Yl
Therefore,
[{@nsyn) — (@, 9)|a = max(|(zn, yn)a — (2, 9)& | [{@n, yn)d — (@, 9)a ),
and, in view of (14) and (15), lim |(xn,ys) — (x,y)|L = 0 for all € (0, 1].

&

Hence, by Definition 2.16, lim (z,,y,) = (z,y).
O

Definition 3.5. [4] Two fuzzy normed linear spaces (X, |.||) and (X*,|.]|*) are
called congruent if there exists an isometry of (X, ||.||) onto (X*,||.]|*).

Definition 3.6. [4] A complete fuzzy normed linear space (X*, ||.||*) is a completion
of a fuzzy normed linear space (X, |.||) if

(i) (X, |I.]l) is congruent to a subspace (Xo, ||.|[*) of (X™*,||.|*), and

(i) the closure X of Xp, is all of X*;i.e., X = X*.

Definition 3.7. Let X be a fuzzy inner product space.
i) Let {z,} and {y,} be a Cauchy sequences in X. Then {z,} is said to be
equivalent to {y,}, written {z,} ~ {y,}, if and only if

lim_ [, — yall = 0.
n—oo

Note that, by [4,th.3], the relation ~ is an equivalence relation.

ii) The collection of all equivalence classes of ~ is denoted by X*. Let *, y* € X*,
we define x* +y* as the class represented by {z, +y,}, where {z,,} € z*, {y.} € y*.
Furthermore, if r € R and {z, } € «*, we define rz* as the class containing {rz,}.
Note that again in view of the Theorem 3 in [4], the space X* together with the
operations of addition and scalar multiplication defined above is a linear space.
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Definition 3.8. Let 2*,y* € X* with representatives {x,} and {y,}, respectively.
Assume « € (0, 1] and {ay} in a strictly increasing sequence converging to «. Define

(", 4] hm lim (a:n,yn>ak, hm lim <xn,yn> . (1)

k—o00 n—oo o0 N—00

Lemma 3.9. The function {.,.) defined in Definition 3.8, is a fuzzy inner product
on X*.

Proof. Let X* be as in Definition 3.8. We show that (I) is well-defined; i.e., the
limits on right side of (I) exist and are independent {z,} € z*, {y,} € y* and

{ou}.
First we show that the limits on the right side (I) exist. Fix k. We show that
|<$nayn>;k - <xmvym>gk| < lzn — xm”;rkHym”;rk + |y — ym”nganzk
There are two cases.
Case 1: |<Imyn>;k - <l’m, ym>;k| = <m7layn>o¢k <xm,ym> Then

|<xnayn>;k - <xmvym>gk‘ = <xmyn>;k - <xmvym>ak
<xnayn>;—k - <xm7ym>;k
[(Zns Yn) e, — (Tims Ym)ar, |

l2n = Zm & ymlla, + 19n = vl 121,

IA

IN N

Case 2: |<xnayn>;k - <xm7ym>¢;k| = <$maym>;k - <l‘n7yn>;k~ Then

(mm,ym>;k - <xnvyn>;k
<xma ym>;rk - <xn7yn>;k
|<xm7ym>zk - <xmyn>;k|

l2n = Zall &, 1Ym 15, + lyn = gl lzn

(@7, yn>;k — (Tm ym>;k ‘

ININ TN

Hence

s Yn) e, = (@ Ym) e | < N2 = 2|3, Ny 1, + 19 — Yl N1zl
Since {x, }, {yn} are Cauchy sequences, lim |z, —zn| = Um |yn—yml| =
m,n—o0 m,n— oo

0. Hence {(Zy,Yn)s, Jn>1 is a Cauchy sequence in R. Also since R is complete,
lim (2, Yn),, exists. Similarly, hm <J:n,yn> exists.

n—oo (67

Since o < ap41 < @, it follows from Lemma 2.9(a) that

(T, Yn) oy, < <xn,yn>;k+l <Axn,yn)5, for all n>1.

Hence

lim (2, Yn)q, < lim <$myn>ak+1 < lim (zp, yn)5 -

n—oo n— n—oo
Since { hm (:cn,yn>a }e>1 is increasing and bounded, lim lim (z,,y,),, exists.
k k—o00 n—00 Gk

Also since ai < ag4+1 < «, it follows from Lemma 2.9(a) that

<$myn>z < <mn»yn>gk+1 < <$myn>f§k» for all n>1.
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Hence
lim (z,,y,) < lim (:Cn,y,L};‘kH < lim <xn,yn>§k
n— o0 n—oo n—oo
Since { lim <xn,yn>i‘k }x>1 is decreasing and bounded, lim lim (z,,y,)! exists.
n—00 = k—o00 n—00 k

Now we show that (I) is independent of {x,} € z* and {y,} € y*. Let {z]} ~
{zn} and {y),} ~ {yn}. We have

[@ns Unda, = (@s Vi) a | < llom = 20015 Y0 NE, + llyn = volld, el
Since {2} ~ {«} and {yn} ~ {y}}, o — ol = lim g — | = 0 or,
equivalently, lim (z,,yn),, = lim (z},,9,),, and hence lim lim (zn,yn),, =
n—00 n—00 k—o00 n—00

lim lim (], 9,)5, -

k—o00 n—00
Similarly

+

+ 1 . roo
o, = lim lim <xn,yn>ak.
k—o00 n—o00

klim lHm (2, Yn)

Now we show that (I) is also independent of the choice of {ax}. Let ap /™ «
and o), " . Then we can form a sequence i " « such that {3} has {«}} and
{ar} as subsequences. Thus

lim lim (z,,y,)

= lim lm (zn,yn)s, = lm lm (z,,yn)
k—o00 n—o0 k

« ’
k k— 00 n—00 k—00 N—00 A

and
+
ol

Jim tim (@0, yn)g, = Hm o Em (2, 90) 5, = lim m (20, y0),,

We show that (.,.) defined in Definition 3.8 is a fuzzy real number. Let *,y* €
X*. Assume {z,} € 2, {y,} € y* and let {ax} be a strictly increasing sequence
converging to « € (0, 1]. Since o < «, it follows that

(@, Yn)mr, < (s Un)m < (TnsYn)d < Ty yn)

and hence

lim lm (2n,Yn)q, < lIm (2n,yn), < lim (T, yn)t < lim lim (xn,yn>;'k.
k—oo0 n—oo n— 00 n— o0 k—o0 n—oo
So, [{(z*,y*)]a # 0, for all « € (0,1].

We show that [(z*, y*)]a, o € (0,1], satisfy the conditions of Lemma 2.9:

(a) Let 0 < 81 < fa. Assume that oy, 1, ), /" B2 and «}, > (4, for all k.

Then, ap < oy, for all &, hence (z,,,yn)s, < <xn,yn>;;c and thus

< lim lim (z,, y,)

lim lim <-’1f'n7yn> k— 00 n—00

@ s .
k—o00 n—00 k A,

Similarly,

IN

lim lim (2., y,)"

lim lim (2, y,) " o
k—o00 n—0o0

k—o0 n—oo a;c
Hence [< x*,y* >]g, C [< z*,y* >]a,.
(b) Let {8;} be strictly increasing and §; / «. Assume (§;_1 < ag; < 3; and
ag; /" B, for all i. We have
(x*,y"); = lim lim <xn,yn)[§1 = lim lim (2., Yn)

1—00 N—00 17— 00 N—00

Bi-1"
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Since ay; < 3, it follows that (v, yn)s,, < (xmynﬁi, and hence

lim lim lim (z,,yn),

< lim lim (25, Yn) 5, -
1—00 k—00 n—00 K

ki 71— 00 N— 00

Also since 3;_1 < auy;, it follows that (mn,yn>g < A{Tn,Yn)a,,, and hence

i—1 —

< lim lim lim (z,,y.),

lim lim <1'n;yn>5 T 500 k—00 n—00

1—00 N—00 i—1 Qi *

Thus

(*,y"); = lim lim lim <xmyn>;kl - zlin(}o<x*7y*>51

1—00 k—00 N—00

Similarly (z*,y*)} = lILIEO(x*,y*};L Hence

+,]-

(@ y")a, (27, y")d] = [lim (27,y") 5, lim (z*,y") §
71— 00 1— 00

(c) Let a € (0,1] and ap " a. Since oy < ay, it follows that (z,,yn)y, <
(Tn,Yn)g, and thus nlin;o<xn,yn>;1 < nli_)n;()(mn,ynﬁk. Hence

—00 < Hm (%pn,Yn)e, < lim lm (25, yn) 4,
n— o0 k— o0 n—o0

Similarly

lim lim (z,,y.)8 < nllrgo(xn,yn>;r1 < +o0.

k—o0 n—o00

Hence (z*,y*) is a fuzzy real number i.e. (z*,y*) € F(R).

We show that the function (.,.) defined in Definition 3.8, is a fuzzy inner product
on X*.

(IP1) Let z*,y*, 2* € X* . We have

[(z" + 9", 2], lim lim (x, +yn,zn>ak, lim lim (x, —|—;z/n,zn>Jr ] )

k—oo n—oo —00 N—00
Since X is a fuzzy inner product space,

(=" +y", 27, =

[hm im (2n, 2n)a, + hm lim (ymzn)ak, lim lim (a:n,zn>ak + hm lim (yn,zn)zk}
k—o0 n—oo k—o00 n—o0 —00 N—00 k—o0 n—oo

= [ 20 + Ly 2 )]s -
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(IP2) Let z*,y* € X* and r € R. We have

lim lim <rmn,yn>ak, hm i (ran, Yn) .

k—o0 n—o0 00 N—00

[(ra™, y™)],

lim lim r(zn,yn>%, lim lim r(zn,yn)d, | , 7>0
| k—oon—00 ) —00 N—00 ]

lim lim r(xmyn>ak, hm lim r(zn,Yn)e, | » 7 <0
| k—oo n—oo 00 N—00 |

r lim lim (xn,y,L}ak,r lim lim (z,,y,)5 | . 7>0
L k— oo n—o0 —00 N—00 1

r lim lim <xn,yn>ak,r lim lm (2n,Yn)a, | , 7<0
L k—o00 n—00 —00 N—00 ]
= [y,
Hence 7{z*,y*) = (ra*, y*).
(IP3) Let z*,y* € X*. We have
(z* 9], = {hm lim (xn,yn>ak, lim lm (x,,y.)" ]
k—oo n—oo k—o00 n—00

k—o00 n—00 —00 N—00

= [y 27,

Hence < z*,y* >=< y*, z* >.

= {hm lim (yn,xn>ak, lim lim (yn,xn>+k}

(IP4) Let z* € X*. We have

(", z")], = {lim lim (mn,xn>;k, lim lim <xn,xn>l‘k} ,
k— o0 n—o0 k— oo n—oo

since (2, 2,) > 0, for all n > 1, it follows that 0 < (z,2n)5, < (Tn,yn)d, and
hence

(x*,x*) > 0.
(IP5) Let z* € X* and z* # 0*. Then by Theorem 3 ([4]), X* is a fuzzy normed
space and

* _ . . — . . +

l2*llq = | lim lim flz, g, . im L {5, ] - (1)

By part (B) of Definition 1 in [4], there exists ag € (0, 1] such that o in<f lz*|lx >
<a<ag

0. Since [|z*[|5, < [|z*[|5, for all ag < a, it follows that iI(lf | [l=*||; > 0 and hence
ac(0,1

0< inf lim lim ||xn||[;? for all By (By /).

0<a<l k—oo n—



142 A. Hasankhani, A. Nazari and M. Saheli

Then,

0< inf lm lim \[{z, 2n)s = inf \/ lim lim (2, ,)5-

0<a<l k—oon—oo k 0<a<l \/ koo n—oo

Therefore inf lim lim {(z,,%,)3« > 0. Thus inf a®. ., >0.
0<a§1k—>oon—>oo< " ">ﬁk 0<ax1 (@)

(IP6) Let 2* = 0*. Then

k—o00 n—00 k—00 n—00

[(z*, 2")], = [lim lim (0,0),,, lim lim <o,o>;k} = [0,0],
and hence (z*,z*) = 0. 3
Conversely, let (z*,2*) = 0. Then [(z*,2*)]o, = [0, 0] and hence

ak, hm lim (@, 2,,) 7, ] = [0,0].

k— 00 n—00 00 N—00

By (11),

[l [l]a,

lim lim ||$n||ak, lim lim ||$n||ak:|
—00 N—00 —00 N—

= hm lim o /{Zn, Tn) 5@, lim lim (xmﬂcn}zga}
k%oon—mxn k—o00 n—0o0 k

= \/hm lim (xn,xn>ﬁg,\/lim lim <xn,xn>5 } [0, 0].

k—o00 n—o0 k—o0 n—o0

Hence ||z*| = 0 and thus z* = 0*.
Therefore X* is a fuzzy inner product space and by Definition 3.1,

[z*]l1 = V/(z*, 2%), Va© € X" (1I1)
O

Theorem 3.10. For every fuzzy inner product space X there is a completion. In
fact, X* is a completion of X.

Proof. By (II) and (I1I) in the proof of Theorem 3.9 we have

Nz*[], = [ (, §>} :[ lim lim (2, 2n),,,,/ lim lim (xn,wn>:k]
L k—o00 n—00 k— 00 n—00

= lm lm \/{@n, Tn)ay, hm lm \/(zn, Tn)a ]
k—>oon—>oo —00 N—00

= [t eyt 5, = 071,

kgroo n— o0

Hence, by Theorem 3 in [4], X* is a completion of the fuzzy normed linear space

X and
p: X — X*

is a linear isometry.
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Now we show that (¢(x), p(y)) = (z,y) for all x,y € X. We have

[{o(2), o ()]s

lim lim (z,y) zk}

)
k7 gk —ocon—oo

[lim lim (z,y)

k— o0 n—o0

{éﬁg;<m7y>;k7gig;<x,y>$k}-
Then by Lemma 2.9 (b),

[(p(@), ()] = [(@,9)a, (z,9)E] -

Hence X* is a completion of X. O

4. Orthogonal Complements Direct Sums

In this chapter we show that every subspace of a fuzzy Hilbert space has a
complementary subspace.

Definition 4.1. (Orthogonality) An element x of an inner product space X is said
to be orthogonal to an element y € X if (x,y) = 0. We also say that x and y are
orthogonal, and we write xLy. Similarly, for subset A, B C X we write x 1 A if
xlaforallae A, and ALB if alb for alla € A and all b € B.

Lemma 4.2. (Parallelogram inequality) Let X be a fuzzy inner product space. Then
(= +ll)? + (e = yl)? < 2((ll2)* + (lyll2)?)
forall z,y € X and o € (0, 1].
Proof. Let z,y € X. We have
|+ y”2 ={z+y,z+y) = (z,2) +2(z,y) + (v, 9),
and
. —yl* = (z —y,z —y) = (z,2) — 2(z,y) + (y,v).
Let [<x,y>] = [<$7y>c_w <$7y>¢i—] Then
(lz +yll2)? = (ll2)* + 2(e, 95 + (lvlla)?,
and
(lz = yll2)? = (zll)* = 2(z, v) & + lyll2)*
Thus
(e +yll)? + (e = yll)? = 2((lzl1)% + (lyll2)?) + 2((, v) o — (=,9)8).
Since (z,y), < {(z,y)t,

(lz +ylIz)? + (e = yll2)?* < 2((l=l12)* + (lyllz)?)-
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Theorem 4.3. Let X be a fuzzy inner product space and M # 0 a convex subset
of X such that (M,||.||;) is complete. Then for every x € X and o € (0,1] there
exists a unique yo, € M such that

0= inf ||z —y||] = l|lx — vl -
Jof Nlo —ylla =l = valla
Proof. The proof is similar to the proof of Theorem 3.3.1 of [6]. O

Lemma 4.4. In Theorem 4.3, let M be a subspace of Y. Let x € X and let
a € (0,1]. Then, for ally €Y,

[<Zomy>]o¢ = {O} where Zoa =T — Yq-
Proof. Assume that there exists y; € Y such that

[<Zozay1>]a = [aavba] # {0} (16)

Clearly, y; # 0 since otherwise (z4,y1) = 0. Furthermore, for any scalar ¢,
20 = ty1lI” = (20 — ty1, 20 — t1) = (2a Za) = 26(2a; 41) + (Y1, 1)

Hence
(lza = ty1ll2)? = (2all3)? = 20 + (lyall7)* >0
(lza = t11ll2)?* = ([2all3)? = 2ta® +2([lpall7)* ¢ <0. (17)

We have the following four cases.

Case 1: Let b® > 0. If we choose t = b*/(||y1]|5)? > 0. Then from (17) we
have

Iz — tyll2)? = (lzall2)? = 6°9/(lsa1)* < (1zall)* = 6%

But this is impossible because we have z, — ty; = = — yo, where ys =
Yo +ty1 €Y, so that by the definition of 9, ||zo —ty1||, > 0. Hence b* < 0.

Case 2: Let b™ < 0. Since a® < b, it follows that a® < 0. If we choose
t=a/(||ly1ll5)* <0, then from (17) we have

(20 = tn1l12)? = (1zall2)? = @) /(llz)? < (lzallz)? = 6

But this is impossible, because we have z, — ty; = x — ys, where yo» =
Yo + ty1 € Y and hence by the definition of §, ||z — ty1]|, > 6. Thus
b > 0.
Case 3: Let a® < 0. If we choose t = a®/(||ly1]|;)? < 0, then by a similar
proof as in the case 2, it can be seen that this is impossible. Hence a® > 0.
Case 4: Let a® > 0. Since a® < b, it follows that 0% > 0. If we choose
t = b*/(|ly1]l;)? > 0, then by a similar proof as in the case 1, we see that
this is impossible. Hence a® < 0.
Thus a® = b* = 0 . Hence (16) is impossible and so the Lemma is
proved.
([l
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Definition 4.5. A vector space X is said to be the direct sum of two subspace
Y and Z of X, written X =Y @ Z, if every € X has a unique representation
x=y+z(y€eY,z€ Z). Then Z is called an algebraic complement of Y in X and
vice versa, and Y, Z is called a complementary pair of subspaces in X.

Theorem 4.6. Let Y be any subspace of a fuzzy inner product space X such that
the normed spaces (Y, ||.||5) are complete, for all a € (0,1]. Then

X=Y®Z where Z=Y" .

Proof. Since Y is convex and the normed spaces (Y, ||.||;) are complete for all
a € (0,1], Theorem 4.3 and Lemma 4.4 imply that for every € X and for every
a € (0,1] there exists a y, € Y such that ¢ = y, + 2, and, for all y € Y,

[(2a; Y)]a = {0}
We show that y, = yg for all «, 3 € (0,1]. Let o < 3. We have

[(za: )]s € [z y)la = {0}

Hence [(zq,y)]g = {0} and so [(zo — 23,¥)]g = {0}, for all y € Y. Now we have
T = Yo + 2o and = = yg + 23, which implies that y3 — yo = 24 — 23 and thus

[<y,3_youy>]ﬁ:{0}a fm,. all yey

Since yg—yqo € Y, it follows that [(¥3 —Ya, Y —Ya)]g = {0}. Hence (||y,g—ya||§)2 =
0. Thus [lys — Yall5 = 0, or, equivalently, y5 = ya.
Now we have © = y + 2z such that y = y, and z = z,, for all @ € (0, 1]. Since

[(z: 4] = [(2a:4))]a = {0}, for all a€(0,1],

it follows that (z,3') = 0, for all y/ € Y. Hence z € YL,
The proof of uniqueness is the same as in Theorem 3.3.4 of [6]. g

Corollary 4.7. Let Y be any subspace of a fuzzy Hilbert space X such that the
normed spaces (Y, ||.||5) are complete, for all o« € (0,1]. Then

X=Y®Z where Z=Y" .

5. Fuzzy Norm of Linear Operator

At first, we introduce the notions of fuzzy bounded and fuzzy norm of linear
operators.

Definition 5.1. Let (X, ||.]|) and (Y, ||.||) be fuzzy normed linear spaces. Further-
more, let T : X — Y be a linear operator. The operator T is said to be fuzzy
bounded, if there is a fuzzy real number 7 such that

ITz|| < nllz||, for all ze€ X. (18)
The set of all fuzzy bounded linear operators 7' : X — Y, is denoted by B(X,Y’).
Remark 5.2. The set B(X,Y) is a real vector space.
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Definition 5.3. Let (X, ||.]]), (Y, ].|]) be fuzzy normed linear spaces and let
T:X — Y be a fuzzy bounded linear operator. We define ||T'|| by,

(TN = [sup sup

Tzl inf{ng : | Tzl < nllzll}], for all a e (0,1]. (19)
B ey <1

Then ||T| is called the fuzzy norm of the operator T

Notation: We write ||T||5 = sups,, sup [Tzl 5 and ITNE = inf{nd : |Tz|| <nlz|},

I <1

Le. (ITll]a = [ITI5, ITIL], for all o € (0,1].

Theorem 5.4. Let T : X — Y be a fuzzy bounded linear operator and let (X, ||.||),
(Y, ||-) be fuzzy normed linear spaces. Then ||T|| is a fuzzy real number.

Proof. Let a € (0,1] and let ||[Tz|| < nllz[|. Suppose that 3 < a and |z[|; < 1.
Then [[Tz||; < ng and 5 < g, hence || Tz|[; <n;. Therefore,

sup sup |[Tz|z; <mng. (20)
Ba|z||; <1

Since 17 < 7,

sup sup [|Tz|; <ng,
Baa); <1
and thus
sup sup || Tz]; <inf{ng : [Tz < nll=|}.
Ba |5 <1
Hence [||T||]o = [IT|l5, IT|I7] is a nonempty interval, for all « € (0, 1].

We show that [||T]|]«, o € (0, 1], satisfies the conditions of Lemma 2.9.
(a) Let 0 < @3 < ae. Then

sup sup ||Tz|; < sup sup |[[Tz|j;.
B |z|| 5 <1 Boz ||| 5 <1

Since 0 < a1 < ag, it follows from Lemma 2.9 (a) that n < 77:1, and thus

oy —
inf{ng, : | Tz < nllz|} < inf{ng, : |T=| < nll=|l}.

Hence [[|T]a; S (1Tl
(b) Let {ay} be a increasing sequence in (0,1] converging to . Then ay <
ag+1 < « and hence

sup sup || Ty < sup sup [T
Bak |lzf| 5 <1 B<ae|; <1

Thus

sup sup sup |[|Tz|; <sup sup |Tz[j5. (21)
ko p<ok ||lz) 5 <1 Ba ||| 5 <1
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Let £ > 0. Then there exists By < « such that

sup sup |[[Tzll; —e < sup [Tz,
Ba|z|5 <1 llzll5, <1

Since oy, /" a, there is a 0 < kg such that 8y < ay, < a. Hence

sup |[[Tz|z < sup sup |[[Tzl; <sup sup sup [Tz,
llzllg, <1 Barg ||z 5 <1 k- B<ak ||z ;<1

which implies that
sup sup |[[Tz|; —¢ < supsup sup |[[Tz|j;.

B lz|| ;<1 ko B<ak |z) ;<1
Ase — 0,
sup sup |[[Tz|; < supsup sup |[Tz;. (22)
Baz| 5 <1 ko f<on 2] <1

Hence by (21) and (22),

lim sup sup |[|T%|; =sup sup sup |Tz[; =sup sup [Tz;.
o0 pan o) 5 <1 ko A<ak a5 <1 B<a a5 <1

Since o < «a,
inf{ny : [Tz <nll=ll} < nf{nd, :[|Tz| <nll},
therefore
inf{n? : [Tz <nllz|} < igfinf{nik Tz < nflz|} (23)

Let 0 < €. Then there exists a fuzzy real number 7y such that »& < int{n} : |T2| < nll=ll}+

.. Since oy /" « it follows from Lemma 2.9 (b) that infy na'ak = 1., This implies
that there is a 0 < kg such that 773“%0 < ng., +¢&. Therefore

infinf{ny, : |Tz|l <nllz|} <inf{nd, : (7] <nllz|} <ng. +e,
and thus
infinf{ng, : | Tz|l <nllz|} < inf{ng : | Tz] < nllll} + 2e.
Ase — 0,
infinf{ng, : [T < nllz} < inf{nl : Tz <nllell}. (24)
Then from (23) and (24),
Tim inf{n, ¢ [Tl < nllell} = infinf{nd, : [Tl < nllall} = int{s : [Tl < nlll}.

Hence
TINS5

(c) Since 0 < [|T'z||5, for all z € X and all 8 € (0, 1], hence

[lim [T, lim [T,

—oco<0<sup sup |Tzj;.
Baz); <1
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Let n be a fuzzy real number which is || Tz|| < n||z]||, for all z € X. Lemma 2.9 (c)
implies that n} < 400, for all @ € (0,1]. Hence

inf{n} : || Tz < nllz]} < +oc.
Therefore
—oo <sup sup [Tz[; < inf{n} : |Tz| < nllz||} < +o0, for all o€ (0,1].
Ba |5 <1
Thus by Lemma 2.9, ||T'|| is a fuzzy real number. O

Lemma 5.5. Let T : X — Y be a fuzzy bounded linear operator and (X, ||.||),
(Y, ||l be fuzzy normed linear spaces. Then | Tx| < ||T||||z|, for all x € X.

Proof. Let {Br} be an increasing sequence in (0,1] converging to « € (0,1]. We
have
\Tel5 /el < s [1T2l3, < |75
], <1

Hence
[T, < [T [l 5,-
Since B /" «, it follows from Lemma 2.9 (b) that
[Tz = Jim |Tel5, < Jim (T3 ]2l5, = 175 tm el = 73 )]s
Hence

ITzlly < 1Tlla 1l (25)

Moreover, we have | Tz||T < nZ||=||F, which implies that
IT2l < (inf{ng < [Tl < nllz)})llwlly-
Thus
ITz)g < TN (26)

The proof follows from (25) and (26). O

Theorem 5.6. The vector space B(X,Y') equipped with the norm defined in Defi-
nition 5.3 is a fuzzy normed linear space.

Proof. Tt is sufficient to show that the norm defined by (2) satisfies the conditions
of Definition 2.17.

(F1) Let 0 # T € B(X,Y). Then there is an element 0 # 2y € X such that
Txo # 0. Assume that M = supy.,<1 [|Zo]|5 (note that M < co). We have

o b | Twolly < [ Tzolla < ITllalwolle < I Tlla M, for all a € (0,1].

Hence

inf |[|Tzol|5 < MO in

f 7.
0<B<1 <a§1H le

Since T'zg # 0, it follows that 0 < infocqa<1 ||[T2o|l, - Thus 0 < infoca<1 [|T], -
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(F2) Let T € B(X,Y). It is clear that, when T' = 0.
Conversely, let ||T|| = 0. Since ||Tz| < 0fjz||, it follows that || Tz| = 0, for all
x € X. Thus by Definition 2.17, (F2) Tz = 0, for all x € X, therefore "= 0.

(F3) Let re Rand T € B(X,Y). For all « € (0, 1], we have

lrT o = [sup sup |[rTz|;,inf{ng : [|rTz| < nllz|}]
f<a ez <1

- 1
=[rsup sup |Tz|,inf{nt : [|Tz| < =nllz||}]
B<aiz)|F <1 r

=[rsup sup ||Ta|7,inf{ryS : ||Ta|l < ll=]}]
Baz| 5 <1

=[rsup sup |Tz|g,rinf{r : | Tz| < ~lz||}]
Ba 2|5 <1

= [rIT1]a-

Hence ||rT|| = r||T|| -
(F4) Consider

sup sup [[(T'+S)(z)ll; < sup sup ([|T(2)|5 + [S(2)l5)
Ba|z)|; <1 Ba |5 <1
< sup sup [|S(z)[; +sup sup [ T(x)5.
Baz||; <1 Ba x|y <1
Hence
1T+ S[la < 1Tla + IS1s- (27)
Now we have
(T + ) ()| < [|Tz]| + |Sz|| < (1Tl + (ISl = (7] + |S1DI]]]-
Therefore
inf{ny : (T + S)(2)|| < nllzll} < ITE +1IS]IE.
Hence
IT+5SI1E <ITIIE +ISIIE- (28)
Thus by (27), (28), and Theorem 2.19, (F4) holds. O

Corollary 5.7. Let (X, |.]]), (Y,|.|) be fuzzy normed linear spaces. The wvector
space B(X,Y) is a fuzzy normed linear space.

Now we show that all linear operators on finite dimensional spaces are fuzzy
bounded. We need the following lemmas.

Lemma 5.8. Let (X, ||.|]), (Y, ||.l) be fuzzy normed linear spaces. Furthermore, Let
T:X —Y be a linear operator which is sup - < |Tz||t < oo, for all a € (0,1],

and supg g<; SUP| 4> <1 [Tz||; < oo. Then T is a fuzzy bounded linear operator.



150 A. Hasankhani, A. Nazari and M. Saheli

Proof. Let No = sup), - |Tz|| £, for all @ € (0,1]. If v <, then ||z < [|z]|5
and ||Tz||T < ||Tx||£. This implies that N, < N,. Assume that M, = infz<, Np.
If o <, then

M, < M,. (29)

Let {ay} be an increasing sequence in (0, 1] converging to a. Since o < « it follows
that M, < M,, and hence

My < inf M, (30)

Let 0 < e. Then there is a 8y < « such that Ng, < M, + €. Since ay, / a,

there exists 0 < kg such that 8y < ay,. Then infy M,, < M., < Ng, and hence
infy, My, < M, +¢. As e — 0, we have

i%fMak < M,. (31)

Hence by (30), (31), M, = infy, M,, and thus
Mo = inf Mo, = lim M, (32)
Now we have N, < Ng, for all 8 < «, thus N, <infgco Ng = M. Then
IT2||% < Nallzllg < Nallzllf < Mao|lz|¥. (33)

Let M = supy_5<; SUP|4 - <1 |Tz]|5. Then,

Tzl < Ml|z|ly, for all x€ X and « € (0,1]. (34)

We define [n], = [M, M + M,], for all « € (0,1]. By (29), (32), and Lemma 2.9,
the family [n]a, a € (0, 1], represents the a—level sets of a fuzzy real number 7. By
(33) and (34), we obtain that |[Tz| < n|lz||. Hence T is a fuzzy bounded linear
operator. [

Lemma 5.9. Let (X, ||.||) and (Y, ||.||) be fuzzy normed linear spaces with dim X <
oo. Furthermore, let T : X — Y be a linear operator. Then sup, -, Tzt < oo,

for all a € (0,1], and supg. <, SUD||, - <1 [Tz] 5 < oo.

Proof. Let {e1,...,e,} be a basis for X. For x = > a;e;, since T is linear,

1Tz = > aiTe;| < lasl|[Tes]-

Let v = maxi<i<p ||T¢;||. Then
1Tz <> lail). (35)
By Proposition 3.3 [3], there is a fuzzy real number 0 < n such that
n(z la;]) < ||lz||, for all z€ X. (36)
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Let o € (0,1]. Then from (35) and (36), we have

1Tz 5 <yE O lail) < (v /ma) Izl
and hence

sup ||Tx||f <~ /n, < .
lzllz <1

Now we have
Izl = 1> asesll < laillles]] < (121?5” lesll) > lai. (37)

We define a norm |.||o on X by [||z]lo]a = [D_ |ai|, . |a;]], for all « € (0,1]. By (36)
and (37), the norm ||.|| is equivalent to the norm ||.||o. This implies that there is a
fuzzy real number p such that ||z|lo < wl|z||, for all x € X. Now we obtain

1Tz < v5 O lail) < vz g lxl5-
Hence

sup |Tal; <515,
25 <1

and thus

sup  sup |[Tz|; < sup yzpus <y py < oo
0<p<1 lzllz <1 0<B<1

O

Theorem 5.10. Let (X, ||.||) be a finite dimensional fuzzy normed linear space.
Then every linear operator on X is fuzzy bounded.

Proof. By Lemmas 5.8 and 5.9, every linear operator on X is fuzzy bounded. O

6. Strongly Continuous Linear Operator

In this section we investigate the relationship between (strong) continuity and
fuzzy boundedness.

Theorem 6.1. Let T : X — Y be a fuzzy bounded linear operator and (X, |.]),
(Y, ||.]) be fuzzy normed linear spaces. Then T is continuous.

Proof. By Lemma 5.5, [|[Tz|| < ||T||||z|, for all z € X. Hence | Tz|} < |T||t|=|t,
for all @ € (0,1]. Let {z,} be a sequence in X converging to € X. Then
limy, oo |2n — z||F =0, for all @ € (0,1]. Hence

0< lim [Tz, —Tz|| = lim |T(z, —2)|
n—oo n—oo
< Tim (|7 - )

= 7] lim [z, — 25 =0.
n—oo

Thus lim, e || T2, — Tx||f = 0, for all « € (0,1]. It follows that 7" is continuous.
U
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Note: Fuzzy boundedness is not equivalent to continuity. In the next example we
show that continuity does not imply fuzzy boundedness.

Example 6.2. Let X be a vector space and B={e; }°, a basis for X (dim X = c0).

Define fuzzy norms ||.|| and ||.||o on X by
(R E:M\E:Ua|%|mdﬂﬂ }:m4§]%|zmaex_§:%%
for all @ € (0,1]. It is clear that ||.|| and ||.||o are fuzzy norms on X.

We define T : (X, |.]) — (X,]l.]lo) by Te, = ne, for all e, €B. Let {z,} C
(X, ]I-]) be a sequence which is x,, — 0. Assume that x, = Zf;l anie;. Then
Tz, = 21‘21 angie;, hence || Tz, |4, = Zf;l |ani|, for all @ € (0,1]. Let 5 < 1. We
have

kn kn kn

IITInIISL = Z |anii = Z“am Z 1/8) |ani| = ”mn”ﬁ

i=1 i=1 i=1
Since x,, — 0, it follows that ||a:n||g — 0, for all 8 € (0,1], hence ||Tz,|d, — 0, for
all @ € (0,1]. Thus T is continuous.
We now show that T is not bounded. If T is fuzzy bounded, then there exists a
fuzzy real number 7 such that ||Tz||o < n||z|, for all x € X, and hence ||Tz|J; <
Fllz||f, for all € X. However,

ITenllgy = lInenllgy = Inl = n < nilleally = n,

hence n < i}, for all n € N, and thus 771 = +00, which is a contradiction.

Definition 6.3. Let T : X — Y be a linear operator and (X, |.]]), (Y,].|]) be
fuzzy normed linear spaces. Then T is called strongly continuous if for any real
number 0 < ¢, we can find a fuzzy real number 0 < § such that if ||z||f < d,,
|Tz||f <eandif ||z, <d&F, |Tz|, <e (a€(0,1],z € X).

Now we show that the notions of strong continuity and fuzzy boundedness are
equivalent.

Lemma 6.4. Let T : X — Y be a linear operator and (X,|.|), (Y;|.]]) be a
fuzzy mormed linear spaces. Assume M, = sup,<g SUD||, |+ <1 ||Tx||; < 00, for all

a € (0,1], and N = SUPo<p<1 SUP||y |~ <1 |Tz||; < oo. Then T is a fuzzy bounded

linear operator.

Proof. Let v < a. Then M, < M,. Assume that F,, = infg., Mg, for alla € (0,1].
If & < 7, then

F, < Fo. (38)

Let {ax} be an increasing sequence in (0,1] converging to a. Since ay < a, it
follows that Fa < Fay and hence
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<i .
Fa < Hl%f Fay (39)

Let 0 < €. Then there is a By < « such that Mg, < F, +¢. Since ai / a,
there exists a 0 < kg such that By < ay,. Hence infy F,, < FO%_0 < Mg, and thus
infy, Fy,, < Fo +¢. Since e — 0,

inf Fo, < Fo. (40)
By (38), (39),
Fo = inf Fo, = lim Fy,. (41)

We define [n]o = [N, N + F,] for all « € (0,1]. By (41) and Lemma 2.9, the
family [n]a, o € (0, 1], represents the a—level sets of the fuzzy real number 7.
Now we have M, < Mg, for all 8 < a. So M,, < F,,, and hence

T2 < Mallz]|§ < Fallzld < (Fa + Nzl (42)

Since N = supy5<; SUP| 4> <1 1Tzl 5,

|Tz|l, < N|z|l,, for all a€ (0,1] and z € X. (43)

Then from (42), (43), |[Tz| < n|z||, for all z € X. Consequently, T is a fuzzy
bounded linear operator. O

Theorem 6.5. Let (X, ||.|)), (Y, |.]) be fuzzy normed linear spaces andT : X —'Y
a linear operator. Then T is fuzzy bounded if and only if T is strongly continuous.

Proof. Let T be a fuzzy bounded linear operator and let 0 < e. Suppose that
§ =¢/||T||. Assume ||z||, < 1. Then

IZallz < 1Tl el < ITNG6E = 171 /171) = =
Hence, ||Tz||; <e.
Next assume ||z||f < d,. Then
ITalls < I NellE < TS = 1T (/ITIE) = .
Thus ||Tz||} <e. Consequently, T is strongly continuous.
Conversely, let T' be strongly continuous. Assume N = supg.5<; SUP| 4> <1 ||Tz\|§

and 0 < e. Since T is strongly continuous, there exists 0 < 6 € F(R) such that
Tz||f < eif ||z|f < 4, and | Tz|, < e if ||z]|, < 7, for all @ € (0,1] and all
e X.

Let [|z][; < 1. We have ||5;x||g = 5;;||ng < 55. Hence \\T(é;x)||§< ¢ and thus
Tzl 5 < 5/55. It follows that SUP|4> <1 [Tz]l5 < /8%, which implies

sup sup |[[Tz|; < sup 5/55.
0<B<1 llzll5 <1 0<p<1
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Since 67 < &7, for all § € (0,1], hence e/65 < /67, for all § € (0,1], and therefore
SUPo<3<1 5/(%_ <¢/8f. Thus
N = sup sup \|Tx||g < g/&f < 0. (44)
0<B=1 a5 <1
Let My = sup,<p SUD||, 1+ <1 ||T3:H;7 for all & € (0,1]. Suppose that Hx||;r < 1.

Then ||5§3:H; = 55||x\|; < d5. Hence ||T(c5§ac)||;r < ¢ and thus ||Tx||§ <e/ds.
So

sup ||Ta:||/‘@Ir <e/ds.
llzllf <1

Hence

sup sup ||Tx||§ <supe/ds.
< |z <1 as<p

Since &, < d4, for all @ < 3, it follows that £/0; < ¢/d,, for all @ < 3, and hence
SUpa<3€/05 < €/d, . Thus

M, = sup sup HTmHZQ <eg/d, <o, for all a€(0,1]. (45)
a<h |z} <1
Consequently, by (44), (45) and Lemma 6.4, T is fuzzy bounded. O

Proposition 6.6. Let T : X — Y be a fuzzy bounded linear operator and (X, ||.|)),
(Y, [l.]]) be fuzzy normed linear spaces. Assume My = sup,,<g SUP| 4+ <1 ||T$H;, for

all o € (0,1], and N = supy. <, SUP| 4> <1 |Tz||5. Then N < oo and Mq < oo,
for all a € (0,1].

Proof. Since T is a fuzzy bounded linear operator, ||Tz|| < ||T||||lz|, for all z €
X. Hence ||Tzl|; < [[T||5lz[l5, for all 8 € (0,1], and thus for all 8 € (0,1],
SUP|4|- <1 |Tz||; < [|T5. This implies that

sup sup |[Tz|; < sup [T5.
0<B<1 llzllg <1 0<B<1

Since |T'|; < Ty, for all 8 € (0,1], it follows that supg.g<y [|T]l5 < [[T]l; -
Hence N < ||T||7 < oc.
Let o € (0,1]. Since ||Tx||; < ||T||g||:r||'ﬁ", for all g € (0, 1], SUP||, 4 <1 HT33||23r <

||T||;r and hence

sup sup ||Tz[|§ < sup [T
asp |z <1 as<f

Since ||T[|5 < |T|IE, for all v < 3, it follows that sup,<s |T[5 < |IT||£. Hence
M, < ||IT||} < oo for all a€(0,1].
U
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7. Some Properties of B(X,Y)
In this section we show that B(X,Y’) is complete.

Theorem 7.1. Let T : X — Y be a fuzzy bounded linear operator and (X, |.|),
(Y, || be fuzzy normed linear spaces. Then ||T|| < n whenever |[Tx| < n||z| (g€
F(R)).
Proof. Let | Tz| < n||z|. By (20) in proof of Theorem 5.4, |T||; < 7, for all
a € (0,1).
We have ||T3 = inf{ng : [|Tz|| < nllz} < nf, then ||T|[F < ng, for all
€ (0,1]. Consequently, ||T|| < 7. O

Theorem 7.2. Let (Y,].||) be a complete fuzzy normed linear space and (X, ||.||) be
a fuzzy normed linear space. Then B(X,Y) is complete fuzzy normed linear space.

Proof. By Corollary 5.7, B(X,Y) is a fuzzy normed linear space.
We consider an arbitrary Cauchy sequence {T,,} in B(X,Y") and show that {7}
converges to an operator T' € B(X,Y"). Since {T,} is Cauchy,

lim |7, — TwllZ =0, for all o€ (0,1].

m,n— oo

We have ||(T, — Ton)(2)]] < |T% — Ton|l|l]]. Then
(T, — T)(2)||L =0, for all a € (0,1].

lim ||
m,n— o0

Hence {T},(z)} is a Cauchy sequence in Y. Since Y is complete, {T,,(z)} converges,
say T,,(x) — y, this defines an operator T': X — Y, where y = T'z. Also since

lim T, (az + 6t) = lim (aThz + 8T,t) = « lim T,z + 8 lim T,t = oTx + BTt,
n—oo n—00 n— oo n—oo
for all z,t € X, Tislinear.

We prove that T' is a fuzzy bounded. Let N = supy.3<; SUP| 4> <1 |Tz| 5 and
My = sup,<p SUP|z)1+ <1 ||T:vH;, for all @ € (0,1]. Suppose that 0 < e. Since
Tx =lim, o Ty, for all a € (0,1], there exists 0 < M, , such that

| T2 — Thz||f <e, for all My, <n.

Since {T},} is Cauchy, for all a € (0, 1] there exists 0 < N, such that
|T, — Twllt <&, for all N, <m,n.

Let Hac||z,r <1and a < 3. Assume Ny, M, , < k. Then

1Tz < (T =Tn) (@) + 1T zllf
< T =Tw) @) + 1T 5 215
< T =Tw) @) + 1T IIS
< T = Te) @) + (T = Tn) @) + 1T 1S
< T =Te)@)E + 1Tk = Tl N2l + 1T 12
< e+e+|Ta |t
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Hence we obtain that

My =sup sup ||Tz|[f < 2e+ || Tn,[IE < oo (46)
a<B |z} <1

Thus M, < oo, for all a € (0, 1].

Let [|z]|; <1 and Ny, M, < k. Then

1Tzl (T = Tny) @)l g + 1 TNy 2l 5
(T = Tny) @)l g + 1Ty Ml 1l 5
(T =Ty ) (@)l g + 1T, M7
(T = Te)(@)lg + 1Tk — Tny)) (@)l g + 1Ty M7
T = Ti) @) + 1Tk — Ty 5 Izl + 1T, 17
(T = Ti) @I + 1Tk — Ty I + 1T 17
ete+ “TN1||;'

IN

(AN VAN VAN VAN VANRI VAN

Therefore

N= sup sup |[[Tz|5 <2+ |Tn |7 <oc. (47)
0<B<1 o5 <1

Hence N < oo. By (46),(47) and Lemma 6.4, T is a fuzzy bounded linear operator.
Now we show that ||T;, —T'[| — 0. Let 0 < e. Suppose that N1 < k and |[z]; < 1.
Assume Ny, M; ; <n. Then

T -Te)@); < (T —=To)(@)llg + 11Tk — Tn)(@)ll5
< T = T) @I + 1 Tx — Tallg 2l
< T = To) @I + I Tw — Tallf
< e+e.
Therefore
sup  sup (T —Ty)(2)[|5 < 2. (48)

0<B=1 Iz 5 <1

Let a € (0,1] and N, < k. Assume o < 3 and Hx||;r < 1. Suppose that Ny, My, <
n?

(T — Ti) (@)1 (T = To) @)1 5 + (T = Tn) (@) 15
1T = T) @)1+ 1Tk = Tall 5 Il
(T = To) @)L + 1T — Tulld

e+e.

IN AN CINIA

Therefore
sup sup ||T7Tk(x)||;r < 2e. (49)
s lzf|f <1
Let N* = SUPo<p<1 8UP||z|| 7 <1 (T = T)(x)|[5 and ME = SUPa<g SUP|jg|| £ <1 (T —
Tk)(x)||:§, for all @ € (0,1]. By the proof of Lemma 6.4, (T — Tx)(z)|| < nillz||

where 1] = [N*, MF + N¥], for all a € (0,1]. Then from (48), (49), limy,_.o 7% =
0. Since by Theorem 7.1, ||T' — T || < nx it follows that limy . || — Tk || = O.
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Consequently, B(X,Y) is a complete fuzzy normed linear space. O

Theorem 7.3. Let (X, |.|), (Y,|.]) and (Z,].]]) be fuzzy normed linear spaces.
Furthermore, let T € B(X,Y) and S € B(Y,Z). Then ST € B(X,Z) and ||ST| <
IS

Proof. We have ||STx| < ||S||||Tz] < [|S||T]|||z||. Hence ST € B(X,Z) and by
Theorem 7.1, ||ST| < ISIT]- O
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