Statistical Convergence and Strong $p-$Ces`{a}ro\ Summability of Order $beta$ in Sequences\ of Fuzzy Numbers

Document Type: Research Paper

Authors

1 Department of Mathematics, Firat University, 23119, Elazig, Turkey

2 Department of Statistics, Firat University, 23119, Elazig, Turkey

Abstract

In this study we introduce the concepts of statistical convergence of order
$beta$ and strong $p-$Ces`{a}ro summability of order $beta$ for sequences
of fuzzy numbers. Also, we give some relations between the statistical
convergence of order $beta$ and strong $p-$Ces`{a}ro summability of order
$beta$ and construct some interesting examples.

Keywords


bibitem{altin2}
Y. Altin, M. Et and M. Bac{s}ari r, textit{On some
generalized difference sequences of fuzzy numbers}, Kuwait J. Sci. Eng.,
 {bf 34(1A)} (2007), 1-14.

bibitem{altinok}H. Altinok, R. c{C}olak and M. Et, $lambda
-$textit{Difference sequence spaces of fuzzy numbers}, Fuzzy Sets and
Systems, textbf{160(21)} (2009), 3128-3139.

bibitem{Aytar}S. Aytar and S. Pehlivan, textit{Statistically convergence
of sequences of fuzzy numbers and sequences of }$alpha-$textit{cuts},
International J. General Systems, (2007), 1-7.

bibitem{burgin}M. Burgin, textit{Theory of fuzzy limits}, Fuzzy Sets and
Systems, textbf{115} (2000), 433-443.

bibitem{Connor}J. S. Connor, textit{The statistical and strong }%
$p-$textit{Ces`{a}ro convergence of sequences}, Analysis, textbf{8(1-2)} (1988), 47-63.

bibitem{colakb}R. c{C}olak, textit{Statistical convergence of order
}$alpha,$ Modern Methods in Analysis and its Applications, Anamaya Publ.
New Delhi, India, (2010), 121-129.

bibitem{Diamond}P. Diamond and P. Kloeden, textit{Metric spaces of fuzzy
sets}, Fuzzy Sets and Systems, textbf{35(2)} (1990), 241-249.

bibitem{Fang}J. X. Fang and H. Hung, textit{On the level convergence of
a sequence of fuzzy numbers}, Fuzzy Sets and Systems, textbf{147} (2004), 417-435.

bibitem{Fast}H. Fast, textit{Sur la convergence statistique}, Colloquium
Math., textbf{2} (1951), 241-244.

bibitem{Fridy}J. A. Fridy, textit{On statistical convergence}, Analysis,
textbf{5(4)} (1985), 301-313.

bibitem{gadjiev}A. D. Gadjiev and C. Orhan, textit{Some approximation
theorems via statistical convergence}, Rocky Mountain J. Math., textbf{32(1)} (2002), 129-138.

bibitem{hancl}J. Hanv{c}l, L. Miv{s}'{i}k and J. T'{o}th,
textit{Cluster points of sequences of fuzzy real numbers}, Soft Computing,
textbf{14(4)} (2010), 399-404.

bibitem{kumar}V. Kumar and K. Kumar, textit{On the ideal convergence of
sequences of fuzzy numbers}, Information Sciences, textbf{178(24)} (2008), 4670-4678.

bibitem{kwon}J. S. Kwon, textit{On statistical and }$p-$%
textit{Ces`{a}ro convergence of fuzzy numbers}, Korean J. Comput. &Appl.
Math., textbf{7(1)} (2000), 195-203.

bibitem{Matloka}M. Matloka, textit{Sequences of fuzzy numbers}, BUSEFAL,
textbf{28} (1986), 28-37.

bibitem{mur}M. Mursaleen and M. Bac{s}ari r, textit{On some new
sequence spaces of fuzzy numbers}, Indian J. Pure Appl. Math., textbf{34(9)} (2003), 1351-1357.

bibitem{Nuray}F. Nuray and E. Savac{s}, textit{Statistical convergence
of sequences of fuzzy real numbers}, Math. Slovaca, textbf{45(3)} (1995), 269-273.

bibitem{Schoenberg}I. J. Schoenberg, textit{The integrability of certain
functions and related summability methods}, Amer. Math. Monthly, textbf{66} (1959), 361-375.

bibitem{talo}"{O}. Talo and F. Bac{s}ar, textit{On the space }%
$bv_{p}(F)$textit{ of sequences of }$p-$textit{bounded variation of fuzzy
numbers}, Acta Math. Sin. Engl. Ser., textbf{24(7)} (2008), 1205-1212.

bibitem{Tri}B. C. Tripathy and A. J. Dutta, textit{On fuzzy
real-valued double sequence space }$_{2}ell_{F}^{p}$textit{, Math. Comput.
Modelling}, {bf 46(9-10)} (2007), 1294-1299.