QUASI-CONTRACTIVE MAPPINGS IN FUZZY METRIC SPACES

A. AMINI-HARANDI AND D. MIHET

ABSTRACT. We consider the concept of fuzzy quasi-contractions initiated by Ćirić in the setting of fuzzy metric spaces and establish fixed point theorems for quasi-contractive mappings and for fuzzy \mathcal{H} -contractive mappings on M-complete fuzzy metric spaces in the sense of George and Veeramani. The results are illustrated by a representative example.

1. Introduction

The notion of fuzzy metric space was introduced by Kramosil and Michalek [9] and later modified by George and Veeramani ([3]). In this paper we work in fuzzy metric spaces in the sense of George and Veeramani, defined as follows.

Definition 1.1. [3] A triple (X, M, *) is called a fuzzy metric space (in the sense of George and Veeramani) if X is a nonempty set, * is a continuous t-norm and $M: X^2 \times (0, \infty) \to [0, 1]$ is a fuzzy set satisfying the following conditions: for all $x, y, z \in X$ and s, t > 0,

```
(GV1) M(x, y, t) > 0;
```

- (GV2) $M(x, y, t) = 1 \Leftrightarrow x = y;$
- (GV3) M(x, y, t) = M(y, x, t);
- (GV4) $M(x, z, t + s) \ge M(x, y, t) * M(y, z, s);$
- (GV5) $M(x,y,.):(0,\infty)\to[0,1]$ is continuous for all $x,y\in X$.

If (GV4) is replaced by $M(x, z, max\{t, s\}) \ge M(x, y, t) * M(y, z, s)$, then the space (X, M, *) is said to be a non-Archimedean fuzzy metric space. It should be noted that any non-Archimedean fuzzy metric space is a fuzzy metric space. If (X, M, *) is a fuzzy metric space, we will say that (M, *) is a fuzzy metric on X. George and Veeramani [3] proved that every fuzzy metric (M, *) on X generates a topology τ_M on X which has as a base the family of sets of the form $\{B_M(x, \epsilon, t) : x \in X | 0 \le \epsilon \le 1, t \ge 0\}$ where $B_M(x, \epsilon, t) = \{u \in X : M(x, u, t) > 1 - \epsilon\}$ for all

 $x \in X, 0 < \epsilon < 1, t > 0$ }, where $B_M(x, \epsilon, t) = \{y \in X : M(x, y, t) > 1 - \epsilon\}$ for all $\epsilon \in (0, 1)$ and t > 0. It is well known that a sequence $(x_n)_{n \in \mathbb{N}}$ in X is convergent to $x \in X$ with respect to τ_M if and only if $\lim_{n \to \infty} M(x_n, x, t) = 1, \ \forall \ t > 0$.

Definition 1.2. [3] Let (X, M, *) be a fuzzy metric space. A sequence $(x_n)_{n \in \mathbb{N}}$ in X is called Cauchy if $\lim_{m,n\to\infty} M(x_m,x_n,t)=1$ for each t>0. An M-complete fuzzy metric space is a fuzzy metric space in which every Cauchy sequence is convergent.

Received: August 2013; Revised: December 2014; Accepted: May 2015

Key words and phrases: Fuzzy metric space, Fuzzy quasi-contractive mapping, Fixed point.

Lemma 1.3. (see [14]) Let (X, M, *) be a fuzzy metric space. Then M is a continuous function on $X \times X \times (0, \infty)$.

The fixed point theory in fuzzy metric spaces started with the paper of Grabiec [4]. Later on, the concept of fuzzy contractive mappings, initiated by Gregori and Sapena in [5], have become of interest for many authors, see, e.g., the papers [5, 7, 10, 11, 12, 16].

The following class of fuzzy \mathcal{H} -contractive mappings has been recently introduced by Wardowski in [17], as a generalization of fuzzy contractions of Gregori and Sapena.

Definition 1.4. [17] Denote by \mathcal{H} the family of all onto and strictly decreasing mappings $\eta:(0,1]\to[0,\infty)$. Let (X,M,*) be a fuzzy metric space. A mapping $T:X\to X$ is said to be fuzzy \mathcal{H} -contractive with respect to $\eta\in\mathcal{H}$ if there exists $k\in(0,1)$ satisfying

$$\eta(M(Tx,Ty,t)) \le k\eta(M(x,y,t)), \ \forall \ x,y \in X \ \forall \ t > 0.$$

For $\eta(t) = \frac{1}{t} - 1$ one obtains the class of fuzzy contractive mappings introduced by Gregori and Sapena in [5].

If $\eta \in \mathcal{H}$ then $\eta(1) = 0$ and η is continuous.

In [17] Wardowski formulated the conditions guaranteeing the existence and the uniqueness of the fixed point of a fuzzy \mathcal{H} -contractive mapping in M-complete fuzzy metric spaces in the sense of George and Veeramani.

Theorem 1.5. [17] Let (X, M, *) be an M-complete fuzzy metric space and let $T: X \to X$ be a fuzzy \mathcal{H} -contractive mapping with respect to $\eta \in \mathcal{H}$ such that:

- (a) $\prod_{i=1}^k M(x,Tx,t_i) \neq 0$, for all $x \in X$, $k \in \mathbb{N}$ and any sequence $(t_n) \subseteq (0,\infty)$, $t_n \downarrow 0$;
- (b) $r*s > 0 \Rightarrow \eta(r*s) \le \eta(r) + \eta(s)$, for all $r, s \in \{M(x, Tx, t) : x \in X, t > 0\}$;
- (c) $\{\eta(M(x,Tx,t_i)): i \in \mathbb{N}\}\$ is bounded for all $x \in X$ and any sequence $(t_n) \subseteq (0,\infty), t_n \downarrow 0.$

Then T has a unique fixed point $x^* \in X$ and for each $x_0 \in X$ the sequence $(T^n x_0)_{n \in \mathbb{N}}$ converges to x^* .

In our paper we present Wardowski's result in connection with the structure of the t-norm of the space (see also [13]). We also consider Ćirić's concept of quasi-contractions ([1]) in fuzzy metric setting and prove a fixed point theorem for this class of contractions in M-complete fuzzy metric spaces. It is worth mentioning that all earlier similar results refers to quasi-contractions in non-Archimedean (probabilistic) metric spaces.

2. Main Results

Our first theorem, although less general than Theorem 1.5, reveals the connection between the conditions of Wardowski's theorem and the structure of a strict t-norm.

Recall that a continuous t-norm * is said to be strict if it is strictly increasing in each place on $(0,1]^2$. Any strict t-norm * is Archimedean, that is, x*x < x,

for all $x \in (0,1)$ and positive, that is, $\forall a,b \in (0,1] \Rightarrow a*b > 0$. A t-norm * is strict if and only if the semigroups ([0,1],*) and $([0,\infty],+)$ are isomorphic, that is, there exists a continuous, strictly decreasing function g from [0,1] to $[0,\infty]$ with $g(0) = \infty, g(1) = 0$, such that $x*y = g^{-1}(g(x) + g(y))$, $\forall x,y \in [0,1]$, where g^{-1} is the inverse of g. Such a function g is called an additive generator for * and a t-norm generated by g will be denoted by $*_g$. For example, the t-norm $*_P$ is a strict t-norm generated by the function $g:[0,1] \to [0,\infty]$, $g(0) = \infty$, $g(s) = -\ln s$ $(s \neq 0)$. For more details about t-norms the reader is referred to [6] and [8].

Theorem 2.1. Let $*_g$ be a strict t-norm. If (X, M, *) is an M-complete fuzzy metric space under a t-norm $* \geq *_g$ and $T: X \to X$ is a \mathcal{H} -contractive mapping with respect to g with the property $M(x, Tx, 0+) = \lim_{t\to 0^+} M(x, Tx, t) > 0$ for all $x \in X$, then T has a unique fixed point.

Proof. As the proof follows the lines of the proof of Theorem 3.2. in [17], we only sketch it. Let $x \in X$ and $(x_n)_{n \in \mathbb{N}}$, $x_n = T^n x$ be the sequence of iterates of x. Then, for all t > 0, $n \in \mathbb{N}$, $g(M(x_n, x_{n+1}, t)) \leq k^n g(M(x, Tx, t))$. Let $m, n \in \mathbb{N}$, m < n and t > 0 be given and let $\{a_i\}$ be a strictly decreasing sequence of positive numbers with $\sum_{i=1}^{\infty} a_i = 1$. Then

$$M(x_m, x_n, t) \ge M(x_m, x_n, \sum_{i=m}^{n-1} a_i t) \ge \prod_{i=m}^{n-1} M(x_i, x_{i+1}, a_i t)$$

$$\ge (*_g)_{i=m}^{n-1} M(x_i, x_{i+1}, a_i t).$$

This implies

$$g(M(x_m, x_n, t)) \le \sum_{i=m}^{n-1} g(M(x_i, x_{i+1}, a_i t)) \le \sum_{i=m}^{n-1} k^i g(M(x, Tx, a_i t))$$

$$\le g(M(x, Tx, 0+1)) \sum_{i=m}^{n-1} k^i,$$

proving that (x_n) is Cauchy. The fact that the limit of (x_n) is the unique fixed point of T can be easily reproduced from the proof of Theorem 3.2. in [17].

Our main theorem is related to the concept of quasi-contraction, initiated by Lj. B. Ćirić in [1]. We define a fuzzy \mathcal{H} -quasi-contractive mapping as follows:

Definition 2.2. Let (X, M, *) be a fuzzy metric space. A mapping $T: X \to X$ is said to be fuzzy \mathcal{H} -quasi-contractive with respect to $\eta \in \mathcal{H}$ if there exists $k \in (0, 1)$ satisfying the following condition:

$$\eta(M(Tx,Ty,t)) \le k \max\{\eta(M(x,y,t)), \eta(M(x,Tx,t)), \eta(M(y,Ty,t)),$$

$$\eta(M(x,Ty,t)), \eta(M(y,Tx,t))\}$$

$$(1)$$

for all $x, y \in X$ and any t > 0.

A similar definition, in the setting of non-Archimedean probabilistic Menger spaces, goes back to S.S. Chang (see [2]).

Theorem 2.3. Let (X, M, *) be an M-complete fuzzy metric space and let $T: X \to X$ be a fuzzy \mathcal{H} -quasi-contractive mapping with respect to $\eta \in \mathcal{H}$ such that

- (a) $\tau \geq r * s \Rightarrow \eta(\tau) \leq \eta(r) + \eta(s)$, for all $r, s, \tau \in \{M(T^i x, T^j x, t) : x \in X, t > 0, i, j \in \mathbb{N}\}$;
- (b) $\{\eta(M(x,Tx,t_i)): i \in \mathbb{N}\}\$ is bounded for all $x \in X$ and any sequence $\{t_n\} \subseteq (0,\infty), t_n \downarrow 0.$

Then T has a unique fixed point $x^* \in X$ and for each $x \in X$ the sequence $\{T^n x\}$ converges to x^* .

Proof. For
$$A \subseteq X$$
 let $\delta_t(A) = \sup\{\eta(M(x,y,t)) : x,y \in A\}$ and for each $x \in X$ let $O(x,n) = \{x,Tx,...,T^nx\}$ and $O(x,\infty) = \{x,Tx,...\}, n \in \mathbb{N}$.

Let $x \in X$ be arbitrary. Let $n \in \mathbb{N}$ and let $i, j \in \{1, 2, ..., n\}$. Then from (1), we obtain

$$\eta(M(T^{i}x, T^{j}x, t)) = \eta(M(TT^{i-1}x, TT^{j-1}x, t))
\leq k \max\{\eta(M(T^{i-1}x, T^{j-1}x, t)), \eta(M(T^{i-1}x, T^{i}x, t)),
\eta(M(T^{j-1}x, T^{j}x, t)), \eta(M(T^{i-1}x, T^{j}x, t)), \eta(M(T^{j-1}x, T^{i}x, t))\}
\leq k\delta_{t}(O(x, n)),$$

and so

$$\eta(M(T^i x, T^j x, t)) \le k\delta_t(O(x, n)), \ i, j \in \{1, 2, ..., n\}, \ x \in X.$$
(2)

Now, if $\delta_t(O(x,n)) = \eta(M(T^{i_0}x, T^{j_0}x, t))$ for some $i_0, j_0 > 1$, then from (2) it follows $\delta_t(O(x,n)) \le k\delta_t(O(x,n))$, that is, $\delta_t(O(x,n)) = 0$ and thus $\eta(M(T^ix, T^jx, t)) = 0$, $\forall i, j \le n$. Particularly, $\eta(M(x, Tx, t)) = 0$, which implies M(x, Tx, t) = 1. From (GV2) it follows that x = Tx, that is, x is a fixed point for T. In the contrary case,

$$\delta_t(O(x,n)) = \eta(M(x,T^l x,t)), \tag{3}$$

for some $l \leq n$. Then, by choosing a strictly decreasing sequence of positive numbers $\{a_i\}$ with $\sum_{i=1}^{\infty} a_i = 1$, from (3), we deduce

$$\delta_t(O(x,n)) = \eta(M(x,T^l x,t)) = \eta(M(x,T^l x, \sum_{i=1}^{\infty} a_i t))$$

$$\leq \eta(M(x,Tx, \sum_{i=j+1}^{\infty} a_i t)) + \eta(M(Tx,T^l x, \sum_{i=1}^{j} a_i t)), \ \forall \ j$$

and so

$$\delta_t(O(x,n)) \le \limsup_{j \to \infty} \eta(M(x,Tx,\sum_{i=j+1}^{\infty} a_i t)) + \eta(M(Tx,T^l x,t))$$

$$\le \limsup_{j \to \infty} \eta(M(x,Tx,\sum_{i=j+1}^{\infty} a_i t)) + k\delta_t(O(x,n)).$$

Then

$$\delta_t(O(x,n)) \le \frac{1}{1-k} \limsup_{j \to \infty} \eta(M(x,Tx,\sum_{i=j+1}^{\infty} a_i t)). \tag{4}$$

Let n, m, n < m be any natural numbers. From (2), we get

$$\eta(M(T^n x, T^m x, t)) = \eta(M(TT^{n-1} x, T^{m-n+1} T^{n-1} x, t))
\leq k \delta_t(O(T^{n-1} x, m - n + 1)).$$
(5)

From (3), there exists $k_1 \leq m - n + 1$ such that

$$\delta_t(O(T^{n-1}x, m-n+1)) = \eta(M(T^{n-1}x, T^{k_1}T^{n-1}x, t)).$$
(6)

From (2),(5) and (6), we get

$$\begin{split} \eta(M(T^nx,T^mx,t)) &\leq k\eta(M(T^{n-1}x,T^{k_1}T^{n-1}x,t)) \\ &= k\eta(M(TT^{n-2}x,T^{k_1+1}T^{n-2}x,t)) \leq k^2\delta_t(O(T^{n-2}x,k_1+1)) \\ &\leq k^2\delta_t(O(T^{n-2}x,m-n+2)). \end{split}$$

Proceeding in this manner, we obtain

$$\eta(M(T^n x, T^m x, t)) \le k^n \delta_t(O(x, m)). \tag{7}$$

From (4) and (7) it follows

$$\eta(M(T^n x, T^m x, t)) \le \frac{k^n}{1 - k} \limsup_{j \to \infty} \eta(M(x, Tx, \sum_{i=j+1}^{\infty} a_i t)).$$
 (8)

From (8) and (b), we have

$$\lim_{m,n\to\infty} \eta(M(T^n x, T^m x, t)) = 0,$$

and so $\lim_{m,n\to\infty} M(T^nx,T^mx,t)=1$. Thus, $(x_n)_{n\in\mathbb{N}},x_n=T^nx$ is a Cauchy sequence. By the completeness of X there exists $x^*\in X$ such that $\lim_{n\to\infty}x_n=x^*$. Let t>0 be given. Then, for each $\epsilon>0$ and $n\in\mathbb{N}$, we have

$$M(x^*, Tx^*, t + \epsilon) \ge M(x^*, T^{n+1}x^*, \epsilon) * M(Tx^*, T^{n+1}x^*, t)$$

and hence

$$\begin{split} &\eta(M(x^*,Tx^*,t+\epsilon)) \leq \eta(M(x^*,T^{n+1}x^*,\epsilon)) + \eta(M(Tx^*,T^{n+1}x^*,t)) \\ &\leq \eta(M(x^*,T^{n+1}x^*,\epsilon)) + k \max\{\eta(M(x^*,T^nx^*,t)),\eta(M(x^*,Tx^*,t)),\\ &\eta(M(T^nx^*,T^{n+1}x^*,t)),\eta(M(x^*,T^{n+1}x^*,t)),\eta(M(T^nx^*,Tx^*,t))\}. \end{split}$$

Letting $n \to \infty$ (having in mind Lemma 1.3) we obtain

$$\eta(M(x^*, Tx^*, t + \epsilon)) \le k\eta(M(x^*, Tx^*, t)),$$

and so

$$\eta(M(x^*,Tx^*,t)) = \lim_{\epsilon \to 0^+} \eta(M(x^*,Tx^*,t+\epsilon)) \le k\eta(M(x^*,Tx^*,t)).$$

Thus $\eta(M(x^*, Tx^*, t)) = 0$, implying $M(x^*, Tx^*, t) = 1$.

To show the uniqueness assume that y^* is a fixed point of T. Then, for all t > 0,

$$\begin{split} \eta(M(x^*,y^*,t)) &= \eta(M(Tx^*,Ty^*,t)) \\ &\leq k \max\{\eta(M(x^*,y^*,t)),\eta(M(x^*,Tx^*,t)), \\ \eta(M(y^*,Ty^*,t)),\eta(M(x^*,Ty^*,t)),\eta(M(y^*,Tx^*,t))\} \\ &= k\eta(M(x^*,y^*,t)). \end{split}$$

This gives $M(x^*, y^*, t) = 1$, that is, $x^* = y^*$.

We illustrate our result by the following example.

Example 2.4. Let X = [0,1], and let $M(x,y,t) = (\frac{t+1}{t+2})^{|x-y|}$ for all $x,y \in X$ and each t > 0. Then (X, M, T_P) is a M-complete fuzzy metric space. Define the map $T: X \to X$ by

$$T(x) = \begin{cases} \frac{1}{4} & \text{if } x = 0, \\ \frac{1}{2}, & \text{if } 0 < x \le 1. \end{cases}$$

Obviously, $\frac{1}{2}$ is the unique fixed point of T.

We show that T is not a fuzzy \mathcal{H} -contractive map. On the contrary, assume that there exists $\eta \in \mathcal{H}$ such that

$$\eta(M(Tx, Ty, t)) \le k\eta(M(x, y, t)) \ \forall \ x, y \in X \ \forall \ t > 0, \tag{9}$$

where $k \in [0,1)$ is a constant. Let x=0, t=1 and let $0 < y \le 1$. Then from (9), we get $\eta((\frac{2}{3})^{\frac{1}{4}}) \le k\eta((\frac{2}{3})^y)$ and so

$$\eta((\frac{2}{3})^{\frac{1}{4}}) \le k \lim_{y \to 0^+} \eta((\frac{2}{3})^y) = k\eta(1) = 0,$$

a contradiction. Thus, we cannot invoke Theorem 1.5 to show that the mapping T has a fixed point.

On the other hand, from the equality

$$\ln M(\frac{1}{4}, \frac{1}{2}, t) = \frac{1}{2} \ln M(0, \frac{1}{2}, t), \forall t > 0$$

it immediately follows that if $\eta(s) = -lns$ $(s \in (0,1])$, then for each $x, y \in X$ and any t > 0,

$$\eta(M(Tx, Ty, t)) \le \frac{1}{2} \max\{\eta(M(x, y, t)), \eta(M(x, Tx, t)),$$

$$\eta(M(y,Ty,t)),\eta(M(x,Ty,t)),\eta(M(y,Tx,t))\},$$

that is, T is a fuzzy \mathcal{H} -quasi-contractive mapping with respect to η .

As $g(s) = -\ln s$ is the generator of the strict t-norm $*_P$, all the conditions of Theorem 2.3 are fulfilled.

Acknowledgements. The first author was partially supported by the Center of Excellence for Mathematics, University of Shahrekord, Iran. The work of the second author was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0087.

References

- Lj. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45(2) (1974), 267-273.
- [2] S. Chang, Y. J. Cho and S. M. Kang, Probabilistic Metric Spaces and Nonlinear Operator Theory, Sichuan Univ. Press, 1994.
- [3] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, **64(3)** (1994), 395-399.
- [4] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27(3) (1988), 385-389.
- [5] V. Gregori and A. Sapena, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 125(2) (2002), 245-252.
- [6] O. Hadžić and E. Pap, Fixed point theory in probabilistic metric spaces, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, Boston, London, **536** (2001).
- [7] F. Kiany and A. Amini-Harandi, Fixed points and endpoint theorems for set-valued fuzzy contraction maps in fuzzy metric spaces, Point Theory and Applications 2011, 2011:94.
- [8] E. P. Klement, R. Mesiar and E. Pap, *Triangular Norms*, Trends in Logics, Kluwer Academic Publishers, Dordrecht, Boston, London, 8 (2000).
- [9] I. Kramosil and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11(5) (1975), 336-344.
- [10] D. Mihet, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems, 144(3) (2004), 431-439.
- [11] D. Mihet, On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets and Systems, 158(8) (2007), 915-921.
- [12] D. Mihet, Fuzzy \(\psi\)-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems, 159(6) (2008), 739-744.
- [13] D. Mihet, A note on fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets and Systems, 251 (2014), 83-91.
- [14] J. Rodríguez-López and S. Romaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems, 147(2) (2004), 273-283.
- [15] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313-334.
- [16] C. Vetro, Fixed points in weak non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems, 162(1) (2011), 84-90.
- [17] D. Wardowski, Fuzzy contractive mappings and fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 222 (2013), 108-114.
- A. Amini-Harandi, Department of Mathematics, University of Isfahan, Isfahan, 81745-163. Iran

E-mail address: a.amini@sci.ui.ac.ir

D. Mihet*, West University of Timisoara, Faculty of Mathematics and Computer Science, Bv. V. Parvan 4, 300223, Timisoara, Romania

E-mail address: mihet@math.uvt.ro

^{*}Corresponding author