Abbas, M., Ali, B. (2015). Fixed fuzzy points of generalized Geraghty type fuzzy mappings on complete metric spaces. Iranian Journal of Fuzzy Systems, 12(4), 133-146. doi: 10.22111/ijfs.2015.2089

M. Abbas; B. Ali. "Fixed fuzzy points of generalized Geraghty type fuzzy mappings on complete metric spaces". Iranian Journal of Fuzzy Systems, 12, 4, 2015, 133-146. doi: 10.22111/ijfs.2015.2089

Abbas, M., Ali, B. (2015). 'Fixed fuzzy points of generalized Geraghty type fuzzy mappings on complete metric spaces', Iranian Journal of Fuzzy Systems, 12(4), pp. 133-146. doi: 10.22111/ijfs.2015.2089

Abbas, M., Ali, B. Fixed fuzzy points of generalized Geraghty type fuzzy mappings on complete metric spaces. Iranian Journal of Fuzzy Systems, 2015; 12(4): 133-146. doi: 10.22111/ijfs.2015.2089

Fixed fuzzy points of generalized Geraghty type fuzzy mappings on complete metric spaces

^{1}Department of Mathematics and Applied Mathematics, University of Pre- toria, Hatfield, Pretoria, South Africa

^{2}Department of Mathematics and Applied Mathematics, University of Pretoria, Hatfield 0002, Pretoria South Africa

Abstract

Generalized Geraghty type fuzzy mappings on complete metric spaces are introduced and a fixed point theorem that generalizes some recent comparable results for fuzzy mappings in contemporary literature is obtained. Example is provided to show the validity of obtained results over comparable classical results for fuzzy mappings in fixed point theory. As an application, existence of coincidence fuzzy points and common fixed fuzzy points for hybrid pair of single valued self mapping and a fuzzy mapping is also established.

[1] R. P. Agarwal, M. Meehan and D. O'Regan, Fixed point theory and applications, Cambridge University Press, 2001. [2] A. Amini-Harandi and H. Emami, A xed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary dierential equations, Nonlinear Anal., 72 (2010), 2238-2242. [3] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math., 3 (1922), 133{181. [4] R. Baskaran and P. V. Subrahmanyam, A note on the solution of a class of functional equations, Applicable Anal., 22 (1986), 235{241. [5] R. Bellman, Methods of nonliner analysis, vol. II, 61 of Mathematics in Science and Engi- neering, Academic Press, New York, NY, USA, 1973.

[6] D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20 (1969), 458{464. [7] D. Dukic , Z. Kadelburg and S. Radenovic, Fixed points of Geraghty type mappings in various generalized metric spaces, Abstract Appl. Anal., Article ID 561245 (2011), 13 pages. [8] M. Edelstein, On xed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74{79. [9] M. Edelstein, An extension of Banach contraction principle, Proc. Amer. Math. Soc., 12 (1) (1961), 7{10. [10] V. D. Estruch and A. Vidal, A note on xed fuzzy points for fuzzy mappings, Rend Istit. Univ. Trieste., 32 (2001), 39-45. [11] M. Geraghty, On contractive mappings, Proc Amer Math Soc., 40 (1973), 604{608. [12] M. E. Gordji, M. Ramezani, Y. J. Cho and S. Pirbavafa, A generalization of Geraghty's theorem in partially ordered metric spaces and applications to ordinary dierential equations, Fixed Point Theory Appl., 1 (74) (2012), pages 9. [13] M. E. Gordji, H. Baghani, H. Khodaei and M. Ramezani, Geraghty's xed point theorem for special multivalued mappings, Thai J. Math., 10 (2012), 225{231. [14] R. H. Haghi, Sh. Rezapour and N. Shahzad, Some xed point generalizations are not real generalizations, Nonlinear Anal., 74 (2011), 1799{1803. [15] S. Heilpern, Fuzzy mappings and fuzzy xed point theorems, J. Math. Anal. Appl., 83 (1981), 566{569. [16] J. Jachymski, Equivalent conditions for generalized contractions on (ordered) metric spaces, Nonlinear Analysis: Theory, Methods Appl., 3 (74), (2011), 768{774. [17] G. Jungck, Commuting mappings and xed points, Amer. Math Monthly, 83 (1976), 261{263. [18] B. S. Lee and S. J. Cho, A xed point theorem for contractive type fuzzy mappings, Fuzzy Sets and Systems, 61 (1994), 309{312. [19] S. B. Nadler, Multivalued contraction mappings, Pacic J. Math., 30 (1969), 475{488. [20] J. J. Nieto and R. R. Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary dierential equations, Order, 22 (3) (2005), 223{239. [21] S. Park, Fixed points of fô€€€contractive maps, Rocky Mountain J. Math., 8 (4) (1978), 743{ 750. [22] E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc., 13 (1962), 459{465. [23] B. E. Rhoades, A comparison of various denitions of contractive mappings, Transaction. Amer. Math. Soc., 226 (1977), 257{290. [24] V. M. Sehgal, A xed point theorem for mappings with a contractive iterate, Proc. Amer. Math. Soc., 23 (3) (1969), 631{634. [25] C. S. Sen, Fixed degree for fuzzy mappings and a generalization of Ky Fan's theorem, Fuzzy Sets and Systems, 24 (1987), 103{112. [26] T. Suzuki, Mizoguchi and Takahashi's xed point theorem is a real generalization of Nadler's, J. Math. Anal. Appl., 340 (2008), 752{755. [27] D. Turkoglu and B. E. Rhoades, A xed fuzzy point for fuzzy mapping in complete metric spaces, Math. Commun., 10 (2005), 115{121. [28] J. S. W. Wong, Mappings of contractive type on abstract spaces, J. Math. Anal. Appl., 37 (1972), 331-340. [29] L. A. Zadeh, Fuzzy Sets, Informations and Control, 8 (1965), 103-112. [30] E. H. Zarantonello, Solving functional equations by contractive averaging, Mathematical Re- search Center, Madison, Wisconsin, Technical Summary Report No. 160, June 1960. [31] E. Zeidler, Nonlinear functional analysis and its applications I: Fixed Point Theorems, Springer{Verlag, Berlin, 1986.