Fixed Fuzzy Points of Fuzzy Mappings in Hausdorff Fuzzy Metric Spaces with Application

Document Type: Research Paper

Authors

1 Dipartimento di Matematica e Informatica, Universita degli Studi di Palermo, Via Archirafi 34, 90123 Palermo, Italy

2 Department of Mathematics and Applied Mathematics, University of Pretoria, Lynnwood road, Pretoria 0002, South Africa, Department of Mathematics, Syed Babar Ali School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore, 54792, Pakistan

3 Department of Mathematics, Syed Babar Ali School of Science and Engi- neering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore, 54792, Pakistan

Abstract

Recently, Phiangsungnoen et al. [J. Inequal. Appl. 2014:201 (2014)] studied fuzzy mappings in the framework of Hausdorff fuzzy metric spaces.
Following this direction of research, we establish the existence of fixed fuzzy points of fuzzy mappings. An example is given to support the result proved herein; we also present a coincidence and common fuzzy point result. Finally, as an application of our results, we investigate the existence of solution for some
recurrence relations associated to the analysis of quicksort algorithms.

Keywords


[1] B. Ali and M. Abbas, Suzuki type xed point theorem for Fuzzy mappings in ordered metric
spaces, Fixed Point Theory Appl., 2013:9 (2013), 1-19.
[2] J. W. de Bakker and E. P. de Vink, A metric approach to control
ow semantics, in: Proc.
Eleventh Summer Conference on General Topology and Applications, Ann. New York Acad.
Sci., 806 (1996), 11-27.
[3] J. W. de Bakker and E. P. de Vink, Denotational models for programming languages: appli-
cations of Banach's xed point theorem, Topology Appl., 85(1-3) (1998), 35-52.
[4] J. W. de Bakker and E. P. de Vink, Control Flow Semantics, Cambridge, MA, USA: The
MIT Press, 1996.
[5] A. Deb Ray and P. K. Saha, Fixed point theorems on generalized fuzzy metric spaces,. Hacet.
J. Math. Stat., 39(1) (2010), 1-9.
[6] V. D. Estruch and A. Vidal, A note on xed fuzzy points for fuzzy mappings, Rend Istit.
Univ. Trieste, 32 (2001), 39-45.
[7] J. X. Fang, On xed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 46(1)
(1992), 107-113.
[8] P. Flajolet, Analytic analysis of algorithms, In: W. Kuich (Ed.), Automata, Languages and
Programming, 19th Internat. Colloq. ICALP'92, Vienna, July 1992, in: Lecture Notes in
Computer Science, Berlin: Springer, 623 (1992), 186-210.
[9] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy sets and Systems,
64(3) (1994), 395-399.
[10] A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets
and Systems, 90(3) (1997), 365-368.
[11] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27(3) (1988),
385-389.
[12] V. Gregori and S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Sets and Sys-
tems, 115(1) (2000), 485-489.
[13] V. Gregori and A. Sapena, On xed point theorems in fuzzy metric spaces, Fuzzy Sets and
Systems, 125(2) (2002), 245-253.
[14] R. H. Haghi, Sh. Rezapour and N. Shahzad, Some xed point generalizations are not real
generalizations, Nonlinear Anal., 74(5) (2011), 1799-1803.
[15] S. Heilpern, Fuzzy mappings and xed point theorem, J. Math. Anal. Appl., 83(2) (1981),
566-569.
[16] G. Kahn, The semantics of a simple language for parallel processing, in: Proc. IFIP Congress,
North-Holland, Amsterdam: Elsevier, (1974), 471-475.
[17] F. Kiany and A. Amini-Harandi, Fixed point and endpoint theorems for set-valued fuzzy
contraction maps in fuzzy metric spaces, Fixed Point Theory Appl., 2011:94 (2011), 1-9.
[18] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11(5)
(1975), 336-344.
[19] R. L. Kruse, Data structures and program design, Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1984.

[20] Y. Liu and Z. Li, Coincidence point theorems in probabilistic and fuzzy metric spaces, Fuzzy
Sets and Systems, 158(1) (2007), 58-70.
[21] S. G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General Topol-
ogy and Applications, Ann. New York Acad. Sci., 728 (1994), 183-197.
[22] D. Mihet, On the existence and the uniqueness of xed points of Sehgal contractions, Fuzzy
Sets and Systems, 156(1) (2005), 135-141.
[23] D. Mihet, On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets and Systems,
158(8) (2007), 915-921.
[24] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete
metric spaces, J. Math. Anal. Appl., 141(1) (1989), 177-188.
[25] S. B. Nadler, Multivalued contraction mappings, Paci c J. Math., 30(2) (1969), 475-488.
[26] S. Phiangsungnoen, W. Sintunavarat and P. Kumam, Fuzzy xed point theorems in Hausdor
fuzzy metric spaces, J. Inequal. Appl., 2014:201 (2014), 1-10.
[27] A. Razani, A contraction theorem in fuzzy metric space, Fixed Point Theory Appl., 2005(3)
(2005), 257-265.
[28] J. Rodrguez-Lopez and S. Romaguera, The Hausdor fuzzy metric on compact sets, Fuzzy
Sets and Systems, 147(2) (2004), 273-283.
[29] S. Romaguera, A. Sapena and P. Tirado, The Banach xed point theorem in fuzzy quasi-
metric spaces with application to the domain of words, Topology Appl., 15(10) (2007),
2196-2203.
[30] R. Saadati, S. M. Vaezpour and Y. J. Cho, Quicksort algorithm: Application of a xed point
theorem in intuitionistic fuzzy quasi-metric spaces at a domain of words, J. Comput. Appl.
Math., 228(1) (2009), 219-225.
[31] P. Salimi, C. Vetro and P. Vetro, Some new xed point results in non-Archimedean fuzzy
metric spaces, Nonlinear Anal. Model. Control, 18(3) (2013), 344-358.
[32] B. Schweizer and A. Sklar, Statistical metric spaces, Paci c J. Math., 10(1) (1960), 385-389.
[33] C. S. Sen, Fixed degree for fuzzy mappings and a generalization of Ky Fan's theorem, Fuzzy
Sets and Systems, 24(1) (1987), 103-112.
[34] T. Som and R. N. Mukherjee, Some xed point theorems for fuzzy mappings, Fuzzy Sets and
Systems, 33(2) (1989), 213-219.
[35] D. Turkoglu and B. E. Rhoades, A xed fuzzy point for fuzzy mapping in complete metric
spaces, Math. Commun., 10(2) (2005), 115-121.
[36] L. A. Zadeh, Fuzzy Sets, Inf. Control, 8(3) (1965), 338-353.