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QUASI-CONTRACTIVE MAPPINGS IN FUZZY METRIC

SPACES

A. AMINI-HARANDI AND D. MIHET

Abstract. We consider the concept of fuzzy quasi-contractions initiated by

Ćirić in the setting of fuzzy metric spaces and establish fixed point theorems

for quasi-contractive mappings and for fuzzy H-contractive mappings on M-

complete fuzzy metric spaces in the sense of George and Veeramani.The results
are illustrated by a representative example.

1. Introduction

The notion of fuzzy metric space was introduced by Kramosil and Michalek [9]
and later modified by George and Veeramani ([3]). In this paper we work in fuzzy
metric spaces in the sense of George and Veeramani, defined as follows.

Definition 1.1. [3] A triple (X,M, ∗) is called a fuzzy metric space (in the sense
of George and Veeramani) if X is a nonempty set, ∗ is a continuous t-norm and
M : X2 × (0,∞) → [0, 1] is a fuzzy set satisfying the following conditions: for all
x, y, z ∈ X and s, t > 0,

(GV1) M(x, y, t) > 0;
(GV2) M(x, y, t) = 1⇔ x = y;
(GV3) M(x, y, t) = M(y, x, t);
(GV4) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s);
(GV5) M(x, y, .) : (0,∞)→ [0, 1] is continuous for all x, y ∈ X.

If (GV4) is replaced by M(x, z,max{t, s}) ≥ M(x, y, t) ∗M(y, z, s), then the
space (X,M, ∗) is said to be a non-Archimedean fuzzy metric space. It should be
noted that any non-Archimedean fuzzy metric space is a fuzzy metric space.
If (X,M, ∗) is a fuzzy metric space, we will say that (M, ∗) is a fuzzy metric on X.
George and Veeramani [3] proved that every fuzzy metric (M, ∗) on X generates a
topology τM on X which has as a base the family of sets of the form {BM (x, ε, t) :
x ∈ X, 0 < ε < 1, t > 0}, where BM (x, ε, t) = {y ∈ X : M(x, y, t) > 1 − ε} for all
ε ∈ (0, 1) and t > 0. It is well known that a sequence (xn)n∈N in X is convergent
to x ∈ X with respect to τM if and only if lim

n→∞
M(xn, x, t) = 1, ∀ t > 0.

Definition 1.2. [3] Let (X,M, ∗) be a fuzzy metric space. A sequence (xn)n∈N in
X is called Cauchy if lim

m,n→∞
M(xm, xn, t) = 1 for each t > 0. An M -complete fuzzy

metric space is a fuzzy metric space in which every Cauchy sequence is convergent.
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Lemma 1.3. (see [14]) Let (X,M, ∗) be a fuzzy metric space. Then M is a con-
tinuous function on X ×X × (0,∞).

The fixed point theory in fuzzy metric spaces started with the paper of Grabiec
[4]. Later on, the concept of fuzzy contractive mappings, initiated by Gregori
and Sapena in [5], have become of interest for many authors, see, e.g., the papers
[5, 7, 10, 11, 12, 16].

The following class of fuzzyH-contractive mappings has been recently introduced
by Wardowski in [17], as a generalization of fuzzy contractions of Gregori and
Sapena.

Definition 1.4. [17] Denote by H the family of all onto and strictly decreasing
mappings η : (0, 1] → [0,∞). Let (X,M, ∗) be a fuzzy metric space. A mapping
T : X → X is said to be fuzzy H-contractive with respect to η ∈ H if there exists
k ∈ (0, 1) satisfying

η(M(Tx, Ty, t)) ≤ kη(M(x, y, t)), ∀ x, y ∈ X ∀ t > 0.

For η(t) = 1
t − 1 one obtains the class of fuzzy contractive mappings introduced

by Gregori and Sapena in [5].
If η ∈ H then η(1) = 0 and η is continuous.

In [17] Wardowski formulated the conditions guaranteeing the existence and the
uniqueness of the fixed point of a fuzzyH-contractive mapping in M -complete fuzzy
metric spaces in the sense of George and Veeramani.

Theorem 1.5. [17] Let (X,M, ∗) be an M -complete fuzzy metric space and let
T : X → X be a fuzzy H-contractive mapping with respect to η ∈ H such that:

(a)
∏k
i=1M(x, Tx, ti) 6= 0, for all x ∈ X, k ∈ N and any sequence (tn) ⊆

(0,∞), tn ↓ 0;
(b) r∗s > 0⇒ η(r∗s) ≤ η(r)+η(s), for all r, s ∈ {M(x, Tx, t) : x ∈ X, t > 0};
(c) {η(M(x, Tx, ti)) : i ∈ N} is bounded for all x ∈ X and any sequence

(tn) ⊆ (0,∞), tn ↓ 0.

Then T has a unique fixed point x∗ ∈ X and for each x0 ∈ X the sequence
(Tnx0)n∈N converges to x∗.

In our paper we present Wardowski’s result in connection with the structure
of the t-norm of the space (see also [13]). We also consider Ćirić’s concept of
quasi-contractions ([1]) in fuzzy metric setting and prove a fixed point theorem for
this class of contractions in M -complete fuzzy metric spaces. It is worth mention-
ing that all earlier similar results refers to quasi-contractions in non-Archimedean
(probabilistic) metric spaces.

2. Main Results

Our first theorem, although less general than Theorem 1.5, reveals the connection
between the conditions of Wardowski’s theorem and the structure of a strict t-norm.

Recall that a continuous t-norm ∗ is said to be strict if it is strictly increasing
in each place on (0, 1]2. Any strict t-norm ∗ is Archimedean, that is, x ∗ x < x,
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for all x ∈ (0, 1) and positive, that is, ∀a, b ∈ (0, 1] ⇒ a ∗ b > 0. A t-norm ∗ is
strict if and only if the semigroups ([0, 1], ∗) and ([0,∞],+) are isomorphic, that is,
there exists a continuous, strictly decreasing function g from [0, 1] to [0,∞] with
g(0) =∞, g(1) = 0, such that x ∗ y = g−1(g(x) + g(y)), ∀x, y ∈ [0, 1], where g−1 is
the inverse of g. Such a function g is called an additive generator for ∗ and a t-norm
generated by g will be denoted by ∗g. For example, the t-norm ∗P is a strict t-norm
generated by the function g : [0, 1]→ [0,∞], g(0) =∞, g(s) = − ln s (s 6= 0). For
more details about t-norms the reader is referred to [6] and [8].

Theorem 2.1. Let ∗g be a strict t-norm. If (X,M, ∗) is an M-complete fuzzy
metric space under a t-norm ∗ ≥ ∗g and T : X → X is a H-contractive mapping
with respect to g with the property M(x, Tx, 0+) = limt→0+ M(x, Tx, t) > 0 for all
x ∈ X, then T has a unique fixed point.

Proof. As the proof follows the lines of the proof of Theorem 3.2. in [17], we only
sketch it. Let x ∈ X and (xn)n∈N, xn = Tnx be the sequence of iterates of x. Then,
for all t > 0, n ∈ N, g(M(xn, xn+1, t)) ≤ kng(M(x, Tx, t)). Let m,n ∈ N,m < n
and t > 0 be given and let {ai} be a strictly decreasing sequence of positive numbers
with

∑∞
i=1 ai = 1. Then

M(xm, xn, t) ≥M(xm, xn,

n−1∑
i=m

ait) ≥
n−1∏
i=m

M(xi, xi+1, ait)

≥ (∗g)n−1i=mM(xi, xi+1, ait).

This implies

g(M(xm, xn, t)) ≤
n−1∑
i=m

g(M(xi, xi+1, ait)) ≤
n−1∑
i=m

kig(M(x, Tx, ait))

≤ g(M(x, Tx, 0+))

n−1∑
i=m

ki,

proving that (xn) is Cauchy. The fact that the limit of (xn) is the unique fixed
point of T can be easily reproduced from the proof of Theorem 3.2. in [17]. �

Our main theorem is related to the concept of quasi-contraction, initiated by Lj.
B. Ćirić in [1]. We define a fuzzy H-quasi-contractive mapping as follows:

Definition 2.2. Let (X,M, ∗) be a fuzzy metric space. A mapping T : X → X is
said to be fuzzy H-quasi-contractive with respect to η ∈ H if there exists k ∈ (0, 1)
satisfying the following condition:

η(M(Tx, Ty, t)) ≤ kmax{η(M(x, y, t)), η(M(x, Tx, t)), η(M(y, Ty, t)),

η(M(x, Ty, t)), η(M(y, Tx, t))} (1)

for all x, y ∈ X and any t > 0.

A similar definition, in the setting of non-Archimedean probabilistic Menger
spaces, goes back to S.S. Chang ( see [2]).
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Theorem 2.3. Let (X,M, ∗) be an M-complete fuzzy metric space and let T : X →
X be a fuzzy H-quasi-contractive mapping with respect to η ∈ H such that

(a) τ ≥ r ∗ s⇒ η(τ) ≤ η(r) + η(s), for all r, s, τ ∈ {M(T ix, T jx, t) : x ∈ X, t >
0, i, j ∈ N};

(b) {η(M(x, Tx, ti)) : i ∈ N} is bounded for all x ∈ X and any sequence
{tn} ⊆ (0,∞), tn ↓ 0.

Then T has a unique fixed point x∗ ∈ X and for each x ∈ X the sequence {Tnx}
converges to x∗.

Proof. For A ⊆ X let δt(A) = sup{η(M(x, y, t)) : x, y ∈ A} and for each x ∈ X let

O(x, n) = {x, Tx, ..., Tnx} and O(x,∞) = {x, Tx, ...}, n ∈ N.

Let x ∈ X be arbitrary. Let n ∈ N and let i, j ∈ {1, 2, ..., n}. Then from (1), we
obtain

η(M(T ix, T jx, t)) = η(M(TT i−1x, TT j−1x, t))

≤ kmax{η(M(T i−1x, T j−1x, t)), η(M(T i−1x, T ix, t)),

η(M(T j−1x, T jx, t)), η(M(T i−1x, T jx, t)), η(M(T j−1x, T ix, t))}
≤ kδt(O(x, n)),

and so

η(M(T ix, T jx, t)) ≤ kδt(O(x, n)), i, j ∈ {1, 2, ..., n}, x ∈ X. (2)

Now, if δt(O(x, n)) = η(M(T i0x, T j0x, t)) for some i0, j0 > 1, then from (2) it fol-
lows δt(O(x, n)) ≤ kδt(O(x, n)), that is, δt(O(x, n)) = 0 and thus η(M(T ix, T jx, t)) =
0, ∀i, j ≤ n. Particularly, η(M(x, Tx, t)) = 0, which implies M(x, Tx, t) = 1. From
(GV2) it follows that x = Tx, that is, x is a fixed point for T . In the contrary case,

δt(O(x, n)) = η(M(x, T lx, t)), (3)

for some l ≤ n. Then, by choosing a strictly decreasing sequence of positive
numbers {ai} with

∑∞
i=1 ai = 1, from (3), we deduce

δt(O(x, n)) = η(M(x, T lx, t)) = η(M(x, T lx,

∞∑
i=1

ait))

≤ η(M(x, Tx,

∞∑
i=j+1

ait)) + η(M(Tx, T lx,

j∑
i=1

ait)), ∀ j

and so

δt(O(x, n)) ≤ lim sup
j→∞

η(M(x, Tx,

∞∑
i=j+1

ait)) + η(M(Tx, T lx, t))

≤ lim sup
j→∞

η(M(x, Tx,

∞∑
i=j+1

ait)) + kδt(O(x, n)).

Then

δt(O(x, n)) ≤ 1

1− k
lim sup
j→∞

η(M(x, Tx,

∞∑
i=j+1

ait)). (4)
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Let n,m, n < m be any natural numbers. From (2), we get

η(M(Tnx, Tmx, t)) = η(M(TTn−1x, Tm−n+1Tn−1x, t))

≤ kδt(O(Tn−1x,m− n+ 1)). (5)

From (3), there exists k1 ≤ m− n+ 1 such that

δt(O(Tn−1x,m− n+ 1)) = η(M(Tn−1x, T k1Tn−1x, t)). (6)

From (2),(5) and (6), we get

η(M(Tnx, Tmx, t)) ≤ kη(M(Tn−1x, T k1Tn−1x, t))

= kη(M(TTn−2x, T k1+1Tn−2x, t)) ≤ k2δt(O(Tn−2x, k1 + 1))

≤ k2δt(O(Tn−2x,m− n+ 2)).

Proceeding in this manner, we obtain

η(M(Tnx, Tmx, t)) ≤ knδt(O(x,m)). (7)

From (4) and (7) it follows

η(M(Tnx, Tmx, t)) ≤ kn

1− k
lim sup
j→∞

η(M(x, Tx,

∞∑
i=j+1

ait)). (8)

From (8) and (b), we have

lim
m,n→∞

η(M(Tnx, Tmx, t)) = 0,

and so lim
m,n→∞

M(Tnx, Tmx, t) = 1. Thus, (xn)n∈N, xn = Tnx is a Cauchy se-

quence. By the completeness of X there exists x∗ ∈ X such that lim
n→∞

xn = x∗.

Let t > 0 be given. Then, for each ε > 0 and n ∈ N, we have

M(x∗, Tx∗, t+ ε) ≥M(x∗, Tn+1x∗, ε) ∗M(Tx∗, Tn+1x∗, t)

and hence

η(M(x∗, Tx∗, t+ ε)) ≤ η(M(x∗, Tn+1x∗, ε)) + η(M(Tx∗, Tn+1x∗, t))

≤ η(M(x∗, Tn+1x∗, ε)) + kmax{η(M(x∗, Tnx∗, t)), η(M(x∗, Tx∗, t)),

η(M(Tnx∗, Tn+1x∗, t)), η(M(x∗, Tn+1x∗, t)), η(M(Tnx∗, Tx∗, t))}.
Letting n→∞ (having in mind Lemma 1.3) we obtain

η(M(x∗, Tx∗, t+ ε)) ≤ kη(M(x∗, Tx∗, t)),

and so

η(M(x∗, Tx∗, t)) = lim
ε→0+

η(M(x∗, Tx∗, t+ ε)) ≤ kη(M(x∗, Tx∗, t)).

Thus η(M(x∗, Tx∗, t)) = 0, implying M(x∗, Tx∗, t) = 1.
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To show the uniqueness assume that y∗ is a fixed point of T . Then, for all t > 0,

η(M(x∗, y∗, t)) = η(M(Tx∗, T y∗, t))

≤ kmax{η(M(x∗, y∗, t)), η(M(x∗, Tx∗, t)),

η(M(y∗, T y∗, t)), η(M(x∗, Ty∗, t)), η(M(y∗, Tx∗, t))}
= kη(M(x∗, y∗, t)).

This gives M(x∗, y∗, t) = 1, that is, x∗ = y∗. �

We illustrate our result by the following example.

Example 2.4. Let X = [0, 1], and let M(x, y, t) = ( t+1
t+2 )|x−y| for all x, y ∈ X and

each t > 0. Then (X,M, TP ) is a M-complete fuzzy metric space. Define the map
T : X → X by

T (x) =

{
1
4 if x = 0,
1
2 , if 0 < x ≤ 1.

Obviously, 1
2 is the unique fixed point of T .

We show that T is not a fuzzy H-contractive map. On the contrary, assume that
there exists η ∈ H such that

η(M(Tx, Ty, t)) ≤ kη(M(x, y, t)) ∀ x, y ∈ X ∀ t > 0, (9)

where k ∈ [0, 1) is a constant. Let x = 0, t = 1 and let 0 < y ≤ 1. Then from

(9), we get η(( 2
3 )

1
4 ) ≤ kη(( 2

3 )y) and so

η((
2

3
)

1
4 ) ≤ k lim

y→0+
η((

2

3
)y) = kη(1) = 0,

a contradiction. Thus, we cannot invoke Theorem 1.5 to show that the mapping T
has a fixed point.

On the other hand, from the equality

lnM(
1

4
,

1

2
, t) =

1

2
lnM(0,

1

2
, t),∀t > 0

it immediately follows that if η(s) = −lns (s ∈ (0, 1]), then for each x, y ∈ X and
any t > 0,

η(M(Tx, Ty, t)) ≤ 1

2
max{η(M(x, y, t)), η(M(x, Tx, t)),

η(M(y, Ty, t)), η(M(x, Ty, t)), η(M(y, Tx, t))},
that is, T is a fuzzy H-quasi-contractive mapping with respect to η.

As g(s) = − ln s is the generator of the strict t-norm ∗P , all the conditions of
Theorem 2.3 are fulfilled.
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[14] J. Rodŕıguez-López and S. Romaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy

Sets and Systems, 147(2) (2004), 273-283.

[15] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313-334.
[16] C. Vetro, Fixed points in weak non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems,

162(1) (2011), 84-90.

[17] D. Wardowski, Fuzzy contractive mappings and fixed points in fuzzy metric spaces, Fuzzy
Sets and Systems, 222 (2013), 108-114.

A. Amini-Harandi, Department of Mathematics, University of Isfahan, Isfahan, 81745-

163, Iran
E-mail address: a.amini@sci.ui.ac.ir

D. Mihet∗, West University of Timisoara, Faculty of Mathematics and Computer

Science, Bv. V. Parvan 4, 300223, Timisoara, Romania
E-mail address: mihet@math.uvt.ro

*Corresponding author


