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ON THE COMPACTNESS PROPERTY OF EXTENSIONS OF

FIRST-ORDER GÖDEL LOGIC

S. M. A. KHATAMI AND M. POURMAHDIAN

Abstract. We study three kinds of compactness in some variants of Gödel

logic: compactness, entailment compactness, and approximate entailment com-

pactness. For countable first-order underlying language we use the Henkin
construction to prove the compactness property of extensions of first-order

Gödel logic enriched by nullary connective or the Baaz’s projection connec-

tive. In the case of uncountable first-order language we use the ultraproduct
method to derive the compactness theorem.

1. Introduction

Compactness theorem is one of the most important theorems in classical first-
order logic. This theorem says that any finitely satisfiable theory is satisfiable.
Certainly, this property provides a procedure to find models of a theory whose finite
subsets have models. So, it could be considered as a foundation for model theoretical
studies of any logic. Due to the fact that the model theory of mathematical fuzzy
logic is still underdeveloped, study of compactness property would be a topic of
interest in the area of mathematical fuzzy logic. In the case of t-norm based fuzzy
logics and their extensions, this is done by several authors [1, 2, 4, 5, 8, 9, 11, 13,
14, 15].

Among t-norm based fuzzy logics, three of them are quite important (Gödel ,
 Lukasiewicz , and product logic). So, almost all studies around compactness prop-
erty are done for these three logics. Note that various kinds of compactness are
available for t-norm based fuzzy logic, e.g., compactness [4, 5, 8, 11], entailment
compactness [1, 4, 14]and K-compactness [4, 13, 15] where K is a closed subset
of standard truth value set [0, 1]. The usual compactness is the same as {1}-
compactness. Let us remind that a logic enjoys the entailment compactness if for
every theory T and sentence ϕ, T |= ϕ implies the existence of a finite subset T ′ of
T such that T ′ |= ϕ.

In first-order Gödel logic, different truth value sets cause different results about
compactness. A truth value set in general is taken to be any linearly ordered
Heyting algebra D. The standard truth value set is commonly assumed to be a
Gödel set which is a closet subset of [0, 1] containing 0 and 1. The first-order
Gödel logic whose truth value set is a Gödel set V is denoted by GV . Recently,
all three mentioned instance of compactness are studied for Gödel set GV [13, 14].
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Furthermore, [14] studies the extensions of Gödel logic GV by ∆ Baaz projection
connective.

In  Lukasiewicz logic as well as its extensions such as rational Pavelka logic (RPL)
and continuous first-order logic (CFO) the compactness theorem is extensively stud-
ied in several frameworks [2, 3, 6, 9, 12, 15]. The continuity of logical connectives
of  Lukasiewicz logic with respect to the usual order topology on [0, 1] is the main
reason for the compactness theorem to be held in these logics. By different methods
such as Henkin construction, Pavelka completeness, and ultraproduct method the
compactness theorem is proved in these logics.

Study of the compactness property for extensions of Gödel logic is different from
two viewpoints. Firstly, the Gödel logic implication is not a continuous function
with respect to the usual order topology on Gödel sets. So, the Pavelka method and
ultraproduct method could not be used directly in extensions of Gödel logic. How-
ever, a modification of these methods may work here. Secondly, the corresponding
algebras with respect to the extensions of Gödel logic can not be embedded into the
standard truth value sets (Gödel sets) unless the algebras are at most countable.
But, we need such an embedding to prove the compactness theorem by the Henkin
construction. So, the Henkin construction only works for theories with at most
countable underlying first-order languages.

We consider two approaches to prove the compactness property in extensions
of Gödel logic. The first one is based on the Henkin construction, and so it works
only for theories with at most countable first-order underlying languages. The other
approach is based on the ultraproduct method. We consider a metric on Gödel sets
such that the logical connectives of the corresponding extension of Gödel logic are
continuous with respect to the new metric.

In  Lukasiewicz logic if ”e” is a similarity relation, then the interpretation of
”1− e” becomes a pseudometric. But, we do not have a logical connective such as
”minus” in Gödel logic. However, if one considers a reverse semantical meaning on
truth value set, the interpretation of similarity relation will be a pseudometric in any
t-norm based fuzzy logic. Furthermore, assuming such a semantic leads to obtain an
ultrametric dmax on Gödel sets. Besides these two (pseudo) metrics, continuity of
logical connectives with respect to the metric dmax, and 1-Lipschitz continuity of the
interpretation of function and predicate symbols, we derive that the interpretation
of all formulas are 1-Lipschitz and then we use the ultraproduct method to prove
the compactness theorem with no limitation on the size of underlying language.
So, using the ultraproduct method motivates us to consider a reverse semantical
meaning on Gödel sets which we call it the metrically semantic of the logic. Thus,
0 stands for absolute truth while 1 for absolute falsity. Anyway, we present a
translation of results for the everyday Gödel logic in the final section.

This paper is organized as follows. In the next section, we introduce the main
notions of extensions of Gödel logic such as logical connectives, metrically semantic,
satisfiability, and so forth. Section 3 studies the main concept of the paper by stud-
ding different notions of compactness in several kinds of extensions of Gödel logic.
Section 4 presents the notion of ultrametric structure and prove the compactness
property for some variants of Gödel logics without any limitation on the size of the
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underlying first-order language. In the last section, a translation of results for the
usual semantic (in which 0 stands for falsity) is given.

2. Preliminaries

The logic that we will consider in this paper is the Gödel logic whose semantic is
based on Gödel sets, i.e, subsets of unit interval [0, 1] containing 0 and 1 and closed
under the standard order topology. Logical symbols of the first-order Gödel logic
are the usual connectives of classical first-order logic {∧,→,⊥} together with the
quantifiers {∀,∃} and a countable set of variables.

We use a reverse semantical meaning on the set of truth values. Indeed, this
assumption makes the interpretation of similarity relation a pseudometric. So,
semantically 0 is the absolute truth and 1 is the absolute falsity of the truth value
set.

When a Gödel set V is considered as the set of truth values, we use the notion
GV for corresponding Gödel logic. Enriching GV by a countable set of nullary
connectives Ā = {r̄ : r ∈ A ⊆ V \ {0, 1}} leads to an extension of Gödel logic,
GV,A. Observe that the nullary connective 1̄ is actually ⊥. Another extension
of Gödel logic is obtained by adding the unary connective ∆. The corresponding
Gödel logics equipped with ∆ are denoted by G∆

V or G∆
V,A, respectively. Let take

an abbreviation for some Gödel logics:

• GR: V = [0, 1] and A = ∅.
• G↓: V = [0, 1]↓ and A = (0, 1)↓ where

[0, 1]↓ = { 1
n : n ∈ N} ∪ {0} and (0, 1)↓ = [0, 1]↓ \ {0, 1}.

• Gn: V = {r1, ..., rn} ∪ {0, 1} and A = {r1, ..., rn} where

0 < r1 < r2 < ... < rn−1 < rn < 1.

• G∗↓: V = [0, 1] and A = (0, 1)↓.

• G∗n: V = [0, 1] and A = {r1, ..., rn} where

0 < r1 < r2 < ... < rn−1 < rn < 1.

• RGL: V = [0, 1] and A = (0, 1) ∩Q.

Within this paper, we assume that L is a first-order language. L-terms and L-
formulas are constructed as in classical first-order logic. Basic notions of free and
bound variable, L-sentence and L-theory are defined as usual. In particular, note
that r̄ is an L-sentence in GV,A for each r ∈ A. The set of L-formulas and L-
sentences are denoted by Form(L) and Sent(L), respectively. When there is no
danger of confusion, we may omit the prefix L and simply write a term, formula,
etc.

Definition 2.1. For a given language L, an L-structure M in Gödel logic GV,A is
a nonempty set M called the universe of M together with:

(1) for any n-ary predicate symbol P of L, a function PM : Mn → V ,
(2) for any n-ary function symbol f of L, a function fM : Mn →M ,
(3) for any constant symbol c of L, an element cM in the universe of M.

When the underlying language is clear, M is called a structure.
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For each α ∈ L, αM is called the interpretation of α in M. The interpretation
of terms is defined as follows.

Definition 2.2. For every n-tuple variable x̄ and every term t(x̄), the interpretation
of t(x̄) in M is a function tM : Mn →M such that

(1) if t(x̄) = xi for 1 ≤ i ≤ n, then tM(ā) = ai,
(2) if t(x̄) = c then tM(ā) = cM,
(3) if t(x̄) = f(t1(x̄), ..., tn(x̄)) then tM(ā) = fM(tM1 (ā), ..., tMn (ā)).

Considering 0 as the absolute truth makes some changes in some semantical
issues. For example, the interpretation of ϕ ∧ ψ in a structure is absolutely true
whenever the interpretation of both of them are absolutely true, i.e, the maximum
of their interpretations must be absolutely true. The interpretation of formulas is
defined as follows.

Definition 2.3. The interpretation of a formula ϕ(x̄) in an L-structure M in
the Gödel logic GV,A (G∆

V,A) is a function ϕM : Mn → V which is inductively
determined as follows.

(1) ⊥M = 1, and for each r ∈ A ∪ {0}, r̄M = r.
(2) For every n-ary predicate symbol P ,

P (t1, ..., tn)M(ā) = PM(tM1 (ā), ..., tMn (ā)).

(3) (ϕ ∧ ψ)M(ā) = max{ϕM(ā), ψM(ā)}.
(4) (ϕ→ ψ)M(ā) = ϕM(ā) .→ ψM(ā), where

x .→ y =

{
0 x ≥ y,
y x < y.

(5) If ϕ(x̄) = ∀y ψ(y, x̄) then ϕM(ā) = sup
b∈M
{ψM(b, ā)}.

(6) If ϕ(x̄) = ∃y ψ(y, x̄) then ϕM(ā) = inf
b∈M
{ψM(b, ā)}.

(7) (Only for G∆
V,A) (∆(ϕ))M(ā) =

{
0 ϕM(ā) = 0,
1 otherwise.

Observe that since V is a closed subset of [0, 1], all infima and suprema exist.
One can consider an abbreviation for compound connectives ¬,∨,⇒ and ↔.

• ¬ϕ := ϕ→ ⊥.
• ϕ ∨ ψ := ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ).
• ϕ⇒ ψ := (ψ → ϕ)→ ψ.
• ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ).

The interpretations of formulas including these new connectives can be computed
as follows.

• ¬ϕM(ā) =

{
0 ϕM(ā) = 1,
1 ϕM(ā) < 1.

• (ϕ ∨ ψ)M(ā) = min{ϕM(ā), ψM(ā)}.

• (ϕ⇒ ψ)M(ā) =

{
0 ϕM(ā) > ψM(ā) > 0,

ψM(ā) ϕM(ā) ≤ ψM(ā).

• (ϕ↔ ψ)M(ā) = dmax(ϕM(ā), ψM(ā)), where
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dmax(x, y) =

{
0 x = y,

max{x, y} x 6= y.

Remark 2.4. One could easily verify that dmax : V 2 → V is an ultrametric on the
Gödel set V .

Definition 2.5. Let ϕ(x̄) be an L-formula and T be an L-theory.

(1) An L-structure M is called a model of ϕ(x̄), if there is ā ∈ Mn such that
ϕM(ā) = 0. In such a case, we write M |= ϕ(ā).

(2) ϕ(x̄) is called a satisfiable formula if there is an L-structureM which models
ϕ(x̄).

(3) If an L-structureM models all sentences of T , we call T a satisfiable theory
an write M |= T .

(4) T is called finitely satisfiable if every finite subset of T has a model.
(5) For an L-sentence ϕ we say that T entails ϕ, T |= ϕ, if every model of

T models ϕ. We write T
f|=ϕ if there exists a finite subset S of T so that

S |= ϕ, otherwise we write T
f

��|=ϕ. We use |= ϕ instead of ∅ |= ϕ.

For any Gödel set V and A ⊆ V , the axioms of the Gödel logic GV,A are the axioms
of first-order Gödel logic [9] together with the book-keeping axioms listed in Table
2.

Definition 2.6. An L-sentence ϕ is proved by an L-theory T , T ` ϕ, whenever
there is a finite sequence {ϕi}ni=1 of L-sentences such that:

• for each 1 ≤ i ≤ n either ϕi ∈ T or ϕi is an axiom or it is followed by rules
from axioms and other ϕj ’s for 1 ≤ j < i.
• ϕn = ϕ.

We write ` ϕ whenever ∅ ` ϕ. T is called a consistent theory if T 0 ⊥.

Note that if A 6= ∅ then for any 0 < r < 1, T = {r̄} is a consistent theory in
GV,A. However, T is not a satisfiable theory. In the next section we introduced the
notion of strongly consistency which is equivalent to the notion of satisfiability in
some extensions of Gödel logics. The deduction theorem follows easily.

Theorem 2.7. In the Gödel logic GV,A, for an L-theory T and L-sentences ϕ and
ψ,

T ∪ {ϕ} ` ψ if and only if T ` ϕ→ ψ.

Obviously if T ` ϕ, then T |= ϕ and also T
f|=ϕ. In spite of first-order logic, the

concept of proof does not coincide completely with the concept of finite entailment
in Gödel logics enriched by nullary connectives.

Example 2.8. Let A 6= ∅. One could easily verify that in the Gödel logic G[0,1],A,
if L = {ρ} where ρ is a nullary predicate symbol and r ∈ A \ {0, 1}, then ¬¬ρ →
r̄ |= ¬ρ while ¬¬ρ→ r̄ 0 ¬ρ.
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Axioms of fist-order Gödel logic

(G1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(G2) (ϕ ∧ ψ)→ ϕ
(G3) (ϕ ∧ ψ)→ (ψ ∧ ϕ)
(G4) ϕ→ (ϕ ∧ ϕ)
(G5) (ϕ→ (ψ → χ))↔ ((ϕ ∧ ψ)→ χ)
(G6) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)
(G7) 1̄→ ϕ
(G∀1) (∀xϕ(x))→ ϕ(t) (t substitutable for x in ϕ(x))
(G∀2)

(
∀x (ψ → ϕ(x))

)
→
(
ψ → (∀xϕ(x))

)
(x not free in ψ)

(G∀3)
(
∀x (ψ ∨ ϕ(x))

)
→
(
ψ ∨ (∀xϕ(x))

)
(x not free in ψ)

(G∃1) ϕ(t)→ (∃xϕ(x)) (t substitutable for x in ϕ(x))
(G∃2)

(
∀x (ϕ(x)→ ψ)

)
→
(
(∃xϕ(x))→ ψ

)
(x not free in ψ)

Book-keeping axioms for nullary connectives

(RG1) r̄ ∧ s̄↔ max{r, s}
(RG2(a)) r̄ → s̄ (for r ≥ s)
(RG2(b)) (r̄ → s̄)↔ s̄ (for r < s)
(RG3) ¬¬r̄ (for r < 1)

Rules

(Mp) ϕ, (ϕ→ ψ) ` ψ
(Gen) ϕ ` ∀xϕ

Table 1. Axioms and Rules of GV,A

Remark 2.9. For Gödel logics enriched by ∆ connective, there are some additional
axioms and rules.

∆1) ∆ϕ ∨ ¬∆ϕ.
∆2) ∆(ϕ ∨ ψ)→ (∆ϕ ∨∆ψ).
∆3) ∆ϕ→ ϕ.
∆4) ∆ϕ→ ∆∆ϕ.
∆5) ∆(ϕ→ ψ)→ (∆ϕ→ ∆ψ).
∆R) ϕ ` ∆ϕ.

Definition 2.10. A Gödel logic satisfies the weak completeness whenever for every
L-sentence ϕ, |= ϕ if and only if ` ϕ.

Definition 2.11. A Gödel logic is said to have the strong completeness whenever
for every L-theory T and L-sentence ϕ, T |= ϕ if and only if T ` ϕ.

First-order Gödel logic GR admits both kinds of completeness with respect to
any countable first-order language [9]. When A 6= ∅ example 2.8 shows that the
strong completeness fails in G[0,1],A while it is shown that G[0,1],A is completely
recursive axiomatizable [7].
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One of the most useful tools in model theory of classical first-order logic is the
compactness theorem. In the case of mathematical fuzzy logic this theorem has
different aspects.

Definition 2.12. A Gödel logic is said to enjoy the entailment compactness when-
ever for any theory T and sentence ϕ,

T |= ϕ if and only if T
f|=ϕ.

Definition 2.13. The Gödel logic GV,A (G∆
V,A) has the approximate entailment

compactness property if for every theory T and sentence ϕ,

T |= ϕ if and only T |= r̄ → ϕ for all r ∈ A ∪ {1}.

Definition 2.14. We say that a Gödel logic has the compactness property if for
every theory T ,

T is satisfiable if and only if T is finitely satisfiable.

Since a proof is a finite sequence of conclusions, we have the following theorem.

Theorem 2.15. If a logic admits the strong completeness then it enjoys the triple
kinds of compactness mentioned above.

Specially, in the Gödel logic GR both entailment compactness and compactness
hold.

Theorem 2.16. [14] The entailment compactness and complete recursive axioma-
tization (weak completeness) are equivalent in Gödel logic GV .

Furthermore, Prening [14] shows the Gödel logic GV admits the entailment com-
pactness property if and only if either V is a finite Gödel set or the perfect kernel of
V includes 1 or the perfect kernel of V is nonempty and 1 is an isolated point of V .
Particularly, he shows that the entailment compactness fails in GV for countable
Gödel set V .

Later, Pourmahdian et al. [13] show that if V is a finite Gödel set or the perfect
kernel of V includes 1 or 1 is an isolated point of V then GV admits the compactness
property.

3. Compactness in Gödel Logic G[0,1],A

In this section, we study the compactness property of Gödel logics G[0,1],A and

also G∆
[0,1],A. From now on assume that A′ is denoted for the set of limit points of

A in a Gödel set V with respect to the order topology on V . Firstly, note that if A
has a limit point a 6= 0 with respect to the order topology and a ∈ A ∪ {1}, then
the compactness fails in G[0,1],A as well as G∆

[0,1],A.

Example 3.1. Let a ∈ A′∩(A∪{1}) and assume that L = {ρ} where ρ is a nullary
predicate symbol. Suppose that {ri}∞i=1 ⊆ A \ {a} is an increasing (decreasing)
sequence whose limit in V is a. Let

T = {a⇒ ρ} ∪ {ρ→ ri}∞i=1 (T = {ρ⇒ a} ∪ {ri → ρ}∞i=1).
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Obviously T is finitely satisfiable, but it is not satisfiable.

Example 3.2. Let a ∈ A′ but a /∈ A∪{1}. Also assume that there is an increasing
sequence {ri}∞i=1 ⊆ A and a decreasing sequence {si}∞i=1 ⊆ A so that limi ri = a =
limi si. Let L = {ρ,R(x)} where ρ is a nullary predicate symbol and R(x) is a
unary predicate symbol. Let

T = {∃x
(
(r̄i+1 → R(x)) ∧ (R(x)→ r̄i)

)
}∞i=1 ∪

{s̄i ⇒
(
∀xR(x)

)
}∞i=1 ∪ {

(
∀xR(x)

)
⇒ ρ} ∪ {ρ→ ri}∞i=1.

T is finitely satisfiable, but it is not satisfiable. Indeed if M |= T , then
(
∀xR(x)

)M
=

a and so the interpretation of ρ in M makes no sense.

Specially, RGL does not admit the compactness property. However, if one con-
sider some non-standard truth value set, the compactness may hold on RGL. [10]
proves that the compactness property holds in RGL within a semantic on the non-
standard truth value set I = [0, 1]2 \ {(0, r) : r > 0}.

Now, using the Henkin construction, we show in the case that the set of limit
points of A is at most {0}, the Gödel logic G[0,1],A admits the compactness property.
Observe that this method is based on constructing the Gödel algebra of equivalence
classes of formulas modulo a theory, and then embedding this Gödel algebra into
the unit interval [0, 1], where the countability of the language L is a prerequisite
necessary assumption for existence of such an embedding. In the next section, we
prove the compactness property for some extensions of Gödel logics in which the
requirement of such an assumption is not obligatory.

Definition 3.3. A Gödel algebra with respect to the Gödel logic GV,A is a bounded
lattice D = 〈D, .∧, .∨, 0D, 1D〉 together with a binary operation .→ and for each r ∈
A \ {0, 1} an element rD ∈ D such that:

(1) .∧ is the join (lub) operator and .∨ is the meet (glb) operator.
(2) .∧ and .→ form an adjoint pair, i.e., for all a, b, c ∈ D,

a .∧ b ≥D c iff a ≥D b
.→ c,

where a ≥D b if and only if a .∧ b = a.
(3) D is pre-linear, i.e, for all a, b ∈ D,

(a
.→ b)

.∨ (b
.→ a) = 0D.

(4) rD .∧ sD = max{r, s}D.
(5) rD

.→ sD = 0D iff r ≥ s.
(6) rD .→ sD = sD iff r < s.
(7) 0D < rD < 1D for all 0 < r < 1.

A Gödel algebra with respect to the Gödel logic G∆
V,A is formed by the corresponding

Gödel algebra with respect to GV,A, i.e., D = 〈D, .∧, .∨, .→, {rD : r ∈ A ∪ {0, 1}}〉
together with a unary operation δD which acts as follows.

(8) δD(0D) = 0D.
(9) δD(a) = 1D for all a ∈ D \ {0D}.

Example 3.4. The standard Gödel algebra with respect to G[0,1],A is
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[0, 1]A = 〈[0, 1],max,min, .→, {r : r ∈ A ∪ {0, 1}}〉.
The standard Gödel algebra corresponding to G∗n and G∗↓ is denoted by [0, 1]∗n and

[0, 1]∗↓, respectively.

Lemma 3.5. If A′ ⊆ {0}, then any countable linearly ordered Gödel algebra D with
respect to G[0,1],A can be continuously embedded into the standard Gödel algebra
[0, 1]A (i.e. an embedding that preserves all suprema and infima that exist in D).
Particulary, any countable linearly ordered Gödel algebra D with respect to G∗n and
G∗↓ can be continuously embedded into the standard Gödel algebra [0, 1]∗n and [0, 1]∗↓,
respectively.

Proof. As [9, Lemma 5.3.1], set

D′ = D × {0} ∪
⋃
{{u} × ((0, 1) ∩Q) : u has no successor in D}

which ordered lexicographically by induced ordering≤D of D. By setting rD
′

= (r, 0)
for each nullary connective r̄, one can easily construct a countable densely linearly
ordered Gödel algebra D′. Furthermore, the mapping u → (u, 0) is a continuous

embedding from D into D′ wherein the image of rD is rD
′
. There are two cases.

Case 1: A′ = ∅. Thus, A is a finite set. So, the proof is similar to the proof for
Gödel logic [9, Lemma 5.3.2] with an easy adaptation of the back and forth
method for embedding countable densely linearly ordered Gödel algebra D′
into [0, 1]A.

Case 2: A′ = {0}. So, there is a decreasing sequence {ri}i∈N in the open unit
interval (0, 1) so that A = {ri}i∈N and limi ri = 0. Let ‖u‖ = inf{r : u ≤D′

rD
′} for any u ∈ D′ . Define the equivalence relation ∼ on D′ by

u ∼ v if and only if ‖u‖ = ‖v‖.
Now, we have
• [0D

′
]∼ = {u ∈ D′ : u ≤D′ r

D′

i for all i ∈ N},
• if ‖u‖ = ri then [u]∼ = {u ∈ D′ : rD

′

i+1 <D′ u ≤D′ r
D′

i },
• [1D

′
]∼ = {u ∈ D′ : rD

′

1 <D′ u ≤D′ 1D
′}.

For each u ∈ D′ if ‖u‖ = r ∈ A, obviously [u]∼ can be continuously

embedded into (ri+1, ri] by means of a function fr. Also [1D
′
]∼ continuously

embedded into (r1, 1] by a function like as f1. Let f0 be the trivial constant

function from [0D
′
]∼ into {0}. Now, the function f = ∪{fr : r ∈ A∪{0, 1}}

fulfills the proof.
�

3.1. Usual Compactness.
As already mentioned, if A 6= ∅ then for any 0 < r < 1, T = {r̄} is a consistent

theory in GV,A which is not satisfiable. So, when A 6= ∅ we use the ”strongly
consistency” instead of ”consistency”.

Definition 3.6. An L-theory T is called strongly consistent if T 0 r̄ for r ∈ A∪{1}
(i.e, r > 0).
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Observe that every satisfiable theory is strongly consistent. We show that when
A′ ⊆ {0}, strongly consistent theories are satisfiable. Note that Examples 3.1 and
3.2 gives strongly consistent theories which are not satisfiable in the Gödel logic
G[0,1],A when A′ * {0}.

Two different concepts ”finitely entailment” and ”proof” bring us two kinds of
Henkin and complete theories.

Definition 3.7. Let T be an L-theory.

(1) T is Henkin if for every universal L-formula ∀x ϕ(x) that is not finitely

entailed by T , there is a witness constant symbol c in L such that T
f

��|=ϕ(c).

(2) T is deductively Henkin or d-Henkin if for every universal L-formula ∀x ϕ(x)
that is not proved by T , there is a witness constant symbol c in L such that
T 0 ϕ(c).

(3) T is called a complete theory if for any pair of L-sentences (ϕ,ψ), either

T
f|=ϕ→ ψ or T

f|=ψ → ϕ.

(4) T is called deductively complete or d-complete theory if for any pair of
L-sentences (ϕ,ψ), either T ` ϕ→ ψ or T ` ψ → ϕ.

The following theorem leads to deduced the compactness property for the Gödel
logic G[0,1],A when A′ ⊆ {0}.

Theorem 3.8. Let L be a countable first-order language. If A′ ⊆ {0} then every
strongly consistent d-complete d-Henkin L-theory in G[0,1],A is satisfiable.

Proof. Let T be a strongly consistent deductively complete d-Henkin L-theory.
Also let Lind(T ) be the class of all T -provably equivalent L-sentences, i.e., the
equivalence classes [ϕ]T of all L-sentences ϕ modulo to the following equivalence
relation.

ϕ ∼ ψ if and only if T ` ϕ↔ ψ.

Define an ordering . on Lind(T ) as follows

[ϕ]T . [ψ]T if and only if T ` ψ → ϕ.

Because T is a complete theory, (Lind(T ),.) is a linearly ordered set. Now, we
obtain a countable linearly ordered Gödel algebra LT from Lind(T ) by setting,

[ϕ]T
.∨ [ψ]T = [ϕ ∨ ψ]T ,

[ϕ]T .∧ [ψ]T = [ϕ ∧ ψ]T ,
[ϕ]T

.→ [ψ]T = [ϕ→ ψ]T ,
rD = [r̄]T for any nullary connective r̄.

Axiom RG3 together with the strongly consistency of T implies that [r̄]T � [s̄]T
for each r < s in A. Thus, by Lemma 3.5 there is an embedding g from LT into
the standard Gödel algebra [0, 1]A such that [r̄]T mapped to r.

The canonical L-structure MT of T is made as follows.

a) The universe of MT is the set of all closed L-terms CM(T ).
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b) For each n-ary function symbol f , define fMT : CM(T )n → CM(T ) by

fMT (t1, ..., tn) = f(t1, ..., tn).

c) For each n-ary predicate symbol P , define PMT : CM(T )n → [0, 1] by

PMT (t1, ..., tn) = g([P (t1, ..., tn)]T ).

�

For the case that A′ = ∅, the compactness property of G[0,1],A follows from
Theorem 3.8 and the following theorem.

Theorem 3.9. Let A′ = ∅. Every strongly consistent L-theory in G[0,1],A is con-
tained in a strongly consistent d-complete d-Henkin L′-theory such that L ⊆ L′.

Proof. Let T be a strongly consistent L theory and L′ be the extended of L with
countably many new constant symbols. Enumerate all pairs of L′-sentences by
{(θi, ψi)}i∈N. Also assume that {ϕi(x)}i∈N be the set of all L′-formulas with one
free variable. Now, we construct inductively sequences {Tn}n∈N of L′-theories and
{χ

n
}n∈N of L′-sentences such that for each n ∈ N, Tn 0 χn

.
stage 0: Let T0 = T and

χ
0

=

{
1 A = ∅,

minr∈A{r} otherwise.

Obviously, χ
0
> 0 and since T is strongly consistent, T0 0 χ0

.
stage n+1=2i: Let χn+1 = χn . Now, if Tn ∪ {θi → ψi} 0 χn set Tn+1 = Tn ∪
{θi → ψi} and otherwise set Tn+1 = Tn ∪ {ψi → θi}. Since Tn 0 χ

n
, either

Tn ∪ {θi → ψi} 0 χn or Tn ∪ {ψi → θi} 0 χn . Thus Tn+1 0 χn+1 .
stage n+1=2i+1: Let ci be a constant symbol of L′ not occurring in ϕi(x) and the
constructed objects until the current stage. Consider two cases.

Case 1: If Tn 0 χn ∨ϕi(ci) let Tn+1 = Tn and χn+1 = χn ∨ϕi(ci).
Since Tn 0 χn , clearly in this case Tn+1 0 χn+1 .

Case 2: If Tn ` χn ∨ ϕi(ci) set Tn+1 = Tn ∪ {χn → ∀xϕi(x)} and
χ

n+1
= χ

n
. Since Tn ` χn

∨ ϕi(ci) using (Gen) and (G∀3) we
have Tn ` χn

∨ ∀xϕi(x). So, by definition of the connective ∨
and the fact that Tn 0 χn

we have Tn∪{∀xϕi(x)→ χ
n
} ` χ

n
.

Thus, using the proof-by-case property and the fact that Tn 0
χn , we have Tn ∪ {χn → ∀xϕi(x)} 0 χn that is Tn+1 0 χn+1 .

Now, let T ′ = ∪n∈NTn. Clearly T ′ is strongly consistent, since otherwise if T ′ ` r̄
for some r ∈ A∪{1} then by (RG2(a)) T ′ ` χ

0
. So, for some n ∈ N, Tn ` χ0

which
implies that Tn ` χn , a contradiction.

On the other hand, clearly T ′ is deductively complete. Now, if T ′ 0 ∀xϕi(x) then
T2i+1 0 χ2i+1

∨ϕi(ci), since otherwise by case 2 of stage n+1 we have T2i+1 ` χ2i+1
∨

∀xϕi(x) which implies that T2i+2 ` ∀xϕi(x), a contradiction. Thus, T2i+2 = T2i+1

and χ
2i+2

= χ
2i+1
∨ ϕi(ci). But then T ′ 0 ϕi(ci), since otherwise T ′ ` χ

2i+2
, a

contradiction. So, T ′ is a deductively complete d-Henkin L′-theory. �
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Corollary 3.10. For countable first-order language L, the Gödel logic G∗n admit
the compactness property.

Remark 3.11. By Example 2.8 we know that the strong completeness fails in
G∗n. Indeed, when T ∪ {ϕ} ⊆ Sent(L), A 6= ∅, and T 0 ϕ one could not obtain a
deductively complete d-Henkin extension T ′ of T such that T ′ 0 ϕ in the Gödel logic
G[0,1],A. For example, the theory T = {¬¬ρ → r̄} in Example 2.8 could not be
extend to a deductively complete theory T ′ such that T ′ 0 ¬ρ.

The method used in Theorem 3.9 could not be used for the case that A′ = {0}.
To prove the compactness property of G[0,1],A for the case that A′ = {0} we use
the following lemma.

Lemma 3.12. Let T be a maximally strongly consistent L-theory and ϕ and ψ be
two arbitrary L-sentences. For the Gödel logic G[0,1],A we have,

(1) T is deductively complete,
(2) if ϕ ∨ ψ ∈ T , then either ϕ ∈ T or ψ ∈ T ,
(3) if A′ = {0} and r̄ → ϕ ∈ T for r ∈ A ∪ {1}, then ϕ ∈ T .

Proof. (1) and (2) are straightforward. For (3) we show that T ∪ {ϕ} is strongly
consistent. Suppose, , to derive a contradiction, that T ∪ {ϕ} is not strongly
consistent. So, there is r ∈ A∪ {1} such that T ∪ {ϕ} ` r̄. Thus, T ` ϕ→ r̄. Since
A′ = {0}, there is s ∈ A ∪ {1} such that s < r. By the assumption s̄→ ϕ ∈ T . i.e,
T ` s̄ → ϕ. Hence, by transitivity property of proof T ` s̄ → r̄ and by RG2(b),
T ` r̄. A contradiction. �

Observe that by Zorn’s lemma, any strongly consistent L-theory T contained in
a maximally strongly consistent L-theory. The following theorem show that this
maximally strongly consistent extension could be chosen in a language L′ ⊇ L such
that it is Henkin. So, in the light of Theorem 3.8 the compactness property of
G[0,1],A is established for the case that A′ = {0} and L is a countable first-order
language.

Theorem 3.13. Let A′ = {0}. Every strongly consistent L-theory in G[0,1],A is
contained in a maximally strongly consistent deductively Henkin L′-theory such that
L ⊆ L′.

Proof. Let T be a strongly consistent L-theory. T ′ will be constructed in countably
many phases. Indeed, T ′ is a maximally strongly consistent theory containing the
union of countably many maximally strongly consistent Li-theories Ti in which for
every i ≥ 1, Li have a witness constant for each unprovable sentence ∀x ϕ(x) where
ϕ(x) ∈ Form(Li−1). To this end, consider the following notions.

• L0 = L.
• F0 = Form(L0) and for i ≥ 1, Fi = Form(Li) \ Form(Li−1).
• For each i ≥ 1, Li = Li−1 ∪ {cϕ(x),r,s : ϕ(x) ∈ Fi−1, r, s ∈ A ∪ {1}, r > s}

where each cϕ(x),r,s is a new constant symbol.
• T ′0 = T .
• For nullary connectives r̄ and s̄ and formula ϕ(x),
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θϕ(x),r,s = (r̄ → ∀xϕ(x)) ∨ (ϕ(cϕ(x),r,s)→ s̄).

• For each i ≥ 1, T ′i = Ti−1 ∪ {θϕ(x),r,s : ϕ(x) ∈ Fi−1, r, s ∈ A ∪ {1}, r > s}
where Ti−1 is a maximally strongly consistent Li−1-theory containing T ′i−1.

Firstly, we show that for each i ≥ 0, T ′i is strongly consistent. Obviously, T ′0
is strongly consistent. Assume that for each k < n, T ′k is strongly consistent.
Suppose that, on the contrary, T ′n is not strongly consistent. Thus, there exists
t ∈ A ∪ {1} such that T ′n ` t̄. Hence, there is a finite subset S of Tn−1 such that
S ∪ {θϕi(x),ri,si}mi=1 ` t̄ and no proper subset of S ∪ {θϕi(x),ri,si}mi=1 proves t̄. Set,

Γ = {θϕi(x),ri,si}
m−1
i=1 . By deduction theorem, S ∪ Γ ` θϕm(x),rm,sm → t̄. Consider

the abbreviations θm and cm for θϕm(x),rm,sm and cϕm(x),rm,sm , respectively. Since
ϕ(cm)→ s̄m ` θm we have S ∪ Γ ` (ϕ(cm)→ s̄m)→ t̄, which leads to deduce that
Tn−1 ∪ Γ ` s̄m → ∀xϕm(x). On the other hand, as r̄m → ∀xϕm(x) ` θm we have
S ∪ Γ ` (r̄m → ∀xϕm(x))→ t̄ and so one could conclude that

Tn−1 ∪ Γ ` ∀xϕm(x)→ r̄m.

Hence, Tn−1 ∪ Γ ` s̄m → r̄m and so Tn−1 ∪ Γ ` t̄ which is a contradiction.
Secondly, let L′ =

⋃
n≥0 Ln and take a maximal strongly consistent L′-theory

T ′, containing
⋃
n≥0 Tn. T ′ is provably Henkin. Verily, if T ′ 0 ∀xϕ(x) for some

ϕ(x) ∈ Form(L′) then by maximality of T ′ and Lemma 3.12-3 there is r ∈ A∪{1}
such that r̄ → ∀xϕ(x) /∈ T ′. Now, as A′ = {0} take s ∈ A ∪ {1} such that s < r.
As, (r̄ → ∀xϕ(x)) ∨ (ϕ(cϕ(x),r,s) → s̄) ∈ T ′, maximality of T ′ and Lemma 3.12-2
implies that ϕ(cϕ(x),r,s) → s̄ ∈ T ′. Thus, by Lemma 3.12-3 T ′ 0 ϕ(cϕ(x),r,s), and
the proof is complete. �

Corollary 3.14. Let L be a countable first-order language. If A′ = {0} then G[0,1],A

satisfy the compactness property. Specially, G∗↓ admits the compactness property.

3.2. Entailment Compactness.
Now, we study the entailment compactness and approximate entailment com-

pactness in Gödel logics G[0,1],A and G∆
[0,1],A. Note that the usual compactness

follows from the entailment compactness. However, the method we use in this sub-
section based on the notion of ”finitely entailment” while the method used in the
previous subsection is based on the notion of ”proof” and the concept of ”strongly
consistency”.

The following example show that the entailment compactness fails on G∗↓.

Example 3.15. let L = {ρ} where ρ is a nullary predicate symbol. Assume that

T = { 1
n → ρ}n∈N. One can easily verify that in the Gödel logic G∗↓, T |= ρ but

T
f

��|=ρ.

However, when A′ = {0}, the approximate entailment compactness holds in
G[0,1],A.

Theorem 3.16. Let L be a countable first-order language, T be an L-theory, and ϕ
be an L-sentence. If A′ = {0} then the Gödel logic G[0,1],A enjoys the approximate
entailment compactness. Particularly, in G∗↓ we have,
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T |= ϕ if and only if T
f|= 1
n → ϕ for all integers n ≥ 1.

Proof. Let T |= ϕ. We want to show that T
f|= r̄ → ϕ for all r ∈ A ∪ {1}. Suppose

not. So, there exists r0 ∈ A∪{1} such that for any finite subset S of T , S��|=r0 → ϕ.
Thus, for any finite subset S of T there is a modelM of S such thatM��|= r0 → ϕ,
which means that M |= ϕ→ r0. Thus, for any finite subset S of T , S ∪ {ϕ→ r0}
is satisfiable. Hence, compactness property of G[0,1],A implies that T ∪ {ϕ→ r0} is
satisfiable which is in contradict with T |= ϕ.

Conversely, suppose that for any r ∈ A ∪ {1}, T f|= r̄ → ϕ. We want to show

that T |= ϕ. Since T has a model, by reductio ad absurdum suppose that there
exists a model M of T such that M ��|= ϕ. But because A′ = {0}, one could find
r ∈ A∪{1} such that ϕM ≥ r. This means for any finite subset S of T , S��|= r̄ → ϕ,
a contradiction. �

On the other hand, G∗n enjoys the entailment compactness. This follows from
the following two lemmas.

Lemma 3.17. Let L be a countable first-order language. Let A′ = ∅, T be a
complete Henkin L-theory, and ϕ be an L-sentence. In the Gödel logic G[0,1],A,

T |= ϕ if and only if T
f|=ϕ.

Proof. Let Lind(T ) be the class of all T -equivalent L-sentences, i.e., the equivalence
classes [ϕ]T of all L-sentences ϕ modulo to the following equivalence relation.

ϕ ∼ ψ if and only if T
f|=ϕ↔ ψ.

By the same way as the proof of Theorem 3.8 and replacing ` by
f|= we obtain an

L-structure MT |= T . Now, let T |= ϕ but T
f

��|=ϕ. So, [ϕ]T � [0̄]T . But then since

A′ = ∅, the proof of Lemma 3.5 show that ϕM = g([ϕ]T ) > 0, a contradiction. �

Remark 3.18. If A′ = {0} and [ϕ]T � [0̄]T , then g([ϕ]T ) does not necessarily
grater than 0 (cf. proof of Lemma 3.5, case 2).

Lemma 3.19. Let T be an L-theory, ϕ be an L-sentence, and T
f

��|=ϕ. In Gödel logic

G∆
[0,1],A, the followings are hold:

(1) There exists a complete L-theory T ⊇ T such that T
f

��|=ϕ.

(2) There exists a first-order language L′ ⊇ L and a complete Henkin L′-theory

T ′ ⊇ T such that T ′
f

��|=ϕ.

Proof. Proof of (1) is straightforward. For (2) assume that

• L0 = L, T0 = T , ε0 = ϕ,

• for n ≥ 0, Tn be a complete theory containing Tn such that Tn
f

��|=εn,
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• for n ≥ 0, Ln+1 = Ln ∪ {εn+1} ∪ {cψ : Tn
f

��|=∀xψ(x)}, where εn+1 is a new

nullary predicate symbol and each cψ is a new constant symbol,

• for n ≥ 0, Tn+1 = Tn ∪ {εn → εn+1} ∪ {ψ(cψ)→ εn+1 : Tn
f

��|=∀xψ(x)}.

We show that for each n ≥ 0, Tn
f

��|=εn. Obviously T0
f

��|=ε0. Assume that Tn
f

��|=εn. We

show that Tn+1
f

��|=εn+1. To this end, let

A = B ∪ {ψi(cψi)→ εn+1 : Tn
f

��|=∀xψi(x)}mi=1

be a finite subset of Tn+1 in which B is a finite subset of Tn. Since Tn
f

��|=εn and for

each 1 ≤ i ≤ m, Tn
f

��|=∀xψi(x) and Tn is a complete Ln-theory,

Tn
f

��|=εn ∨
( ∨

1≤i≤m

∀xψi(x)
)
.

Now, as B is a finite subset of Tn, there is an Ln-structure M |= B such that

min{εMn ,
(
∀xψ1(x)

)M
, ...,

(
∀xψm(x)

)M} = α > 0. Interpreting εn+1 in M by a

nonzero rational number less that α leads to the fact that M |= A and M��|= εn+1.

Now, let L′ = ∪∞n=0Ln and T ∗ = ∪∞n=0Tn. One could easily verify that T ∗
f

��|=ϕ.

Let T ′ be a complete L′-theory containing T ∗ such that T ′
f

��|= ϕ. Obviously the

construction implies that T ′ is a complete Henkin L′-theory. �

Now, in the light of Lemma 3.17 and Lemma 3.19 we deduced the entailment
compactness of G∗n.

Corollary 3.20. Let L be a countable first-order language. G∗n enjoys the entail-
ment compactness property.

Remark 3.21. Let L be first-order language.When A′ = ∅ one could easily modify
the proof of Lemma 3.5 and Lemma 3.17 to the case of Gödel logics equipped with
the unary connective ∆. So by Lemma 3.19, G∆

[0,1],A admit the compactness as well

as the entailment compactness.

Despite the compactness property of G∆
[0,1],A for finite set A, this fails in G∆

[0,1],A

if A′ = {0}.

Example 3.22. Let L contain a nullary predicate symbol ρ and let

T = { 1
n → ρ}n∈N ∪ {¬(∆(ρ))}.

One can easily verify that in the Gödel logic G∆
[0,1],(0,1)↓

, T is finitely satisfiable but

it is not satisfiable.



116 S. M. A. Khatami and M. Pourmahdian

4. Compactness when the Underlying Language is Uncountable

As already mentioned, all the compactness results in Gödel logics are restricted
by the countability of the underlying language. The following example shows that
when the underlying language is uncountable, the compactness fails in almost all
extensions of Gödel logics.

Example 4.1. Let L be a relational language containing uncountably many unary
predicate symbols {R(x)} ∪ {ρi(x)}i∈(ω1+1). Set,

T = {¬∀xR(x),∀x
(
ρ1(x)⇒ R(x)

)
} ∪ {∀x

(
ρi(x)⇒ ρj(x)

)
: i > j}i,j∈(ω1+1)

Clearly, in any Gödel logic G[0,1],A, T is finitely satisfiable but it is not satisfiable.

However, when V ′ ⊆ {0} we show that the Gödel logic GV,A may admit the
compactness property, even for uncountable first order languages. Note that in the
above example, T is not finitely satisfiable in Gödel logics with truth value set V
such that V ′ ⊆ {0}.

We prove the compactness theorem by the ultraproduct method. For doing this
we need a similarity relation. In metrically semantic of t-norm based fuzzy logics,
the interpretation of similarity relation is a pseudo-metric.

4.1. Ultrametric Structure.
One of the most important tools in classical first-order logic is the equality

relation. The advantage of this relation appears almost in all results of model
theory of classical first-order logic.

Equality relation has some common properties, called Similarity Axioms.

(1) (Reflexivity) ∀x (x ≈ x).
(2) (Symmetry) ∀x∀y (x ≈ y → y ≈ x).
(3) (Transitivity) ∀x∀y∀z ((x ≈ y ∧ y ≈ z)→ x ≈ z).

Definition 4.2. A similarity relation is a binary predicate symbol d in the under-
lying language whose role is as the equality relation in classical first-order logic.

From now on, assume that Ld is a fisrt-order language containing a similarity
relation d.

Lemma 4.3. Let M be an Ld-structure such that

M|={∀xd(x,x),∀x∀y(d(x,y)→d(y,x)),∀x∀y∀z((d(x,y)∧d(y,z))→d(x,z))}.
Then dM is a pseudo-ultrametric on the universe of M.

Proof. Obviously, dM(a, a) = 0 for any a ∈M .
On the other hand, supa,b∈M

(
dM(a, b)

.→ dM(b, a)
)

= 0. So, for any a, b ∈ M we

have dM(a, b) ≥ dM(b, a) which by symmetry gives dM(a, b) = dM(b, a).
Finally, we have

sup
a,b,c∈M

((
dM(a, c) .∧ dM(c, b)

) .→ dM(a, b)
)

= 0.

Hence, dM(a, b) ≤ max{dM(a, c), dM(b, c)} for all a, b, c ∈M . �
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Definition 4.4. For a given language Ld, containing a binary predicate symbol d,
an Ld-ultrametric structure or simply an ultrametric structure is an Ld-structure
M where (M,dM) is an ultrametric space.

Example 4.5. Any first-order structure with the discrete metric is an ultrametric
structure.

Example 4.6. Let (M,d) be an ultrametric space. Define d′(x, y) =
d(x, y)

1 + d(x, y)
.

(M,d′) is an ultrametric structure.

In classical first-order logic when P is an n-ary predicate symbol and f is an
n-ary function symbol and ā ∈Mn is ”equal” to b̄ ∈Mn, we have PM(ā) = PM(b̄)
(as subsets of Mn) and also fM(ā) is ”equal” to fM(b̄). These properties express
the extensional identity of ā and b̄ with respect to the equality relation, which is
called Congruence Axioms.

(4) For each n-ary predicate symbol P ,
∀x1...∀xn∀y1...∀yn

(
∧ni=1 (xi ≈ yi)→ (P (x1, ..., xn)↔ P (y1, ..., yn))

)
.

(5) For each n-ary function symbol f ,
∀x1...∀xn∀y1...∀yn

(
∧ni=1 (xi ≈ yi)→ (f(x1, ..., xn) ≈ f(y1, ..., yn))

)
.

Enforcing models to satisfy the congruence axioms leads to the right definition of
structures in first-order logic (that is the interpretation of an n-ary function symbol
in a model M would be a function fM : Mn → M and the interpretation of an
n-ary predicate symbol P would be a subset of Mn).

Now, let the Ld-structure M satisfy the congruence axioms for each function
and predicate symbol, i.e,

M |= {∀x̄∀ȳ(d(x̄, ȳ)→ d(f(x̄), f(ȳ)),∀x̄∀ȳ(d(x̄, ȳ)→ (P (x̄)↔ P (ȳ))}f,P∈Ld
,

in which d(x̄, ȳ) is an abbreviation for ∧ni=1d(xi, yi). One can easily verify that for
each function symbol f , fM : (Mn, dM)→ (M,dM) would be a 1-Lipschitz contin-
uous function, in which dM is a pseudo-ultrametric and dM(ā, b̄) = max

1≤i≤n
{dM(ai, bi)}

for every ā, b̄ ∈Mn. Furthermore, for each predicate symbol P , PM : (Mn, dM)→
(V, dmax) is a 1-Lipschitz continuous function.

Definition 4.7. For a given language Ld, containing a binary predicate symbol d,
a Lipschitz Ld-structure or simply a Lipschitz structure M in the Gödel logic GV
is a nonempty pseudo-ultrametric space (M,dM) called the universe ofM together
with:

a) for any n-ary predicate symbol P of L, a 1-Lipschitz continuous function

PM : (Mn, dM)→ (V, dmax),

b) for any n-ary function symbol f of L, a 1-Lipschitz continuous function
fM : Mn →M ,

c) for any constant symbol c of L, an element cM in the universe of M.

The following lemma is used to prove the compactness property for the Gödel logic
G↓. It is used in constructing a model for a theory with ultraproduct method.
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Lemma 4.8. LetM be a Lipschitz Ld-structure. In the Gödel logic GV,A for every
Ld-formula ϕ(x̄) and ā, b̄ ⊆M ,

dmax
(
ϕM(ā), ϕM(b̄)

)
≤ dM(ā, b̄).

Proof. Using the 1-Lipschitz continuity of the interpretation of function and pred-
icate symbols and also 1-Lipschitz continuity of .→: (V 2, dmax) → (V, dmax), the
proof is straightforward. �

The 1-Lipschitz continuity of the interpretation of function and predicate sym-
bols in Lipschitz structures leads to obtain a canonical ultrametric structure M/d
from a given Lipschitz structure M. Verily, the underlying universe of M/d is the
set of equivalence classes of M modulo the equivalence relation dM. Furthermore,
the interpretation of symbols of the language could be defined by:

• cM/d = [cM]d,
• fM/d([a1]d, ..., [an]d) = fM(a1, ..., an),
• PM/d([a1]d, ..., [an]d) = PM(a1, ..., an).

Definition 4.9. An Ld-theory T is called a metric-satisfiable theory if there is an
ultramtric structure M which models T . Similarly, when T has a Lipschitz model
M, we call T a Lipschitz-satisfiable theory. The notions of finitely metric-satisfiable
and finitely Lipschitz-satisfiable theories are similarly defined.

4.2. Ultraproduct Method and the Compactness Theorem.
Let L be a first-order language (of any cardinality) and T be a finitely satisfiable

L-theory. Let I = Pfin(T ) be the collection of all finite subsets of T . For every
ϕ ∈ T assume that ϕT = {Σ : ϕ ∈ Σ and Σ ∈ I}. Obviously {ϕT : ϕ ∈ T} has the
finite intersection property, and so it is contained in an ultrafilter D on I.

Bellow we list some facts and notions about (ultra)filters on topological spaces.

• [16] A filter F on a topological space X is convergent to x ∈ X if for all
open sets U containing x, U ∈ F .
• [16] X is compact Hausdorff space if and only if every ultrafilter F on X

has a unique limit point.
• Let {xi}i∈I be a family of points of a topological space X. One could

view {xi}i∈I as a function f : I → X. If D is an (ultra)filter on I, then
ID(X) = {A ⊆ X : f−1(A) ∈ D} is an (ultra)filter on X. If ID(X) is
convergent to an element x ∈ X, we call x a D-limit of the family {xi}i∈I .
• Obviously x is a D-limit of {xi}i∈I if and only if for each open set U

containing x, the set {i ∈ I : xi ∈ U} belongs to the (ultra)filter D.
• If X is a compact Hausdorff and x is the unique D-limit of the family
{xi}i∈I , we write limD xi = x.
• If X and Y are two compact Hausdorff topological spaces, f : X → Y is

a continuous function, {xi}i∈I is a family of elements of X, and D is an
ultrafilter on I, then f(limD xi) = limD f(xi).

Now, we can prove the compactness theorem.
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Theorem 4.10. Let Ld be a first-order language and V ′ ⊆ {0}. In the Gödel logic
GV as well as the Gödel logic GV,V \{0,1}, every finitely Lipschitz-satisfiable theory
T is Lipschitz-satisfiable.

Proof. Let I = Pfin(T ) be the collection of all finite subsets of T and D be an
ultrafilter on I which contain {ϕT : ϕ ∈ T} where ϕT = {Σ : ϕ ∈ Σ and Σ ∈ I}.

Since T is finitely Lipschitz-satisfiable, for each Ti ∈ I there is a Lipschitz struc-
ture Mi which models Ti. Let M =

∏
i∈IMi and for each n-ary predicate symbol

R define RM : Mn → V by

RM({x1i}i∈I , ..., {xni}i∈I) = limD R
Mi(x1i, ..., xni).

Note that V ′ ⊆ {0}. So (V, dmax) is a compact Hausdorff space. Thus, the D-limit
of the family {RMi(x1i, ..., xni)}i∈I is unique and therefore RM is well-defined.

One could easily verify that dM is a pseudo-ultrametric on M . Furthermore,
Lipschitz continuity of {RMi}i∈I implies that RM is Lipschitz continuous.

Now, for each constant symbol c let cM = {cMi}i∈I . Also, for each n-ary
function symbol f define fM : Mn →M by

fM({x1i}i∈I , ..., {xni}i∈I) = {fMi(x1i, ..., xni)}i∈I .

Note that, by Lipschitz continuity of {fMi}i∈I , fM is well-defined and Lipschitz
continuous.

Finally, by an induction on the complexity of formulas and using the Lips-
chitz continuity of {RMi}i∈I and also Lipschitz continuity of logical connectives
on (V, dmax), it is easy to see that for each formula ϕ(x1, ..., xn) and elements
ak = {aki}i∈I of M for 1 ≤ k ≤ n,

ϕM(a1, ..., an) = limD ϕ
Mi(a1i, ..., ani).

Thus, M is a Lipschitz model of T . �

5. Final Remarks and Further Works

We study the compactness property of extensions of first-order Gödel logic with
truth constants or with the Baaz’s ∆ connective. The compactness theorem is
one of the basic theorems that is used in the model theory of classical first-order
logic. Using the ultraproduct method, we prove the compactness theorem for theo-
ries whose underlying first-order language are uncountable. But, the ultraproduct
method forced us to consider the Gödel sets with the reverse semantical meaning
to interpret the similarity relation as a (pseudo) metric. Thus, semantically 0 is
the absolute truth and 1 is the absolute falsity. The translation of results for the
usual semantic of Gödel logic could be stated as follows:

(1) (Corollary 3.10 and Corollary 3.20) If A′ = ∅ then for any countable first-
order language L, the Gödel logic G[0,1],A admits the compactness property
as well as the entailment compactness.
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(2) (Corollary 3.14, Example 3.15, and Theorem 3.16) If A′ = {1} then for
any countable first-order language L, the Gödel logic G[0,1],A admits the
compactness property as well as the approximate entailment compactness,
while the entailment compactness fails.

(3) (Example 3.1) The compactness property fails in G[0,1],A whenever A has
a limit point a 6= 1 such that a ∈ A ∪ {0}. In particular, RGL (first-order
Gödel logic enriched with rational truth constants A = (0, 1)∩Q as nullary
connectives) fails to have the compactness property.

(4) (Theorem 4.10) If V ′ ⊆ {1} then in the Gödel logics GV and GV,V \{0,1}
every finitely Lipschitz-satisfiable theory is Lipschitz-satisfiable.

(5) (Remark 3.21) If A is finite then G∆
[0,1],A admit the compactness property

as well as the entailment compactness property.
(6) (Example 3.1, Example 3.22) If A′ = {1} or A′ = {0} then the compactness

fails in G∆
[0,1],A.

Regarding the first-order Gödel logic, it is seen that the absolute truth and absolute
falsity have an asymmetry. Indeed, ”not false” could be stated while it is impossible
to separate ”true” from ”not true”. The outcome of equipping the Gödel logic with
∆ could be seen as a kind of symmetry. Indeed, not only one could states ”not
true” as well as the ”not false”, but also we have a symmetry in items (5) and (6),
and also the results are hold in both semantical views of the Gödel logic.

A future interesting topic to study is the model theoretical aspects of G↓, G∗↓
and G∆

[0,1]. Indeed, the expressive power of the language of this logics for stating

”M ��|= ϕ” by means of ”M |= ¬∆(ϕ)” or ”there is a natural number n such that

M |= ϕ→ 1̄
n”, helps us to develop the model theory of these logics.
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