Ezzati, R., Mokhtarnejad, F. (2015). Existence and uniqueness of the solution of fuzzy-valued integral equations of mixed type. Iranian Journal of Fuzzy Systems, 12(2), 87-94. doi: 10.22111/ijfs.2015.1984

R. Ezzati; F. Mokhtarnejad. "Existence and uniqueness of the solution of fuzzy-valued integral equations of mixed type". Iranian Journal of Fuzzy Systems, 12, 2, 2015, 87-94. doi: 10.22111/ijfs.2015.1984

Ezzati, R., Mokhtarnejad, F. (2015). 'Existence and uniqueness of the solution of fuzzy-valued integral equations of mixed type', Iranian Journal of Fuzzy Systems, 12(2), pp. 87-94. doi: 10.22111/ijfs.2015.1984

Ezzati, R., Mokhtarnejad, F. Existence and uniqueness of the solution of fuzzy-valued integral equations of mixed type. Iranian Journal of Fuzzy Systems, 2015; 12(2): 87-94. doi: 10.22111/ijfs.2015.1984

Existence and uniqueness of the solution of fuzzy-valued integral equations of mixed type

^{}Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran

Abstract

In this paper, existence theorems for the fuzzy Volterra-Fredholm integral equations of mixed type (FVFIEMT) involving fuzzy number valued mappings have been investigated. Then, by using Banach's contraction principle, sufficient conditions for the existence of a unique solution of FVFIEMT are given. Finally, illustrative examples are presented to validate the obtained results.

[1] S. Abbasbandy, E. Babolian, M. Alavi, Numerical method for solving linear Fredholm integral equations of the second kind, Chaos Solitons Fractals, 31(1) (2007), 138-146. [2] O. A. Anastassiou and S. G. Gal, On a fuzzy trigonometric approximation theorem of Weierstrass-type, Journal of Fuzzy Mathmatics, Los Angles, 9(3) (2001), 701-708. [3] M. A. F. Araghi and N. Parandin, Numerical solution of fuzzy Fredholm integral equations by the Lagrange interpolation based on the extension principle, Soft Computing, 15 (2011), 2449-2456. [4] H. Attari and A. Yazdani, A computational method for fuzzy Volterra-Fredholm integarl equa- tions, Fuzzy Information and Engineering, 2 (2011), 147-156. [5] R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl., 12 (1965), 1-12. [6] K. Balachandran and K. Kanagarajan, Existence of solutions of general nonlinear fuzzy Volter- raFredholm integral equations, J. Appl. Math. Stoch. Anal., 3 (2005), 333-343. [7] K. Balachandran and P. Prakash, Existence of solutions of nonlinear fuzzy VolterraFredholm integral equations, Indian J. Pure Appl. Math., 33 (2002), 329-343. [8] A. M. Bica, Error estimation in the approximation of the solution of nonlinear fuzzy Fredholm integral equations, Information Sciences, 178 (2008), 1279-1292. [9] A. M. Bica and C. Popescu, Approximating the solution of nonlinear Hammerstein fuzzy integral equations, Fuzzy Sets and Systems, doi.org/10.1016/j.fss.2013.08.005. [10] D. Dubois and H. Prade, Towards fuzzy dierential calculus, Fuzzy Sets and Systems, 8 (1982), 1-17. [11] R. Ezzati and S. Ziari, Numerical solution and error estimation of fuzzy Fredholm integral equation using fuzzy Bernstein polynomials, Australian Journal of Basic and Applied Sciences, 5(9) (2011), 2072-2082. [12] R. Goetschel and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986), 31-43. [13] O. Kaleva, Fuzzy dirential equations, Fuzzy Sets and Systems, 24 (1987), 301-317. [14] A. Molabahrami, A. Shidfar and A. Ghyasi, An analytical method for solving linear Fredholm fuzzy integral equations of the second kind, Computers and Mathematics with Applications, 61(9) (2011), 2754-2761.

[15] J. Mordeson and W. Newman, Fuzzy integral equations, Information Sciences, 87 (1995), 215-229. [16] S. Nanda, On integration of fuzzy mapping, Fuzzy Sets and Systems, 32 (1989), 95-101. [17] J. Y. Park, S. J. Lee and J. U. Jeong, On the existence and uniqueness of solutions of fuzzy VolterraFredholm integral equations, Fuzzy sets and systems, 115 (2000), 425-431. [18] M. L. Puri and D. A. Ralescu, Fuzzy random variables, J. Math. Anal.Appl., 114 (1986), 409-422. [19] D. Ralescu and G. Adams, The fuzzy integrals, J. Math. Anal. Appl., 75 (1980), 562-570. [20] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems, 24 (1987), 319-330. [21] P. V. Subrahmaniam and S. K. Sudarsanam, On some fuzzy functional equations, Fuzzy Sets and Systems, 64 (1994), 333-338. [22] P. V. Subrahmaniam and S. K. Sudarsanam, A note on fuzzy Volterra integral equations, Fuzzy Sets and Systems, 81 (1996), 237-240. [23] M. Sugeno, Theory of fuzzy integrals and its applications, Ph.D. Dissertation, Tokyo Inst. of Tech., 1974. [24] C. Wu and Z. Gong, On Henstock integral of fuzzy-number- valued functions, Fuzzy sets and systems, 120 (2001), 523-532. [25] Z. Wang, The autocontinuity of set-function and the fuzzy integral, J. Math. Anal. Appl., 99 (1984), 195-218. [26] H. C.Wu, The fuzzy Riemann integral and its numerical integration, Fuzzy Sets and Systems, 110 (2000), 1-25. [27] L. A. Zadeh, A fuzzy-set-theoretic interpretation of linguistic hedges, Journal of Cybernetics, 2 (1972), 4-34. [28] L. A. Zadeh, The concept of the linguistic variable and its application to approximate rea- soning, Information Sciences, 8 (1975), 199-249. [29] S. Ziari, R. Ezzati and S. Abbasbandy, Numerical solution of linear fuzzy fredholm inte- gral equations of the second kind using fuzzy haar wavelet, Communications in Computer and Information Science, 299 (2012), 79-89.