^{}Department of Mathematics, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran

Abstract

In this paper, we use parametric form of fuzzy number, then an iterative approach for obtaining approximate solution for a class of nonlinear fuzzy Fredholm integro-differential equation of the second kind is proposed. This paper presents a method based on Newton-Cotes methods with positive coefficient. Then we obtain approximate solution of the nonlinear fuzzy integro-differential equations by an iterative approach.

[1] S. Abbasbandy and T. Allahviranloo,Numerical solution of fuzzy dierential equation by Runge-Kutta method, Nonlinear studies, 11(1) (2004), 117-129. [2] S. Abbasbandy, T. Allaviranloo, O. Lopez-Pouso and J. J. Nieto, Numerical methods for fuzzy dierential inclusions, Computers & mathematics with applications, 48(10-11) (2004), 1633-1641. [3] S. Abbasbandy and B. Asady, Newtons method for solving fuzzy nonlinear equations, Applied Mathematics and Computation, 159(2) (2004), 349-356. [4] S. Abbasbandy, E. Babolian and M. Alavi, Numerical method for solving linear Fredholm fuzzy integral equations of the second kind, Chaos Solitons & Fractals, 31(1) (2007), 138- 146. [5] S. Abbasbandy and A. Jafarian, Steepest descent method for solving fuzzy nonlinear equa- tions, Applied Mathematics and Computation, 175(1) (2006), 581-589. [6] S. Abbasbandy, J. J. Nieto and M. Alavi, Tuning of reachable set in one dimensional fuzzy dierential inclusions, Chaos, Solitons & Fractals, 26(5) (2005), 1337-1341.

[7] T. Allahviranloo, S. Abbasbandy, N. Ahmady and E. Ahmady, Improved predictorcorrector method for solving fuzzy initial value problems, Information Sciences, 179(7) (2009), 945-955. [8] T. Allahviranloo, N. Ahmady and E. Ahmady, Numerical solution of fuzzy dierential equa- tions by predictorcorrector method, Information Sciences, 177(7) (2007), 1633-1647. [9] T. Allahviranloo, N. A. Kiani and M. Barkhordari,Toward the existence and uniqueness of solutions of second-order fuzzy dierential equations, Information Sciences, 179(8) (2009), 1207-1215. [10] T. Allahviranloo, N. A. Kiani and N. Motamedi, Solving fuzzy dierential equations by dif- ferential transformation method, Information Sciences, 179(7) (2009), 956-966. [11] K. E. Atkinson,An introduction to numerical analysis, New York: Wiley, 1987. [12] E. Babolian, H. S. Goghary and S. Abbasbandy,Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method, Applied Mathematics and Com- putation, 161(3) (2005), 733-744. [13] C. T. H. Baker, A perspective on the numerical treatment of Volterra equations, J. Comput. Appl. Math., 125(1-2) (2000), 217-249. [14] P. Balasubramaniam and S. Muralisankar, Existence and uniqueness of fuzzy solution for the nonlinear fuzzy integro-dierential equations, Applied mathematics letters, 14(4) (2001), 455-462. [15] M. I. Berenguer, D. Gamez, A. I. Garralda-Guillem, M. Ruiz Galan and M. C. Serrano Perez, Biorthogonal systems for solving Volterra integral equation systems of the second kind, J. Comput. Appl. Math., 235(7) (2011), 1875-1883. [16] A. H. Borzabadi and O. S. Fard, A numerical scheme for a class of nonlinear Fredholm integral equations of the second kind, Journal of Computational and Applied Mathematics, 232(2) (2009), 449-454. [17] S. S. L. Chang and L. Zadeh,On fuzzy mapping and control, IEEE Trans. System Man Cybernet, 2(1) (1972), 30-34. [18] Y. Chen and T. Tang, Spectral methods for weakly singular Volterra integral equations with smooth solutions, J. Comput. Appl. Math., 233(4) (2009), 938-950. [19] D. Dubois and H. Prade, Operations on fuzzy numbers, J. Systems Sci., 9(6) (1978), 613-626. [20] D. Dubois and H. Prade, Towards fuzzy dierential calculus, Fuzzy Sets and Systems, 8(1-3) (1982), 1-7. [21] M. Friedman, M. Ma and A. Kandel, Numerical solutions of fuzzy dierential and integral equations, Fuzzy Sets and Systems, 106(1) (1999), 35-48. [22] R. Goetschel and W. Vaxman, Elementary calculus, Fuzzy sets and Systems, 18(1) (1986), 31-43. [23] H. Hochstadt, Integral equations, New York: Wiley, 1973. [24] A. Kaufmann and M. M. Gupta, Introduction Fuzzy Arithmetic, Van Nostrand Reinhold, New York, 1985. [25] O. Kaleva, Fuzzy dierential equations, Fuzzy Sets and Systems, 24(3) (1987), 301-317. [26] J. P. Kauthen, Continuous time collocation method for Volterra-Fredholm integral equations, Numer. Math., 56(1) (1989), 409-424. [27] G. J. Klir, U. S. Clair and B. Yuan, Fuzzy set theory: foundations and applications, Prentice- Hall Inc., 1997. [28] H. Kwakernaak, Fuzzy random variables. Part I: denitions and theorems, Information Sci- ences, 15(1) (1978), 129. [29] P. Linz, Analytical and numerical methods for Volterra equations, SIAM, Philadelphia, PA, 1985. [30] M. T. Malinowski,On random fuzzy dierential equations, Fuzzy Sets and Systems, 160(21) (2009), 3152-3165. [31] M. T. Malinowski, Existence theorems for solutions to random fuzzy dierential equations, Nonlinear Analysis: Theory, Methods & Applications, 73(6) (2010), 1515-1532. [32] M. T. Malinowski, Random fuzzy dierential equations under generalized Lipschitz condition, Nonlinear Analysis: Real World Applications, 13(2) (2012), 860-881.

[33] M. Mosleh and M. Otadi, Simulation and evaluation of fuzzy dierential equations by fuzzy neural network, Applied Soft Computing, 12(9) (2012), 2817-2827. [34] M. Mosleh and M. Otadi, Minimal solution of fuzzy linear system of dierential equations, Neural Computing and Applications, 21(1) (2012), 329-336. [35] M. L. Puri and D. Ralescu, Fuzzy random variables, Journal of Mathematical Analysis and Applications, 114(2) (1986), 409-422. [36] M. L. Puri and D. Ralescu, Dierentials of fuzzy functions, Journal of Mathematical Analysis and Applications, 91(2) (1983), 552-558. [37] H. H. Sorkun and S. Yalcinbas, Approximate solutions of linear Volterra integral equation systems with variable coecients, Applied Mathematical Modelling, 34(11) (2010), 3451- 3464. [38] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, New York, 1993. [39] W. Congxin and M. Ming, Embedding problem of fuzzy number space, Fuzzy Sets and Systems, 45(2) (1992), 189-202. [40] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Information Sciences, 8(3) (1975), 199-249.