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CVAR REDUCED FUZZY VARIABLES AND THEIR SECOND

ORDER MOMENTS

X. J. BAI AND Y. K. LIU

Abstract. Based on credibilistic value-at-risk (CVaR) of regular fuzzy vari-
able, we introduce a new CVaR reduction method for type-2 fuzzy variables.

The reduced fuzzy variables are characterized by parametric possibility distri-

butions. We establish some useful analytical expressions for mean values and
second order moments of common reduced fuzzy variables. The convex prop-

erties of second order moments with respect to parameters are also discussed.

Finally, we take second order moment as a new risk measure, and develop a
mean-moment model to optimize fuzzy portfolio selection problems. According

to the analytical formulas of second order moments, the mean-moment opti-

mization model is equivalent to parametric quadratic convex programming
problems, which can be solved by general-purpose optimization software. The

solution results reported in the numerical experiments demonstrate the credi-

bility of the proposed optimization method.

1. Introduction

As a natural extension of type-1 fuzzy set, type-2 fuzzy set was first introduced
by Zadeh [19]. Since then, type-2 fuzzy set theory has been further explored in the
literature. Dubois and Prade [3] investigated the operations in a fuzzy-valued logic.
Mizumoto and Tanaka [14] discussed what kinds of algebraic structures the grades of
type-2 fuzzy sets form under join, meet and negation. Mendel [12] summarized the
developments and applications of type-2 fuzzy sets before the year 2001. Mendel and
John [13] introduced some basic concepts to characterize type-2 fuzzy set, including
the type-2 membership function, the secondary membership function, the footprint
of uncertainty and so on. Hu and Wang [5] introduced interval-valued type-2 fuzzy
sets and interval-valued type-2 fuzzy relations and discussed their properties. In the
literature, type-2 fuzzy numbers have been used to indicate the similarity degree of
fuzzy sets [1, 7]. At the same time, type-2 fuzzy sets have been applied successfully
to many application-oriented fields. For example, Kundu et al. [8] considered two
fixed charge transportation problems with type-2 fuzzy parameters. Huang et al. [6]
proposed a novel dynamic optimal path planning method, which employed a type-
2 fuzzy logic inference system to path analysis for each cell established in the
cellular automata algorithm. For recent developments about type-2 fuzzy theory,
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the interested readers may refer to Hao and Mendel [4], Ngan [16], Moharrer et
al. [15] and Torshizi and Zarandi [17].

Defuzzification is one of the critical steps involved in type-2 fuzzy system. By
reduction, all computations in three-dimensional space are degenerated into calcu-
lations in two-dimensional plane so as to reduce greatly the computing complexity.
Several reduction methods for type-2 fuzzy sets have been presented in the litera-
ture. Coupland and John [2] presented a geometric-based defuzzication method for
type-2 fuzzy sets. Liu [10] gave a centroid type-reduction strategy for interval type-
2 fuzzy sets. Motivated by the work mentioned above, the present paper introduces
a new reduction method in fuzzy possibility theory. First, we define the CVaR
for regular fuzzy variables based on credibility measure. Then, we develop CVaR
reduction method for secondary possibility distributions. The idea of the proposed
method is to reduce uncertainty in secondary possibility distributions, and retains
the most important information in the parametric possibility distributions of re-
duced fuzzy variables. There are two types of parameters included in the obtained
parametric possibility distributions. The first type of parameters is to describe the
degree of uncertainty that a type-2 fuzzy variable takes on its values, while the sec-
ond type of parameters is to represent the credibility level in the support of type-2
fuzzy variable. From the geometrical viewpoint, the first type of parameters deter-
mines the shape of the support of a type-2 fuzzy variable, while the second type of
parameters determines the location of possibility distribution in the support of the
type-2 fuzzy variable. From this viewpoint, our CVaR reduction method has some
advantages over other existing methods by introducing the location parameter in
the possibility distribution. Since the CVaR reduced fuzzy variables have paramet-
ric possibility distributions, the computation about their numerical characteristics
is an interesting issue for research. In this paper, we first derive the analytical
expressions of mean values for common reduced fuzzy variables. Then we derive
the analytical expressions of the second order moments to measure the variations
of parametric possibility distributions with respect to mean values. Finally, we we
take mean value and second order moment as two optimization indexes, and apply
them to fuzzy portfolio selection problems.

The rest of this paper is organized as follows. Section 2 introduces some con-
cepts in fuzzy theory. Section 3 defines the CVaR for regular fuzzy variable, and
derives some useful CVaR formulas for common regular fuzzy variables. In Section
4, we develop the CVaR reduction method for type-2 fuzzy variables. For common
reduced fuzzy variables, Section 5 discusses the computation of mean values, and
Section 6 establishes the analytical expressions of the second order moments. Sec-
tion 7 provides a practical application example about portfolio selection problem,
in which the proposed second order moment is taken as a new measure to gauge
the risk resulted from fuzzy uncertainty. Finally, Section 8 concludes the paper.

2. Fundamental Concepts

Let (Γ,A,Pos) be a possibility space, where Γ is the universe of discourse, A an
ample field on Γ that is closed under arbitrary unions, intersections and comple-
ment, and Pos a possibility measure on A. Using possibility measure, the credibility
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measure of an event A ∈ A was defined as

Cr(A) =
1

2
(1 + Pos(A)− Pos(Ac)) ,

where Ac = Γ\A is the complementary event of A.

Definition 2.1. [18] Let (Γ,A) be an ample space. A function ξ : Γ→ < is called
a fuzzy variable if

{γ | ξ(γ) ≤ r} ∈ A
for any r ∈ <.

Let (Γ,A,Pos) be a possibility space. An m-ary regular fuzzy vector ξ =
(ξ1, . . . , ξm) is defined as a measurable map from Γ to the space [0, 1]m in the
sense that for every r = (r1, . . . , rm) ∈ [0, 1]m, one has

{γ ∈ Γ | ξ(γ) ≤ r} = {γ ∈ Γ | ξ1(γ) ≤ r1, ξ2(γ) ≤ r2, . . . , ξm(γ) ≤ rm} ∈ A.
When m = 1, ξ is called a regular fuzzy variable (RFV).

In this paper, we denote R([0, 1]) as the collection of all RFVs on [0, 1].
If ξ = (r1, r2, r3) with 0 ≤ r1 < r2 < r3 ≤ 1, then ξ is a triangular RFV.

Similarly, if ξ = (r1, r2, r3, r4) with 0 ≤ r1 < r2 ≤ r3 < r4 ≤ 1, then ξ is a
trapezoidal RFV.

Definition 2.2. [9] Let ξ be a fuzzy variable defined on a possibility space (Γ,A,Pos).
The credibility distribution function of ξ is defined by

Gξ(r) = Cr{γ ∈ Γ | ξ(γ) ≤ r}, r ∈ <.

Example 2.3. Let ξ = (0.2, 0.4, 0.5, 0.85) be a trapezoidal RFV. The possibility
distribution of ξ is shown in Figure 1. The credibility distribution of ξ is computed
by

Cr{ξ ≤ r} =


0, if x < 0.2
5r−1

2 , if 0.2 ≤ r ≤ 0.4
1
2 , if 0.4 ≤ r ≤ 0.5
20r−3

14 , if 0.5 ≤ x ≤ 0.85
1, if x > 0.85,

which is plotted in Figure 2.

Let P̃os : A → R([0, 1]) be a set function defined on A such that {P̃os(A) | A ∈
A atom} is a family of mutually independent RFVs. We call P̃os a fuzzy possibility
measure if it satisfies the following conditions:

(P̃1): P̃os(∅) = 0̃;

(P̃2): For any subclass {Ai | i ∈ I} of A (finite, countable or uncountable)

P̃os

(⋃
i∈I

Ai

)
= sup

i∈I
P̃os(Ai).

Moreover, if µP̃os(Γ)(1) = 1, then we call P̃os a normalized fuzzy possibility measure.

The triplet (Γ,A, P̃os) is referred to as a fuzzy possibility space (FPS).
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Figure 1. The Possibility Distribution of ξ

Figure 2. The Credibility Distribution of ξ

Remark 2.4. Fuzzy possibility measure is a generalization of (non-fuzzy) possibil-

ity measure in the literature. That is, if for any A ∈ A, P̃os(A) is a crisp number

in [0, 1] instead of a fuzzy number in [0, 1], then P̃os is just a (non-fuzzy) possibility
measure, and denoted by Pos. For the sake of clarity, we provide the following
example to explain the difference between possibility measure and fuzzy possibility
measure.

Let Γ = {γ1, γ2, γ3} and A = P(Γ), the power set of Γ. Define a set function
Pos on P(Γ) as follows:

Pos{γ1} = 0.2,Pos{γ2} = 1,Pos{γ3} = 0.6,

and for any other set A ∈ P(Γ), Pos(A) = maxγi∈A Pos{γi}. Then Pos is a possi-
bility measure, and (Γ,A,Pos) is a possibility space.
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On the other hand, if we define a set function P̃os : P(Γ)→ R([0, 1]) as

Pos{γ1} = (0.15, 0.2, 0.4),Pos{γ2} = 1̃,Pos{γ3} = (0.5, 0.6, 0.7),

and for any other set A ∈ P(Γ), P̃os(A) = maxγi∈A P̃os{γi}, then P̃os is a fuzzy

possibility measure, and (Γ,A, P̃os) is a fuzzy possibility space.

Let (Γ,A, P̃os) be an FPS. A map ξ̃ = (ξ̃1, ξ̃2, . . . , ξ̃m) : Γ → <m is called an
m-ary type-2 fuzzy vector if for any r = (r1, r2, . . . , rm) ∈ <m, the set {γ ∈ Γ |
ξ̃(γ) ≤ r} is an element of A, i.e.,

{γ ∈ Γ | ξ̃(γ) ≤ r} = {γ ∈ Γ | ξ̃1(γ) ≤ r1, ξ̃2(γ) ≤ r2, . . . , ξ̃m(γ) ≤ rm} ∈ A.

As m = 1, the map ξ̃ : Γ→ < is called a type-2 fuzzy variable.
Let ξ̃ = (ξ̃1, ξ̃2, . . . , ξ̃m) be a type-2 fuzzy vector. The secondary possibility

distribution function µ̃ξ̃(x) of ξ̃ is a map <m → R([0, 1]) such that

µ̃ξ̃(x) = P̃os{γ ∈ Γ | ξ̃(γ) = x}, x ∈ <m,

while the type-2 possibility distribution function µξ̃(x) of ξ̃ is a map <m×Jx → [0, 1]
such that

µξ̃(x, u) = Pos{µ̃ξ̃(x) = u}, (x, u) ∈ <m × Jx,
where Pos is the possibility measure induced by the distribution of µ̃ξ̃(x), and

Jx ⊂ [0, 1] is the support of µ̃ξ̃(x), i.e., Jx = {u ∈ [0, 1] | µ̃ξ̃(x, u) > 0}.
The support of a type-2 fuzzy vector ξ̃ is defined as

supp ξ̃ = {(x, u) ∈ <m × [0, 1] | µξ̃(x, u) > 0},

where µξ̃(x, u) is the type-2 possibility distribution function of ξ̃.

Example 2.5. Let ξ̃ = (3̃, 5̃, 9̃; 0.5, 0.8) be a type-2 triangular fuzzy variable. The

support of ξ̃ is shown in Figure 3.

Figure 3. The Support of Type-2 Triangular Fuzzy Variable ξ̃
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3. The CVaRs for Regular Fuzzy Variables

If ξ is a regular fuzzy variable, then the CVaR of ξ, denoted by CVaRα(ξ), is
defined by

CVaRα(ξ) = inf{r | Cr{ξ ≤ r} ≥ α}, α ∈ (0, 1].

The CVaR of ξ is different from the lower VaR and upper VaR defined by possi-
bility measure for a regular fuzzy variable. When a regular fuzzy variable ξ has con-
tinuous possibility distribution, we have the following relations among the CVaR,
lower VaR and upper VaR. For any α ∈ (0, 1), we have CVaRα

2
(ξ) = VaRL

α(ξ), and

CVaR1−α2 (ξ) = VaRU
α (ξ).

In the following, we derive some useful VaR formulas for common regular fuzzy
variables.

Theorem 3.1. If ξ is a triangular regular fuzzy variable, then we have

CVaRα(ξ) =

{
r1 + 2α(r2 − r1), if α ∈ (0, 0.5]
2r2 − r3 + 2α(r3 − r2), if α ∈ (0.5, 1].

Proof. According to the possibility distribution of ξ, we have the following credi-
bility distribution of ξ,

Cr{ξ ≤ x} =


0, if x < r1
x−r1

2(r2−r1) , if r1 ≤ x ≤ r2
r3−2r2+x
2(r3−r2) , if r2 ≤ x ≤ r3

1, if x > r3.

If α ∈ (0, 0.5], then CVaRα(ξ) is the solution of the following equation

x− r1

2(r2 − r1)
− α = 0.

Therefore, we have CVaRα(ξ) = r1 + 2α(r2 − r1).
On the other hand, if α ∈ (0.5, 1], then CVaRα(ξ) is the solution of the following

equation
r3 − 2r2 + x

2(r3 − r2)
− α = 0.

Thus, we have CVaRα(ξ) = 2r2 − r3 + 2α(r3 − r2). The proof of theorem is
complete. �

As a consequence of Theorem 3.1, we have the following results about the rela-
tions among the VaRs, upper mean value E∗, lower mean vale E∗ and mean value
E of regular triangular fuzzy variable.

Corollary 3.2. Let ξ = (r0 − θl, r0, r0 + θr) be a triangular regular fuzzy variable
with θl, θr > 0.

(i) If α = 3/4, then CVaRα(ξ) = E∗[ξ];
(ii) If α = 1/4, then CVaRα(ξ) = E∗[ξ];
(iii) If θl ≤ θr and α = (5θr − θl)/8θr, then CVaRα(ξ) = E[ξ];
(iv) If θl ≥ θr and α = (3θl + θr)/8θl, then CVaRα(ξ) = E[ξ].
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Theorem 3.3. If ξ is a trapezoidal regular fuzzy variable, then we have

CVaRα(ξ) =

{
r1 + 2α(r2 − r1), if α ∈ (0, 0.5]
2r3 − r4 + 2α(r4 − r3), if α ∈ (0.5, 1].

Proof. First, the credibility distribution of fuzzy variable ξ is calculated by

Cr{ξ ≤ x} =


0, if x < r1
x−r1

2(r2−r1) , if r1 ≤ x ≤ r2
1
2 , if r2 ≤ x ≤ r3
r4−2r3+x
2(r4−r3) , if r3 ≤ x ≤ r4

1, if x > r4.

If α ∈ (0, 0.5], then CVaRα(ξ) is the solution of the following equation

x− r1

2(r2 − r1)
− α = 0.

Thus, we have CVaRα(ξ) = r1 + 2α(r2 − r1).
On the other hand, if α ∈ (0.5, 1], then CVaRα(ξ) is the solution of the following

equation
r4 − 2r3 + x

2(r4 − r3)
− α = 0.

Thus, we have CVaRα(ξ) = 2r3 − r4 + 2α(r4 − r3). The proof of theorem is
complete. �

Theorem 3.4. Let ξ be a normal regular fuzzy variable with the following possibility
distribution

µξ(x) = exp
(
− (x− µ)2

2σ2

)
, x ∈ [0, 1], µ ∈ [0, 1].

If we denote a = exp(−µ2/2σ2) and b = exp(−(1− µ)2/2σ2), then we have

CVaRα(ξ) =

{
µ−
√
−2σ2 ln 2α, if α ∈

[
a
2 , 0.5

]
µ+

√
−2σ2 ln 2(1− α), if α ∈

(
0.5, 1− b

2

]
.

Proof. The credibility distribution of fuzzy variable ξ is the following function

Cr{ξ ≤ x} =


1
2 exp

(
− (x−µ)2

2σ2

)
, if 0 ≤ x ≤ µ

1− 1
2 exp

(
− (x−µ)2

2σ2

)
, if µ ≤ x ≤ 1.

If α ∈ (a/2, 0.5], then CVaRα(ξ) is the solution of the following equation

1

2
exp

(
− (x− µ)2

2σ2

)
− α = 0, 0 ≤ x ≤ µ.

Hence, we have CVaRα(ξ) = µ−
√
−2σ2 ln 2α.

On the other hand, if α ∈ (0.5, 1 − b/2], then CVaRα(ξ) is the solution of the
following equation

1− 1

2
exp

(
− (x− µ)2

2σ2

)
− α = 0, µ ≤ x ≤ 1.

Thus, we have CVaRα(ξ) = µ+
√
−2σ2 ln 2(1− α). The proof of theorem is com-

plete. �
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Theorem 3.5. Let ξ be a gamma regular fuzzy variable with the following possibility
distribution

µξ(x) =
( x
λr

)r
exp

(
r − x

λ

)
, x ∈ [0, 1],

where r is a positive integer, 0 < λ ≤ 1/r, and denote c = (1/λr)r exp(r − 1/λ).

(i) If α ∈ (0, 0.5], then CVaRα(ξ) of ξ is the solution of the following
equation

1

2

( x
λr

)r
exp

(
r − x

λ

)
− α = 0, x ∈ [0, λr];

(ii) If α ∈ (0.5, 1−c/2], then CVaRα(ξ) of ξ is the solution of the following
equation

1− 1

2

( x
λr

)r
exp

(
r − x

λ

)
− α = 0, x ∈ [λr, 1].

Proof. We only prove assertion (i), and assertion (ii) can be proved similarly. Ac-
cording to the possibility distribution of ξ, we have

Cr{ξ ≤ x} =


1
2

(
x
λr

)r
exp

(
r − x

λ

)
, if 0 ≤ x ≤ λr

1− 1
2

(
x
λr

)r
exp

(
r − x

λ

)
, if λr ≤ x ≤ 1.

By the definition of CVaRα(ξ), we know that CVaRα(ξ) is the solution of the
following equation

1

2

( x
λr

)r
exp

(
r − x

λ

)
− α = 0, x ∈ [0, λr],

which completes the proof of assertion (i). �

4. A New CVaR Reduction Method

Let (Γ,A, P̃os) be a fuzzy possibility space, and ξ̃ a type-2 fuzzy variable with
secondary possibility distribution µ̃ξ̃(x). To reduce the uncertainty in µ̃ξ̃(x), we

employ the CVaR of P̃os{ξ̃ = x} as the representing value of µ̃ξ̃(x). The method is
referred to as the CVaR reduction. The reduced fuzzy variable obtained by CVaR
reduction method is denoted by ξ.

There are two kinds of parameters included in the possibility distributions of
CVaR reduced fuzzy variables. The first type parameters θl and θr represent the
degree of uncertainty that a type-2 fuzzy variable ξ̃ takes on its value x, while
the second type parameter α means the credibility level in the support of a type-2
fuzzy variable. From the geometrical viewpoint, the parameters θl and θr determine
the lower and upper boundaries of possibility distribution, while α determines the
location of possibility distribution between the lower boundary and upper boundary.
When parameter α varies in the interval (0, 1], the possibility distribution varies
between the lower and upper boundaries. As a consequence, our CVaR reduction
method is more flexible than other existing reduction methods by introducing the
parameter α in possibility distributions.

In the following, we discuss the CVaR reduction for common type-2 fuzzy vari-
ables.
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Theorem 4.1. Let ξ̃ = (r̃1, r̃2, r̃3; θl, θr) be a type-2 triangular fuzzy variable, and
θ = (θl, θr).

(i) If α ∈ (0, 0.5], then the reduced fuzzy variable ξ has the following para-
metric possibility distribution

µξ(x; θ, α) =


(1− θl + 2αθl)

x−r1
r2−r1 , if x ∈ [r1,

r1+r2
2 ]

(1+θl−2αθl)x−(1−2α)θlr2−r1
r2−r1 , if x ∈ [ r1+r2

2 , r2]
−(1+θl−2αθl)x+(1−2α)θlr2+r3

r3−r2 , if x ∈ [r2,
r2+r3

2 ]

(1− θl + 2αθl)
r3−x
r3−r2 , if x ∈ [ r2+r3

2 , r3].

(ii) If α ∈ (0.5, 1], then the reduced fuzzy variable ξ has the following para-
metric possibility distribution

µξ(x; θ, α) =


(1− θr + 2αθr)

x−r1
r2−r1 , if x ∈ [r1,

r1+r2
2 ]

(1+θr−2αθr)x−(1−2α)θrr2−r1
r2−r1 , if x ∈ [ r1+r2

2 , r2]
−(1+θr−2αθr)x+(1−2α)θrr2+r3

r3−r2 , if x ∈ [r2,
r2+r3

2 ]

(1− θr + 2αθr)
r3−x
r3−r2 , if x ∈ [ r2+r3

2 , r3].

Proof. We only prove the second assertion, and the first can be proved similarly.
Note that the secondary possibility distribution µ̃ξ̃(x) of ξ̃ is the following triangular
regular fuzzy variable(

x− r1
r2 − r1

− θlmin

{
x− r1
r2 − r1

,
r2 − x

r2 − r1

}
,
x− r1
r2 − r1

,
x− r1
r2 − r1

+ θrmin

{
x− r1
r2 − r1

,
r2 − x

r2 − r1

})
for any x ∈ [r1, r2], and(
r3 − x

r3 − r2
− θlmin

{
r3 − x

r3 − r2
,
x− r2
r3 − r2

}
,
r3 − x

r3 − r2
,
r3 − x

r3 − r2
+ θrmin

{
r3 − x

r3 − r2
,
x− r2
r3 − r2

})
for any x ∈ [r2, r3]. Since ξ is the CVaR reduced fuzzy variable of ξ̃, we have

µξ(x; θ, α) = Pos{ξ = x}

=


x−r1
r2−r1 − (1− 2α)θl min

{
x−r1
r2−r1 ,

r2−x
r2−r1

}
, if x ∈ [r1, r2]

r3−x
r3−r2 − (1− 2α)θl min

{
r3−x
r3−r2 ,

x−r2
r3−r2

}
, if x ∈ [r2, r3]

=


(1− θl + 2αθl)

x−r1
r2−r1 , if x ∈ [r1,

r1+r2
2 ]

(1+θl−2αθl)x−(1−2α)θlr2−r1
r2−r1 , if x ∈ [ r1+r2

2 , r2]
−(1+θl−2αθl)x+(1−2α)θlr2+r3

r3−r2 , if x ∈ [r2,
r2+r3

2 ]

(1− θl + 2αθl)
r3−x
r3−r2 , if x ∈ [ r2+r3

2 , r3],

which completes the proof of assertion (ii). �

The following corollary shows that the E∗, E∗ and E reduction methods are the
special cases of the CVaR reduction method for type-2 triangular fuzzy variable.

Corollary 4.2. Let ξ̃ be a type-2 triangular fuzzy variable and ξ1, ξ2 and ξ3 be the
reduced fuzzy variables obtained by E∗, E∗ and E reduction methods respectively.

(i) For E∗ reduction method, µξ(x; θ, 3
4 ) = µξ1(x; θ);
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(ii) For E∗ reduction method, µξ(x; θ, 1
4 ) = µξ2(x; θ);

(iii) For E reduction method, if θl ≤ θr, then µξ
(
x; θ, 5θr−θl

8θr

)
= µξ3(x; θ);

(iv) For E reduction method, if θl ≥ θr, then µξ
(
x; θ, 3θl+θr

8θl

)
= µξ3(x; θ).

Example 4.3. Let ξ̃ = (2̃, 3̃, 4̃; 0.5, 1) be a type-2 triangular fuzzy variable. Sup-

pose ξ is the CVaR reduced fuzzy variable of ξ̃. By the CVaR reduction method,
if α ∈ (0, 0.5], the reduced fuzzy variable ξ of ξ̃ has the following possibility distri-
bution

µξ(x; θ, α) =


(0.5 + α)x− 2α− 1, if x ∈ [2, 5

2 ]
(1.5− α)x+ 3α− 3.5, if x ∈ [ 5

2 , 3]
−(1.5− α)x− 3α+ 5.5, if x ∈ [3, 7

2 ]
−(0.5 + α)x+ 4α+ 2, if x ∈ [ 7

2 , 4],

and if α ∈ (0.5, 1], the reduced fuzzy variable ξ of ξ̃ has the following possibility
distribution

µξ(x; θ, α) =


2αx− 4α, if x ∈ [2, 5

2 ]
(2− 2α)x+ 6α− 5, if x ∈ [ 5

2 , 3]
−(2− 2α)x− 6α+ 7, if x ∈ [3, 7

2 ]
−2αx+ 8α, if x ∈ [ 7

2 , 4].

Theorem 4.4. Let ξ̃ = (r̃1, r̃2, r̃3, r̃4; θl, θr) be a type-2 trapezoidal fuzzy variable,
and θ = (θl, θr).

(i) If α ∈ (0, 0.5], then the reduced fuzzy variable ξ has the following para-
metric possibility distribution

µξ(x; θ, α) =



(1− θl + 2αθl)
x−r1
r2−r1 , if x ∈ [r1,

r1+r2
2 ]

(1+θl−2αθl)x−(1−2α)θlr2−r1
r2−r1 , if x ∈ [ r1+r2

2 , r2]

1, if x ∈ [r2, r3]
−(1+θl−2αθl)x+(1−2α)θlr3+r4

r4−r3 , if x ∈ [r3,
r3+r4

2 ]

(1− θl + 2αθl)
r4−x
r4−r3 , if x ∈ [ r3+r4

2 , r4].

(ii) If α ∈ (0.5, 1], then the reduced fuzzy variable ξ has the following para-
metric possibility distribution

µξ(x; θ, α) =



(1− θr + 2αθr)
x−r1
r2−r1 , if x ∈ [r1,

r1+r2
2 ]

(1+θr−2αθr)x−(1−2α)θrr2−r1
r2−r1 , if x ∈ [ r1+r2

2 , r2]

1, if x ∈ [r2, r3]
−(1+θr−2αθr)x+(1−2α)θrr3+r4

r4−r3 , if x ∈ [r3,
r3+r4

2 ]

(1− θr + 2αθr)
r4−x
r4−r3 , if x ∈ [ r3+r4

2 , r4].

Proof. We only prove assertion (i), and the rest can be proved similarly. Note that

the secondary possibility distribution µ̃ξ̃(x) of ξ̃ is the following triangular regular
fuzzy variable(

x− r1
r2 − r1

− θlmin

{
x− r1
r2 − r1

,
r2 − x

r2 − r1

}
,
x− r1
r2 − r1

,
x− r1
r2 − r1

+ θrmin

{
x− r1
r2 − r1

,
r2 − x

r2 − r1

})
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for any x ∈ [r1, r2], the regular fuzzy variable 1̃ for any x ∈ [r2, r3], and(
r4 − x

r4 − r3
− θlmin

{
r4 − x

r4 − r3
,
x− r3
r4 − r3

}
,
r4 − x

r4 − r3
,
r4 − x

r4 − r3
+ θrmin

{
r4 − x

r4 − r3
,
x− r3
r4 − r3

})
for any x ∈ [r3, r4]. Since ξ is the CVaR reduced fuzzy variable of ξ̃, we have

µξ(x; θ, α) = Pos{ξ = x}

=


x−r1
r2−r1 − (1− 2α)θl min

{
x−r1
r2−r1 ,

r2−x
r2−r1

}
, if x ∈ [r1, r2]

1, if x ∈ [r2, r3]
r4−x
r4−r3 − (1− 2α)θl min

{
r4−x
r4−r3 ,

x−r3
r4−r3

}
, if x ∈ [r3, r4]

=



(1− θl + 2αθl)
x−r1
r2−r1 , if x ∈ [r1,

r1+r2
2 ]

(1+θl−2αθl)x−(1−2α)θlr2−r1
r2−r1 , if x ∈ [ r1+r2

2 , r2]

1, if x ∈ [r2, r3]
−(1+θl−2αθl)x+(1−2α)θlr3+r4

r4−r3 , if x ∈ [r3,
r3+r4

2 ]

(1− θl + 2αθl)
r4−x
r4−r3 , if x ∈ [ r3+r4

2 , r4],

which completes the proof of assertion (i). �

Example 4.5. Let ξ̃ = (1̃, 2̃, 3̃, 5̃; 0.6, 0.8) be a type-2 trapezoidal fuzzy variable.

Suppose ξ is the CVaR reduced fuzzy variable of ξ̃. By the CVaR reduction
method, if α ∈ (0, 0.5], the reduced fuzzy variable ξ of ξ̃ has the following possibility
distribution

µξ(x; θ, α) =


(0.4 + 1.2α)x− 1.2α− 0.4, if x ∈ [1, 3

2 ]
(1.6− 1.2α)x+ 2.4α− 2.2, if x ∈ [ 3

2 , 2]
1, if x ∈ [2, 3]
−(0.8− 0.6α)x− 1.8α+ 3.4, if x ∈ [3, 4]
−(0.2 + 0.6α)x+ 3α+ 1, if x ∈ [4, 5],

and if α ∈ (0.5, 1], the reduced fuzzy variable ξ of ξ̃ has the following possibility
distribution

µξ(x; θ, α) =


(0.2 + 1.6α)x− 1.6α− 0.2, if x ∈ [1, 3

2 ]
(1.8− 1.6α)x+ 3.2α− 2.6, if x ∈ [ 3

2 , 2]
1, if x ∈ [2, 3]
−(0.9− 0.8α)x− 2.4α+ 3.7, if x ∈ [3, 4]
−(0.1 + 0.8α)x+ 4α+ 0.5, if x ∈ [4, 5].

Theorem 4.6. Let ξ̃ = ñ(µ, σ2; θl, θr) be a type-2 normal fuzzy variable, and θ =
(θl, θr).

(i) If α ∈ (0, 0.5], then the reduced fuzzy variable ξ has the following para-
metric possibility distribution

µξ(x; θ, α) =


(1− θl + 2αθl) exp

(
− (x−µ)2

2σ2

)
,

if x ≤ µ− σ
√

2 ln 2 or x ≥ µ+ σ
√

2 ln 2

(1 + θl − 2αθl) exp(− (x−µ)2

2σ2 )− (1− 2α)θl,

if µ− σ
√

2 ln 2 ≤ x ≤ µ+ σ
√

2 ln 2.
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(ii) If α ∈ (0.5, 1], then the reduced fuzzy variable ξ has the following para-
metric possibility distribution

µξ(x; θ, α) =


(1− θr + 2αθr) exp

(
− (x−µ)2

2σ2

)
,

if x ≤ µ− σ
√

2 ln 2 or x ≥ µ+ σ
√

2 ln 2

(1 + θr − 2αθr) exp(− (x−µ)2

2σ2 )− (1− 2α)θr,

if µ− σ
√

2 ln 2 ≤ x ≤ µ+ σ
√

2 ln 2.

Proof. We only prove assertion (i), and the rest can be proved similarly. Note that

the secondary possibility distribution µ̃ξ̃(x) of ξ̃ is the following triangular regular
fuzzy variable(

exp
(
− (x− µ)2

2σ2

)
− θl min

{
1− exp

(
− (x− µ)2

2σ2

)
, exp

(
− (x− µ)2

2σ2

)}
,

exp
(
− (x− µ)2

2σ2

)
,

exp
(
− (x− µ)2

2σ2

)
+ θr min

{
1− exp

(
− (x− µ)2

2σ2

)
, exp

(
− (x− µ)2

2σ2

)})
.

Since ξ is the CVaR reduced fuzzy variable of ξ̃, we have

µξ(x; θ, α) = Pos{ξ = x}

= exp
(
− (x− µ)2

2σ2

)
− (1− 2α)θl ×min

{
1− exp(− (x− µ)2

2σ2
), exp(− (x− µ)2

2σ2
)

}

=


(1− θl + 2αθl) exp

(
− (x−µ)2

2σ2

)
,

if x ≤ µ− σ
√

2 ln 2 or x ≥ µ+ σ
√

2 ln 2

(1 + θl − 2αθl) exp
(
− (x−µ)2

2σ2

)
− (1− 2α)θl,

if µ− σ
√

2 ln 2 ≤ x ≤ µ+ σ
√

2 ln 2,

which completes the proof of assertion (i). �

The following corollary shows that the E∗, E∗ and E reduction methods are the
special cases of the CVaR reduction method for type-2 normal fuzzy variable.

Corollary 4.7. Let ξ̃ be a type-2 normal fuzzy variable and η1, η2 and η3 be the
reduced fuzzy variables obtained by E∗, E∗ and E reduction methods respectively.

(i) For E∗ reduction method, µξ(x; θ, 3
4 ) = µη1(x; θ);

(ii) For E∗ reduction method, µξ(x; θ, 1
4 ) = µη2(x; θ);

(iii) For E reduction method, if θl ≤ θr, then µξ(x; θ, 5θr−θl
8θr

) = µη3(x; θ);

(iv) For E reduction method, if θl ≥ θr, then µξ(x; θ, 3θl+θr
8θl

) = µη3(x; θ).

Example 4.8. Let ξ̃ = ñ(2, 0.5; 0.3, 0.7) be a type-2 normal fuzzy variable. Suppose

ξ is the CVaR reduced fuzzy variable of ξ̃. By the CVaR reduction method, if
α ∈ (0, 0.5], then the reduced fuzzy variable ξ of ξ̃ has the following possibility
distribution

µξ(x; θ, α) =
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{ (0.7 + 0.6α) exp(−(x− 2)2), if x ≤ 2−
√

ln 2 or x ≥ 2 +
√

ln 2

(1.3− 0.6α) exp(−(x− 2)2)− 0.3(1− 2α), if 2−
√

ln 2 ≤ x ≤ 2 +
√

ln 2,

and if α ∈ (0.5, 1], then the reduced fuzzy variable ξ of ξ̃ has the following possibility
distribution

µξ(x; θ, α) ={ (0.3 + 1.4α) exp(−(x− 2)2), if x ≤ 2−
√

ln 2 or x ≥ 2 +
√

ln 2

(1.7− 1.4α) exp(−(x− 2)2) + 0.7(2α− 1), if 2−
√

ln 2 ≤ x ≤ 2 +
√

ln 2.

Theorem 4.9. Let ξ̃ = γ̃(λ, r; θl, θr) be a type-2 gamma fuzzy variable, and θ =
(θl, θr).

(i) If α ∈ (0, 0.5], then the reduced fuzzy variable ξ has the following para-
metric possibility distribution

µξ(x; θ, α) ={
(1− θl + 2αθl)

(
x
λr

)r
exp

(
r − x

λ

)
, if

(
x
λr

)r
exp

(
r − x

λ

)
≤ 1

2

(1 + θl − 2αθl)
(
x
λr

)r
exp

(
r − x

λ

)
− (1− 2α)θl, if

(
x
λr

)r
exp

(
r − x

λ

)
> 1

2 .

(ii) If α ∈ (0.5, 1], then the reduced fuzzy variable ξ has the following para-
metric possibility distribution

µξ(x; θ, α) ={
(1− θr + 2αθr)

(
x
λr

)r
exp

(
r − x

λ

)
, if

(
x
λr

)r
exp

(
r − x

λ

)
≤ 1

2

(1 + θr − 2αθr)
(
x
λr

)r
exp

(
r − x

λ

)
− (1− 2α)θr, if

(
x
λr

)r
exp

(
r − x

λ

)
> 1

2 .

Proof. We only prove assertion (i), and the rest can be proved similarly. Note that

the secondary possibility distribution µ̃ξ̃(x) of ξ̃ is the following triangular regular
fuzzy variable(( x

λr

)r
exp

(
r − x

λ

)
− θl min{1−

( x
λr

)r
exp

(
r − x

λ

)
, (
x

λr
)r exp(r − x

λ
)},

(
x

λr
)r exp(r − x

λ
),

(
x

λr
)r exp(r − x

λ
) + θr min

{
1−

( x
λr

)r
exp

(
r − x

λ

)
,
( x
λr

)r
exp

(
r − x

λ

)})
.

Since ξ is the CVaR reduced fuzzy variable of ξ̃, we have

µξ(x; θ, α) = Pos{ξ = x} =
( x
λr

)r
exp

(
r − x

λ

)
−(1− 2α)θl ×min

{
1−

( x
λr

)r
exp

(
r − x

λ

)
,
( x
λr

)r
exp

(
r − x

λ

)}
=

{
(1− θl + 2αθl)

(
x
λr

)r
exp

(
r − x

λ

)
, if

(
x
λr

)r
exp

(
r − x

λ

)
≤ 1

2

(1 + θl − 2αθl)
(
x
λr

)r
exp

(
r − x

λ

)
− (1− 2α)θl, if

(
x
λr

)r
exp

(
r − x

λ

)
> 1

2 ,

which completes the proof of assertion (i). �

The following corollary illustrates that the E∗, E∗ and E reduction methods are
the special cases of the CVaR reduction method for type-2 gamma fuzzy variable.



58 X. J. Bai and Y. K. Liu

Corollary 4.10. Let ξ̃ be a type-2 gamma fuzzy variable and ζ1, ζ2 and ζ3 be the
reduced fuzzy variables obtained by E∗, E∗ and E reduction methods respectively.

(i) For E∗ reduction method, µξ(x; θ, 3
4 ) = µζ1(x; θ);

(ii) For E∗ reduction method, µξ(x; θ, 1
4 ) = µζ2(x; θ);

(iii) For E reduction method, if θl ≤ θr, then µξ
(
x; θ, 5θr−θl

8θr

)
= µζ3(x; θ);

(iv) For E reduction method, if θl ≥ θr, then µξ
(
x; θ, 3θl+θr

8θl

)
= µζ3(x; θ).

Example 4.11. Let ξ̃ = γ̃(5, 2; 0.5, 0.8) be a type-2 gamma fuzzy variable. Suppose

ξ is the CVaR reduced fuzzy variable of ξ̃. By the CVaR reduction method, if
α ∈ (0, 0.5], then the reduced fuzzy variable ξ of ξ̃ has the following possibility
distribution

µξ(x; θ, α) ={
1

200 (1 + 2α)x2 exp
(
2− x

5

)
, if

(
x
10

)2
exp

(
2− x

5

)
≤ 1

2
1

200 (3− 2α)x2 exp
(
2− x

5

)
− 1

2 (1− 2α), if
(
x
10

)2
exp

(
2− x

5

)
> 1

2 ,

and if α ∈ (0.5, 1], then the reduced fuzzy variable ξ of ξ̃ has the following possibility
distribution

µξ(x; θ, α) ={
1

500 (1 + 8α)x2 exp
(
2− x

5

)
, if

(
x
10

)2
exp

(
2− x

5

)
≤ 1

2
1

500 (9− 8α)x2 exp
(
2− x

5

)
+ 4

5 (2α− 1), if
(
x
10

)2
exp

(
2− x

5

)
> 1

2 .

5. The Mean Values of CVaR Reduced Fuzzy Variables

For common CVaR reduced fuzzy variables, this section will derive the analytical
expressions of mean values.

Theorem 5.1. Let ξ̃ = (r̃1, r̃2, r̃3; θl, θr) be a type-2 triangular fuzzy variable. Then
the mean value of the CVaR reduced fuzzy variable ξ is

E[ξ] =

{
r1+2r2+r3

4 − r1−2r2+r3
8 (1− 2α)θl, if α ∈ (0, 0.5]

r1+2r2+r3
4 − r1−2r2+r3

8 (1− 2α)θr, if α ∈ (0.5, 1].

Proof. We only prove the assertion in the case α ∈ (0, 0.5]. Since ξ is the CVaR

reduced fuzzy variable of ξ̃, its parametric possibility distribution µξ(x; θ, α) is given
in Theorem 4.1. Thus

E[ξ] =
1

2

∫ 1

0

(ξinf(β) + ξsup(β)) dβ.

Note that µξ((r1 + r2)/2) = µξ((r2 + r3)/2) = (1− θl + 2αθl)/2. If β ∈ (0, (1−
θl + 2αθl)/2], then ξinf(β) and ξsup(β) are the solutions of the following equations
respectively,

(1− θl + 2αθl)
x− r1

r2 − r1
= β
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and

(1− θl + 2αθl)
r3 − x
r3 − r2

= β.

As a consequence, we have the following solutions

ξinf(β) =
(r2 − r1)β + r1(1− θl + 2αθl)

1− θl + 2αθl

and

ξsup(β) =
−(r3 − r2)β + r3(1− θl + 2αθl)

1− θl + 2αθl
.

Therefore, when β ∈ (0, (1− θl + αθl)/2], we have

ξinf(β) + ξsup(β) =
(2r2 − r1 − r3)β + (1− θl + 2αθl)(r1 + r3)

1− θl + 2αθl
.

On the other hand, when β ∈ ((1 − θl + αθl)/2, 1], it is similar to prove the
following result

ξinf(β) + ξsup(β) =
(2r2 − r1 − r3)β + 2(1− 2α)θlr2 + (r1 + r3)

1 + θl − 2αθl
.

Hence, the mean value of ξ is computed by

E[ξ] =
1

2

(∫ 1−θl+2αθl
2

0

(ξinf(β) + ξsup(β)) dβ +

∫ 1

1−θl+2αθl
2

(ξinf(β) + ξsup(β)) dβ
)

=
r1 + 2r2 + r3

4
− r1 − 2r2 + r3

8
(1− 2α)θl.

The proof of theorem is complete. �

Example 5.2. Let ξ̃ be the type-2 triangular fuzzy variable defined in Example
4.3. Suppose ξ is the CVaR reduced fuzzy variable of ξ̃. According to Theorem
5.1, the mean value of ξ is E[ξ] = 3.

Theorem 5.3. Let ξ̃ = (r̃1, r̃2, r̃3, r̃4; θl, θr) be a type-2 trapezoidal fuzzy variable.
Then the mean value of the CVaR reduced fuzzy variable ξ is

E[ξ] =

{
r1+r2+r3+r4

4 − r1−r2−r3+r4
8 (1− 2α)θl, if α ∈ (0, 0.5]

r1+r2+r3+r4
4 − r1−r2−r3+r4

8 (1− 2α)θr, if α ∈ (0.5, 1].

Proof. We only prove the assertion in the case α ∈ (0, 0.5]. Since ξ is the CVaR

reduced fuzzy variable of ξ̃, its parametric possibility distribution µξ(x; θ, α) is given
in Theorem 4.4.

Note that µξ((r1 + r2)/2) = µξ((r3 + r4)/2) = (1− θl + 2αθl)/2. If β ∈ (0, (1−
θl + 2αθl)/2], then ξinf(β) and ξsup(β) are the solutions of the following equations
respectively,

(1− θl + 2αθl)
x− r1

r2 − r1
= β

and

(1− θl + 2αθl)
r4 − x
r4 − r3

= β.
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As a consequence, we have the following solutions

ξinf(β) =
(r2 − r1)β + r1(1− θl + 2αθl)

1− θl + 2αθl

and

ξsup(β) =
−(r4 − r3)β + r4(1− θl + 2αθl)

1− θl + 2αθl
.

Therefore, when β ∈ (0, (1− θl + αθl)/2], we have

ξinf(β) + ξsup(β) =
(r2 + r3 − r1 − r4)β + (1− θl + 2αθl)(r1 + r4)

1− θl + 2αθl
.

On the other hand, when β ∈ ((1 − θl + αθl)/2, 1], we have the following com-
putational result

ξinf(β) + ξsup(β) =
(r2 + r3 − r1 − r4)β + (1− 2α)(r2 + r3)θl + (r1 + r4)

1 + θl − 2αθl
.

Hence, the mean value of ξ is computed by

E[ξ] =
1

2

(∫ 1−θl+2αθl
2

0

(ξinf(β) + ξsup(β)) dβ +

∫ 1

1−θl+2αθl
2

(ξinf(β) + ξsup(β)) dβ
)

=
r1 + r2 + r3 + r4

4
− r1 − r2 − r3 + r4

8
(1− 2α)θl.

The proof of theorem is complete. �

Example 5.4. Let ξ̃ be the type-2 trapezoidal fuzzy variable defined in Example
4.5. Suppose ξ is the CVaR reduced fuzzy variable of ξ̃. According to Theorem
5.3, the mean value of ξ is computed by

E[ξ] =
{

2.675 + 0.15α, if α ∈ (0, 0.5]
2.65 + 0.2α, if α ∈ (0.5, 1].

Theorem 5.5. Let ξ̃ = ñ(µ, σ2; θl, θr) be a type-2 normal fuzzy variable. Then the
mean value of the CVaR reduced fuzzy variable ξ is equal to µ.

Proof. Since ξ is the CVaR reduced fuzzy variable of ξ̃, its parametric possibility
distribution µξ(x; θ, α) is given in Theorem 4.6.

Note that µξ

(
µ− σ

√
2 ln 2

)
= µξ

(
µ+ σ

√
2 ln 2

)
= (1 − θl + 2αθl)/2. If β ∈

(0, (1 − θl + 2αθl)/2], then ξinf(β) and ξsup(β) are the solutions of the following
equation,

(1− θl + 2αθl) exp

(
− (x− µ)2

2σ2

)
= β.

As a consequence, we have the following solutions

ξinf(β) = µ−
√
−2σ2 ln

β

1− θl + 2αθl

and

ξsup(β) = µ+

√
−2σ2 ln

β

1− θl + 2αθl
.
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Therefore, when β ∈ (0, (1− θl + 2αθl)/2], we have ξinf(β) + ξsup(β) = 2µ.
On the other hand, when β ∈ ((1− θl + 2αθl)/2, 1], we have the result ξinf(β) +

ξsup(β) = 2µ.
Hence, the mean value of ξ is computed by

E[ξ] =
1

2

(∫ 1−θl+2αθl
2

0

(ξinf(β) + ξsup(β)) dβ +

∫ 1

1−θl+2αθl
2

(ξinf(β) + ξsup(β)) dβ
)

=µ.

The proof of theorem is complete. �

Example 5.6. Let ξ̃ be the type-2 normal fuzzy variable defined in Example 4.8.
Suppose ξ is the CVaR reduced fuzzy variable of ξ̃. According to Theorem 5.5, the
mean value of ξ is E[ξ] = 2.

Theorem 5.7. Let ξ̃ = γ̃(λ, r; θl, θr) be a type-2 gamma fuzzy variable. Suppose
that x1, x2 ∈ <+ satisfy(x1

λr

)r
exp

(
r − x1

λ

)
=

1

2
,
(x2

λr

)r
exp

(
r − x2

λ

)
=

1

2
.

(i) If α ∈ (0, 0.5], then the mean value of the CVaR reduced fuzzy variable
ξ has the following parametric possibility distribution

E[ξ] = λr − λr!

2rr
exp(r) + λ

r∑
n=0

r!

rn(r − n)!

− (1− 2α)θl
2

{
x1 + x2 − 2λr − λr!

rr
exp(r) + λ

r∑
n=0

r!

(r − n)!

(
λn

xn1
+
λn

xn2
− 2

rn

)}
.

(ii) If α ∈ (0.5, 1], then the mean value of the CVaR reduced fuzzy variable
ξ has the following parametric possibility distribution

E[ξ] = λr − λr!

2rr
exp(r) + λ

r∑
n=0

r!

rn(r − n)!

− (1− 2α)θr
2

{
x1 + x2 − 2λr − λr!

rr
exp(r) + λ

r∑
n=0

r!

(r − n)!

(
λn

xn1
+
λn

xn2
− 2

rn

)}
.

Proof. We only prove the first assertion. Since ξ is the CVaR reduced fuzzy variable
of ξ̃, its parametric possibility distribution µξ(x; θ, α) is given in Theorem 4.9. As
a consequence, the credibility distribution of ξ is

Cr{ξ ≥ x} =
1− 1

2 (1− θl + 2αθl)
(
x
λr

)r
exp

(
r − x

λ

)
, if 0 ≤ x ≤ x1

1− 1
2 [(1 + θl − 2αθl)

(
x
λr

)r
exp

(
r − x

λ

)
− (1− 2α)θl], if x1 ≤ x ≤ λr

1
2 [(1 + θl − 2αθl)

(
x
λr

)r
exp

(
r − x

λ

)
− (1− 2α)θl], if λr ≤ x ≤ x2

1
2 (1− θl + 2αθl)

(
x
λr

)r
exp

(
r − x

λ

)
, if x ≥ x2,
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where x1, x2 ∈ <+ satisfy(x1

λr

)r
exp

(
r − x1

λ

)
=

1

2
,
(x2

λr

)r
exp

(
r − x2

λ

)
=

1

2
.

Therefore, the mean value of ξ is computed as follows

E[ξ] =

∫ x1

0

Cr{ξ ≥ x}dx+

∫ λr

x1

Cr{ξ ≥ x}dx

+

∫ x2

λr

Cr{ξ ≥ x}dx+

∫ +∞

x2

Cr{ξ ≥ x}dx = λr − λr!

2rr
exp(r) + λ

r∑
n=0

r!

rn(r − n)!

− (1− 2α)θl
2

{
x1 + x2 − 2λr − λr!

rr
exp(r) + λ

r∑
n=0

r!

(r − n)!

(
λn

xn1
+
λn

xn2
− 2

rn

)}
.

The proof of assertion (i) is complete. �

Example 5.8. Let ξ̃ be the type-2 gamma fuzzy variable defined in Example 4.11.
Suppose ξ is the CVaR reduced fuzzy variable of ξ̃. According to Theorem 5.7, the
mean value of ξ is computed by

E[ξ] =
{ 12.1408 + 2.2458α, if α ∈ (0, 0.5]

11.4671 + 3.5933α, if α ∈ (0.5, 1].

6. The Second Order Moments of CVaR Reduced Fuzzy Variables

Let ξ be a reduced fuzzy variable with a parametric possibility distribution.
To measure the variation of the parametric possibility distribution about its mean
value, we adopt the following nth moment of ξ,

Mn[ξ] =

∫
(−∞,+∞)

(x− E[ξ])nd(Cr{ξ ≤ x}),

where the credibility distribution is defined by the parametric possibility distribu-
tion of ξ,

Cr{ξ ≤ x} =
1

2

(
sup
t∈<

µξ(t; θ, α) + sup
t≤x

µξ(t; θ, α)− sup
t>x

µξ(t; θ, α)
)
.

When n = 2, M2[ξ] is called the second order moment of ξ. In the following, we
will establish the analytical expressions of second order moments for common re-
duced fuzzy variables. Firstly, we have the following results about type-2 triangular
fuzzy variable.

Theorem 6.1. Let ξ̃ = (r̃1, r̃2, r̃3; θl, θr) be a type-2 triangular fuzzy variable, and
ξ its CVaR reduced fuzzy variable.

(i) If α ∈ (0, 0.5], then the second order moment of ξ is

M2[ξ] =
1

48
(5r2

1 + 4r2
2 + 5r2

3 − 4r1r2 − 6r1r3 − 4r2r3)− 1

16
(r1 − r3)2(1− 2α)θl

− 1

64
(r1 − 2r2 + r3)2(1− 2α)2θ2

l ,
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which is equivalent to the following parametric matrix form

M2[ξ] =
1

2
rTP 1r,

where r = (r1, r2, r3)T , and the elements of the symmetric matrix P 1 are

P 1
11 = P 1

33 =
−(1− 2α)2θ2

l

32
− (1− 2α)θl

8
+

5

24
,

P 1
12 = P 1

23 =
(1− 2α)2θ2

l

16
− 1

12
,

P 1
13 =

−(1− 2α)2θ2
l

32
+

(1− 2α)θl
8

− 1

8
,

P 1
22 =

−(1− 2α)2θ2
l

8
+

1

6
.

(ii) If α ∈ (0.5, 1], then the second order moment of ξ is

M2[ξ] =
1

48
(5r2

1 + 4r2
2 + 5r2

3 − 4r1r2 − 6r1r3 − 4r2r3)− 1

16
(r1 − r3)2(1− 2α)θr

− 1

64
(r1 − 2r2 + r3)2(1− 2α)2θ2

r ,

which is equivalent to the following parametric matrix form

M2[ξ] =
1

2
rTP 2r,

where r = (r1, r2, r3)T , and the elements of the symmetric matrix P 2 are

P 2
11 = P 2

33 =
−(1− 2α)2θ2

r

32
− (1− 2α)θr

8
+

5

24
,

P 2
12 = P 2

23 =
(1− 2α)2θ2

r

16
− 1

12
,

P 2
13 =

−(1− 2α)2θ2
r

32
+

(1− 2α)θr
8

− 1

8
,

P 2
22 =

−(1− 2α)2θ2
r

8
+

1

6
.

Moreover, the second order moment M2[ξ] is parametric quadratic convex function
with respect to vector r ∈ <3.

Proof. We only prove the first assertion. Since ξ is the CVaR reduced fuzzy variable

of ξ̃, its parametric possibility distribution µξ(x; θ, α) is given in Theorem 4.1. As
a consequence, the credibility distribution of ξ is computed by

Cr{ξ ≤ x} =



0, if x < r1
(1−θl+2αθl)(x−r1)

2(r2−r1) , if x ∈ [r1,
r1+r2

2 ]
(1+θl−2αθl)x−(1−2α)θlr2−r1

2(r2−r1) , if x ∈ [ r1+r2
2 , r2]

1− −(1+θl−2αθl)x+(1−2α)θlr2+r3
2(r3−r2) , if x ∈ [r2,

r2+r3
2 ]

1− (1−θl+2αθl)(r3−x)
2(r3−r2) , if x ∈ [ r2+r3

2 , r3]

1, if x > r3,
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and the mean value of ξ is

E[ξ] =
r1 + 2r2 + r3

4
− r1 − 2r2 + r3

8
(1− 2α)θl.

Therefore, the second order moment of ξ is calculated as follows

M2[ξ] =

∫
(−∞,+∞)

(x− E[ξ])2dCr{ξ ≤ x}

=
1− θl + 2αθl

2(r2 − r1)

∫ r1+r2
2

r1

(x− E[ξ])2dx+
1 + θl − 2αθl

2(r2 − r1)

∫ r2

r1+r2
2

(x− E[ξ])2dx

+
1 + θl − 2αθl

2(r3 − r2)

∫ r2+r3
2

r2

(x− E[ξ])2dx+
1− θl + 2αθl

2(r3 − r2)

∫ r3

r2+r3
2

(x− E[ξ])2dx

=
1

48
(5r2

1 + 4r2
2 + 5r2

3 − 4r1r2 − 6r1r3 − 4r2r3)− 1

64
(r1 − 2r2 + r3)2(1− 2α)2θ2

l

− 1

16
(r1 − r3)2(1− 2α)θl =

1

2
rTP 1r.

On the other hand, the integrand (x − E[ξ])2 and the credibility distribution
Cr{ξ ≤ x} are both nonnegative, so M2[ξ] ≥ 0 holds for any vector r ∈ <3. In
addition, P 1 is a 3× 3 symmetric parametric matrix. Therefore, M2[ξ] is a positive
semidefinite quadratic form. In other words, for any parameters θl, θr and α, the
second order moment M2[ξ] is a parametric quadratic convex function with respect
to vector r ∈ <3. The proof of the assertion is complete. �

Example 6.2. Let ξ̃ be the type-2 triangular fuzzy variable defined in Example
4.3. Suppose ξ is the CVaR reduced fuzzy variable of ξ̃. According to Theorem
6.1, the second order moment of ξ is computed by

M2[ξ] =
{

0.2083 + 0.25α, if α ∈ (0, 0.5]
0.0833 + 0.5α, if α ∈ (0.5, 1].

For the reduced fuzzy variable of a type-2 trapezoidal fuzzy variable, we obtain
the analytical expression of second order moment in the following theorem.

Theorem 6.3. Let ξ̃ = (r̃1, r̃2, r̃3, r̃4; θl, θr) be a type-2 trapezoidal fuzzy variable,
and ξ be its CVaR reduced fuzzy variable.

(i) If α ∈ (0, 0.5], then the second order moment of ξ is

M2[ξ] =

1

48
(5r2

1 + 5r2
2 + 5r2

3 + 5r2
4 + 2r1r2 − 6r1r3 − 6r1r4 − 6r2r3 − 6r2r4 + 2r3r4)−

(1− 2α)θl
16

(r2
1 − r2

2 − r2
3 + r2

4 − 2r1r4 + 2r2r3)− (1− 2α)2θ2
l

64
(r1 − r2 − r3 + r4)2,

which is equivalent to the following parametric matrix form

M2[ξ] =
1

2
rTQ1r,
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where r = (r1, r2, r3, r4)T , and the elements of the symmetric matrix Q1

are

Q1
11 = Q1

44 =
−(1− 2α)2θ2

l

32
− (1− 2α)θl

8
+

5

24
,

Q1
12 = Q1

34 =
(1− 2α)2θ2

l

32
+

1

24
,

Q1
13 = Q1

24 =
(1− 2α)2θ2

l

32
− 1

8
,

Q1
14 =

−(1− 2α)2θ2
l

32
+

(1− 2α)θl
8

− 1

8
,

Q1
22 = Q1

33 =
−(1− 2α)2θ2

l

32
+

(1− 2α)θl
8

+
5

24
,

Q1
23 =

−(1− 2α)2θ2
l

32
− (1− 2α)θl

8
− 1

8
.

(ii) If α ∈ (0.5, 1], then the second order moment of ξ is

M2[ξ] =

1

48
(5r2

1 + 5r2
2 + 5r2

3 + 5r2
4 + 2r1r2 − 6r1r3 − 6r1r4 − 6r2r3 − 6r2r4 + 2r3r4)−

(1− 2α)θr
16

(r2
1 − r2

2 − r2
3 + r2

4 − 2r1r4 + 2r2r3)− (1− 2α)2θ2
r

64
(r1 − r2 − r3 + r4)2,

which is equivalent to the following parametric matrix form

M2[ξ] =
1

2
rTQ2r,

where r = (r1, r2, r3, r4)T , and the elements of the symmetric matrix Q2

are

Q2
11 = Q2

44 =
−(1− 2α)2θ2

r

32
− (1− 2α)θr

8
+

5

24
,

Q2
12 = Q2

34 =
(1− 2α)2θ2

r

32
+

1

24
,

Q2
13 = Q2

24 =
(1− 2α)2θ2

r

32
− 1

8
,

Q2
14 =

−(1− 2α)2θ2
r

32
+

(1− 2α)θr
8

− 1

8
,

Q2
22 = Q2

33 =
−(1− 2α)2θ2

r

32
+

(1− 2α)θr
8

+
5

24
,

Q2
23 =

−(1− 2α)2θ2
r

32
− (1− 2α)θr

8
− 1

8
.

Moreover, the second order moment M2[ξ] is a parametric quadratic convex function
with respect to vector r ∈ <4.
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Proof. We only prove the first assertion. Since ξ is the CVaR reduced fuzzy variable

of ξ̃, its parametric possibility distribution µξ(x; θ, α) is given in Theorem 4.4. As
a consequence, the credibility distribution of ξ is calculated by

Cr{ξ ≤ x} =



0, if x < r1
(1−θl+2αθl)(x−r1)

2(r2−r1) , if x ∈ [r1,
r1+r2

2 ]
(1+θl−2αθl)x−(1−2α)θlr2−r1

2(r2−r1) , if x ∈ [ r1+r2
2 , r2]

1
2 , if x ∈ [r2, r3]

1− −(1+θl−2αθl)x+(1−2α)θlr3+r4
2(r4−r3) , if x ∈ [r3,

r3+r4
2 ]

1− (1−θl+2αθl)(r4−x)
2(r4−r3) , if x ∈ [ r3+r4

2 , r4]

1, if x > r4,

and the mean value of ξ is

E[ξ] =
r1 + r2 + r3 + r4

4
− r1 − r2 − r3 + r4

8
(1− 2α)θl.

Therefore, the second order moment of ξ is computed as follows

M2[ξ] =

∫
(−∞,+∞)

(x− E[ξ])2dCr{ξ ≤ x}

=
1− θl + 2αθl

2(r2 − r1)

∫ r1+r2
2

r1

(x− E[ξ])2dx+
1 + θl − 2αθl

2(r2 − r1)

∫ r2

r1+r2
2

(x− E[ξ])2dx

+
1 + θl − 2αθl

2(r4 − r3)

∫ r3+r4
2

r3

(x− E[ξ])2dx+
1− θl + 2αθl

2(r4 − r3)

∫ r4

r3+r4
2

(x− E[ξ])2dx

=
1

48
(5r2

1 + 5r2
2 + 5r2

3 + 5r2
4 + 2r1r2 − 6r1r3 − 6r1r4 − 6r2r3 − 6r2r4 + 2r3r4)

− 1

16
(r2

1 − r2
2 − r2

3 + r2
4 − 2r1r4 + 2r2r3)(1− 2α)θl

− 1

64
(r1 − r2 − r3 + r4)2(1− 2α)2θ2

l =
1

2
rTQ1r.

On the other hand, the integrand (x − E[ξ])2 and the credibility distribution
Cr{ξ ≤ x} are both nonnegative, so M2[ξ] ≥ 0 holds for any vector r ∈ <4. In
addition, Q1 is a 4× 4 symmetric parametric matrix. Therefore, M2[ξ] is a positive
semidefinite quadratic form. In other words, for any parameters θl, θr and α, the
second moment M2[ξ] is a parametric quadratic convex function with respect to
vector r ∈ <4. The proof of the assertion is complete. �

Example 6.4. Let ξ̃ be the type-2 trapezoidal fuzzy variable defined in Example
4.5. Suppose ξ is the CVaR reduced fuzzy variable of ξ̃. According to Theorem
6.3, the second order moment of ξ is computed by

M2[ξ] =
{ 0.5277 + 2.4974α− 0.0224α2, if α ∈ (0, 0.5]

0.1108 + 3.34α− 0.04α2, if α ∈ (0.5, 1].

For the reduced fuzzy variable of a type-2 normal fuzzy variable, the following
theorem obtains the analytical expression of second order moment.
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Theorem 6.5. Let ξ̃ = ñ(µ, σ2; θl, θr) be a type-2 normal fuzzy variable, and ξ be
its CVaR reduced fuzzy variable. Then the second order moment of ξ is

M2[ξ] =
{ 2σ2 − (1− 2α)θlσ

2 ln 2, if α ∈ (0, 0.5]
2σ2 − (1− 2α)θrσ

2 ln 2, if α ∈ (0.5, 1].

Moreover, the second order moment M2[ξ] is a parametric quadratic convex function
on < with respect to σ.

Proof. We only prove the first equation in the case α ∈ (0, 0.5]. Since ξ is the CVaR

reduced fuzzy variable of ξ̃, its parametric possibility distribution µξ(x; θ, α) is given
in Theorem 4.6. As a consequence, the credibility distribution of ξ is computed by

Cr{ξ ≤ x} =
1
2 (1− θl + 2αθl) exp

(
− (x−µ)2

2σ2

)
, if x ≤ µ− σ

√
2 ln 2

1
2 [(1 + θl − 2αθl) exp

(
− (x−µ)2

2σ2

)
− (1− 2α)θl], if µ− σ

√
2 ln 2 ≤ x ≤ µ

1− 1
2 [(1 + θl − 2αθl) exp

(
− (x−µ)2

2σ2

)
− (1− 2α)θl], if µ ≤ x ≤ µ+ σ

√
2 ln 2

1− 1
2 (1− θl + 2αθl) exp

(
− (x−µ)2

2σ2

)
, if x ≥ µ+ σ

√
2 ln 2,

and the mean value of ξ is E[ξ] = µ. Therefore, the second moment of ξ is calculated
by

M2[ξ] =

∫
(−∞,+∞)

(x− µ)2dCr{ξ ≤ x}

=

∫
(−∞, µ−σ

√
2 ln 2)

(x− µ)2dCr{ξ ≤ x}+

∫
(µ−σ

√
2 ln 2, µ)

(x− µ)2dCr{ξ ≤ x}

+

∫
(µ, µ+σ

√
2 ln 2)

(x− µ)2dCr{ξ ≤ x}+

∫
(µ+σ

√
2 ln 2,+∞)

(x− µ)2dCr{ξ ≤ x}

=2σ2 − 2(1− 2α)θlσ
2 ln 2.

Moreover, the coefficient 2σ2 − 2(1 − 2α)θlσ
2 ln 2 > 0 for any θl, α ∈ [0, 1], so

M2[ξ] ≥ 0 holds for any vector σ > 0. Thus, the second order moment M2[ξ] is a
parametric quadratic convex function on < with respect to σ for any θl and α. The
proof of the assertion is complete. �

Example 6.6. Let ξ̃ be the type-2 normal fuzzy variable defined in Example 4.8.
Suppose ξ is the CVaR reduced fuzzy variable of ξ̃. According to Theorem 6.5, the
second order moment of ξ is computed by

M2[ξ] =
{

1− 0.15(1− 2α) ln 2, if α ∈ (0, 0.5]
1− 0.35(1− 2α) ln 2, if α ∈ (0.5, 1].

For the reduced fuzzy variable of a type-2 gamma fuzzy variable, we obtain the
analytical formula of the second order moment in the next theorem.

Theorem 6.7. Let ξ̃ = γ̃(λ, r; θl, θr) be a type-2 gamma fuzzy variable, and ξ be
its CVaR reduced fuzzy variable. Suppose that x1, x2 ∈ <+ satisfy(x1

λr

)r
exp

(
r − x1

λ

)
=

1

2
,
(x2

λr

)r
exp

(
r − x2

λ

)
=

1

2
.
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(i) If α ∈ (0, 0.5], then the second order moment of ξ is

M2[ξ] = (λr − E[ξ])2 − λr!

rr
(λr + λ− E[ξ])er + 2λ2r

r+1∑
n=0

(r + 1)!

rn(r − n+ 1)!

−2λ

r∑
n=0

E[ξ]r!

rn(r − n)!
− (1− 2α)θl

2

{
x2

1 + x2
2 − 2λ2r2 − 2(x1 + x2 − 2λr)E[ξ]

−2λr!

rr
(
λr + λ− E[ξ]

)
exp(r) + 2λ2

r+1∑
n=0

(r + 1)!

(r − n+ 1)!
(
λn−1

xn−1
1

+
λn−1

xn−1
2

− 2

rn−1
)

−2λE[ξ]

r∑
n=0

r!

(r − n)!

(λn
xn1

+
λn

xn2
− 2

rn

)}
.

(ii) If α ∈ (0.5, 1], then the second order moment of ξ is

M2[ξ] = (λr − E[ξ])2 − λr!

rr
(λr + λ− E[ξ])er + 2λ2r

r+1∑
n=0

(r + 1)!

rn(r − n+ 1)!

−2λ

r∑
n=0

E[ξ]r!

rn(r − n)!
− (1− 2α)θr

2

{
x2

1 + x2
2 − 2λ2r2 − 2(x1 + x2 − 2λr)E[ξ]

−2λr!

rr
(
λr + λ− E[ξ]

)
exp(r) + 2λ2

r+1∑
n=0

(r + 1)!

(r − n+ 1)!
(
λn−1

xn−1
1

+
λn−1

xn−1
2

− 2

rn−1
)

−2λE[ξ]

r∑
n=0

r!

(r − n)!

(λn
xn1

+
λn

xn2
− 2

rn

)}
.

Proof. We only prove assertion (i). Since ξ is the CVaR reduced fuzzy variable of

ξ̃, its parametric possibility distribution µξ(x; θ, α) is given in Theorem 4.9. As a
consequence, the credibility distribution of ξ is calculated by

Cr{ξ ≤ x} =
1
2 (1− θl + 2αθl)

(
x
λr

)r
exp

(
r − x

λ

)
, if 0 ≤ x ≤ x1

1
2 [(1 + θl − 2αθl)

(
x
λr

)r
exp

(
r − x

λ

)
− (1− 2α)θl], if x1 ≤ x ≤ λr

1− 1
2 [(1 + θl − 2αθl)

(
x
λr

)r
exp

(
r − x

λ

)
− (1− 2α)θl], if λr ≤ x ≤ x2

1− 1
2 (1− θl + 2αθl)

(
x
λr

)r
exp

(
r − x

λ

)
, if x ≥ x2,

where x1, x2 ∈ <+ satisfy(x1

λr

)r
exp

(
r − x1

λ

)
=

1

2
,
(x2

λr

)r
exp

(
r − x2

λ

)
=

1

2
.

The mean value E[ξ] of ξ is calculated in Theorem 5.7. Therefore, the second
order moment of ξ is calculated by

M2[ξ] =

∫
(−∞,+∞)

(x− E[ξ])2dCr{ξ ≤ x}

=

∫
(0, x1)

(x− E[ξ])2dCr{ξ ≤ x}+
∫
(x1, λr)

(x− E[ξ])2dCr{ξ ≤ x}
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+

∫
(λr, x2)

(x− E[ξ])2dCr{ξ ≤ x}+
∫
(x2,+∞)

(x− E[ξ])2dCr{ξ ≤ x}

=(λr − E[ξ])2 −
λr!

rr

(
λr + λ− E[ξ]

)
exp(r) + 2λ2r

r+1∑
n=0

(r + 1)!

rn(r − n+ 1)!
− 2λ

r∑
n=0

E[ξ]r!

rn(r − n)!

−
(1− 2α)θl

2

{
x21 + x22 − 2(x1 + x2 − 2λr)E[ξ]−

2λr!

rr

(
λr + λ− E[ξ]

)
exp(r)− 2λ2r2

+2λ2
r+1∑
n=0

(r + 1)!

(r − n+ 1)!

(λn−1

xn−1
1

+
λn−1

xn−1
2

−
2

rn−1

)
− 2λE[ξ]

r∑
n=0

r!

(r − n)!

(λn
xn1

+
λn

xn2
−

2

rn

)}
.

The proof of assertion (i) is complete. �

Example 6.8. Let ξ̃ be the type-2 gamma fuzzy variable defined in Example 4.11.
Suppose ξ is the CVaR reduced fuzzy variable of ξ̃. According to Theorem 6.7, the
second order moment of ξ is computed by

M2[ξ] =
{

78.1836 + 90.1238α− 5.0435α2, if α ∈ (0, 0.5]
50.6926 + 149.0398α− 12.9112α2, if α ∈ (0.5, 1].

In this example, since the reduced fuzzy variable ξ has variable possibility distribu-
tion with respect to parameter α instead of fixed possibility distribution, its second
order moment also depends on the parameter α. According to above formula, we
can calculate the second order moment of ξ for any given α ∈ (0, 1]. For instance,
if α = 0.25, then the second order moment is M2[ξ] = 78.1836 + 90.1238 × 0.25 −
5.0435× 0.252=100.3993.

7. A Mean-moment Optimization Model

In this section, we present an application example about portfolio selection prob-
lem, which was first proposed by Markowitz [11] in stochastic environment. Differ-
ent from the existing method in the literature, we construct a new mean-moment
optimization model for fuzzy portfolio selection problems, in which the mean value
and second order moment discussed in the above sections are used as two important
optimization indexes.

Given a collection of potential investments indexed from 1 to n, let ξ̃i denote
the return in the next time period on investment i, i = 1, 2, . . . , n. In the current

development, we assume that ξ̃i is characterized by a type-2 fuzzy variable with
known secondary possibility distribution.

A portfolio is determined by specifying what fraction of one’s assets to put into
each investment. That is, a portfolio is a collection of nonnegative numbers xi,
i = 1, 2, . . . , n such that

∑n
i=1 xi = 1. As a consequence, the return one would

obtain using a given portfolio is determined by equation (1).

n∑
i=1

xiξ̃i = ξ̃ Tx (1)

where ξ̃ = (ξ̃1, ξ̃2, . . . , ξ̃n)T and x = (x1, x2, . . . , xn)T . Given a portfolio x, ξ̃ Tx is

also a type-2 fuzzy variable, and we denote its reduced fuzzy variable as r(ξ̃ Tx).
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One the basis of expectation criterion, the reward associated with such a portfolio
can be defined as the expected return determined by equation (2).

E

[
r

(
n∑
i=1

xiξ̃i

)]
= E

[
r(ξ̃ Tx)

]
(2)

If the investor only concerns the reward, then it is simple for him to put all his
assets in the investment with the highest expected return. However, it is known
that investments with high rewards usually result in a high level of risk. Therefore,

there is a need to define a risk measure for fuzzy return r(ξ̃ Tx). In this section, we
employ the second order moment to define the risk associated with the investment
by equation (3).

M2

[
r

(
n∑
i=1

xiξ̃i

)]
= M2

[
r(ξ̃ Tx)

]
(3)

which is a quadratic deviation from the mean value E[r(ξ̃ Tx)].
Using the notations above, we next build a new mean-moment optimization

model (4) for fuzzy portfolio selection problems.

min M2

[
r

(
n∑
i=1

xiξ̃i

)]
s.t. E

[
r

(
n∑
i=1

xiξ̃i

)]
≥ ψ

n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n
(4)

When ξ̃i = (ri,1, ri,2, ri,3, ri,4; θi,l, θi,r), i = 1, 2, . . . , n, are mutually independent
type-2 trapezoidal fuzzy returns. In the case of α ≤ 0.5, according to Theorem 6.3,

the second order moment of fuzzy return r(ξ̃ Tx) is computed by

M2

[
r(ξ̃ Tx)

]
=

1

2
xTH1x,

where x = (x1, x2, . . . , xn)T , H1 = RTQ1R, and the coefficient matrix defined by
equation (5) is the knowledge about security returns.

R =


r11 r21 · · · rn1

r12 r22 · · · rn2

r13 r23 · · · rn3

r14 r24 · · · rn4


(5)

In the case of α > 0.5, the second order moment of fuzzy return r(ξ̃ Tx) is calculated
by

M2

[
r(ξ̃ Tx)

]
=

1

2
xTH2x

where H2 = RTQ2R, and R is determined by equation (5).
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We next consider the equivalent parametric form of E[r(ξ̃ Tx)]. In the case of

α ≤ 0.5, according to Theorem 5.3, the mean value of fuzzy return r(ξ̃ Tx) is
computed by

E
[
r(ξ̃ Tx)

]
= CT1 x,

where x = (x1, x2, . . . , xn)T , C1 = (c1,1, c1,2, . . . , c1,n)T ,

c1,i =
ri,1 + ri,2 + ri,3 + ri,4

4
− ri,1 − ri,2 − ri,3 + ri,4

8
(1− 2α)θl,

and θl = max1≤i≤n θi,l. In the case of α > 0.5, the mean value of fuzzy return

r(ξ̃ Tx) is calculated by

E
[
r(ξ̃ Tx)

]
= CT2 x,

where C2 = (c2,1, c2,2, . . . , c2,n)T , and

c2,i =
ri,1 + ri,2 + ri,3 + ri,4

4
− ri,1 − ri,2 − ri,3 + ri,4

8
(1− 2α)θr,

and θr = min1≤i≤n θi,r.
As a consequence, in the case of α ≤ 0.5, model (4) is equivalent to the following

parametric programming model (6).

min 1
2x

TH1x
s.t. CT1 x ≥ ψ

n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n
(6)

In the case of α > 0.5, model (4) is equivalent to the following parametric program-
ming model (7).

min 1
2x

TH2x
s.t. CT2 x ≥ ψ

n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n
(7)

Example 7.1. Consider an investor intends to invest his fund in twenty-two se-

curities. Let xi be the investment proportion to security i, and ξ̃i’s mutually in-
dependent type-2 trapezoidal fuzzy returns for i = 1, 2, . . . , 22. The parametric

distributions of ξ̃i, i = 1, 2, . . . , 22 are represented as follows.

ξ̃1 = (0̃.9946, 0̃.9967, 1̃.0012, 1̃.0016; θ1,l, θ1,r),

ξ̃2 = (1̃.0011, 1̃.0020, 1̃.0061, 1̃.0092; θ2,l, θ2,r),

ξ̃3 = (0̃.9986, 1̃.0073, 1̃.0081, 1̃.0094; θ3,l, θ3,r),

ξ̃4 = (0̃.9983, 1̃.0096, 1̃.0122, 1̃.0263; θ4,l, θ4,r),

ξ̃5 = (1̃.0033, 1̃.0122, 1̃.0262, 1̃.0310; θ5,l, θ5,r),
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ξ̃6 = (1̃.0146, 1̃.0159, 1̃.0248, 1̃.0499; θ6,l, θ6,r),

ξ̃7 = (1̃.0209, 1̃.0225, 1̃.0416, 1̃.0553; θ7,l, θ7,r),

ξ̃8 = (1̃.0291, 1̃.0299, 1̃.0468, 1̃.0679; θ8,l, θ8,r),

ξ̃9 = (1̃.0259, 1̃.0468, 1̃.0618, 1̃.0709; θ9,l, θ9,r),

ξ̃10 = (1̃.0350, 1̃.0514, 1̃.0671, 1̃.0830; θ10,l, θ10,r),

ξ̃11 = (1̃.0388, 1̃.0469, 1̃.0702, 1̃.0851; θ11,l, θ11,r),

ξ̃12 = (1̃.0385, 1̃.0629, 1̃.0758, 1̃.0986; θ12,l, θ12,r),

ξ̃13 = (1̃.0414, 1̃.0569, 1̃.0770, 1̃.1024; θ13,l, θ13,r),

ξ̃14 = (1̃.0511, 1̃.0529, 1̃.0769, 1̃.1116; θ14,l, θ14,r),

ξ̃15 = (1̃.0422, 1̃.0766, 1̃.0877, 1̃.1168; θ15,l, θ15,r),

ξ̃16 = (1̃.0373, 1̃.0914, 1̃.0972, 1̃.1171; θ16,l, θ16,r),

ξ̃17 = (1̃.0460, 1̃.0932, 1̃.1048, 1̃.1269; θ17,l, θ17,r),

ξ̃18 = (1̃.0640, 1̃.0760, 1̃.1130, 1̃.1300; θ18,l, θ18,r),

ξ̃19 = (1̃.0615, 1̃.0785, 1̃.1155, 1̃.1275; θ19,l, θ19,r),

ξ̃20 = (1̃.0456, 1̃.0986, 1̃.1221, 1̃.1257; θ20,l, θ20,r),

ξ̃21 = (1̃.0549, 1̃.0896, 1̃.1279, 1̃.1293; θ21,l, θ21,r),

ξ̃22 = (1̃.0619, 1̃.0992, 1̃.1257, 1̃.1533; θ22,l, θ22,r).

This problem was considered in the literature, but the parameters θi,l and θi,r
included in the secondary distributions are the same for different fuzzy returns

ξ̃i, i = 1, 2, . . . , 22. In this section, we extend this problem by assuming that the
parameters θi,l and θi,r are different and take on their values in the interval [0, 1].
We build this portfolio selection problem as model (4). In this case, the portfo-
lio selection problem is equivalent to the following parametric quadratic convex
programming model (8).

min 1
2x

THjx
s.t. CTj x ≥ ψ

n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , 22
(8)

where Hj = RTQjR, j = 1, 2, the matrix R is defined by equation (5), and the
parametric matrix Qj about θl and θr is given in Theorem 6.3. We next solve the
convex programming model (8) by Lingo software.

In our numerical experiments, we set the parameters

(θ1,l, θ2,l, . . . , θ22,l) =
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(0.2058, 0.3134, 0.0975, 0.3469, 0.2649, 0.3706, 0.0854, 0.1419, 0.3157, 0.2595, 0.0357,

0.2340, 0.3577, 0.1922, 0.1712, 0.0318, 0.0462, 0.2235, 0.3171, 0.0344, 0.1816, 0.2952),

and

(θ1,r, θ2,r, . . . , θ22,r) =

(0.8147, 0.1275, 0.6324, 0.2785, 0.9575, 0.1576, 0.9572, 0.8003, 0.4218, 0.7922, 0.6557,

0.8491, 0.6787, 0.7431, 0.6555, 0.7060, 0.2769, 0.1971, 0.6948, 0.9502, 0.4387, 0.7655).

Thus, we have θl = max1≤i≤n θi,l = 0.3706, and θr = min1≤i≤n θi,r = 0.1275.
In the case of α = 0.1449, for various values of ψ, we report the obtained optimal

allocation proportions to 22 securities in Table 1.

ψ x1 x3 x10 x17 x22

0.9985 96.80463 3.195369 0 0 0
1.0129 0 87.16909 12.83091 0 0
1.0278 0 67.50335 19.51263 12.98403 0
1.0399 0 53.68988 19.45708 26.85304 0
1.0587 0 32.02779 19.87874 48.09347 0
1.0886 0 0 14.38793 85.61207 0
1.0958 0 0 0 86.60654 13.39346
1.1099 0 0 0 2.644669 97.35532

Table 1. The Proportions to the 22 Securities with α = 0.1449

In the case of α = 0.8232, for different values of ψ, we report the obtained
optimal allocation proportions to 22 securities in Table 2.

ψ x1 x2 x3 x10 x17 x18 x22

0.9985 100 0 0 0 0 0 0
1.0129 0 29.31099 62.39864 0 0 8.290371 0
1.0278 0 0 74.43365 2.700466 0 22.86589 0
1.0399 0 0 50.80296 27.71073 0 21.48632 0
1.0587 0 0 14.64149 65.20998 0 20.14853 0
1.0886 0 0 0 17.97689 18.20904 63.81407 0
1.0958 0 0 0 0 8.81141 89.11859 2.070005
1.1099 0 0 0 0 0 0.1775088 99.82249

Table 2. The Proportions to the 22 Securities with α = 0.8232

From Tables 1 and 2, we observe that model (4) can provide diversification
investments to securities. If we use a fixed value 0.1449 or 0.8232 of parameter
α and change the values of parameter ψ, then the invested securities are changed
accordingly. On the other hand, if we use a fixed value of ψ such as 1.0129 and
take the values of α from the set {0.1449, 0.8232}, then the invested securities are
changed from securities 3 and 10 to securities 2, 3 and 18. Even if the invested
securities are the same, the invested proportions to them are often different. As
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a consequence, the computational results demonstrate that the invested securities
and their invested proportions in our portfolio selection problem depend heavily on
the possibility distributions of fuzzy returns. By the definition of parameter α, it
determines the possibility distributions of fuzzy returns.

In summary, the computational results demonstrate that parametric possibility
distributions have some advantages over fixed possibility distributions when we
employ them to model fuzzy portfolio selection problems.

8. Conclusions and Future Research

In this paper, we presented a new reduction method for type-2 fuzzy variables,
and obtained the following major new results.

(i) We defined the CVaR for regular fuzzy variable, and established some
useful CVaR formulas for common regular fuzzy variables.
(ii) We proposed the CVaR reduction method for type-2 fuzzy variables.
For the reduced triangular, trapezoidal, normal and gamma fuzzy variables,
we derived their useful parametric possibility distributions.
(iii) According to the parametric possibility distributions of the reduced
triangular, trapezoidal, normal and gamma fuzzy variables, we established
some useful analytical formulas of mean values.
(iv) For reduced fuzzy variables, the nth moments were first defined to
gauge the variations of parametric possibility distributions with respect to
their mean values. Then, we established some useful analytical formulas of
second order moments for common reduced fuzzy variables.
(v) Applying the second order moment as a new risk measure, we developed
a mean-moment optimization method for fuzzy portfolio selection problems.
The solution results reported in the numerical experiments demonstrated
that parametric possibility distributions have some advantages over fixed
possibility distributions when we employ them to model fuzzy portfolio
selection problems.

Future research might address the following two aspects. First, this paper estab-
lished some useful analytical expressions about mean values and second order mo-
ments of common reduced fuzzy variables. The analytical expressions about higher
order moments of reduced fuzzy variables and their sums should be studied in the
near future. Second, as far as the practical applications are concerned, this paper
suggested to use the second order moment of reduced fuzzy variable as a measure
to gauge the risk resulted from fuzzy uncertainty. The theoretical results obtained
in this paper have potential applications in other practical risk management and
engineering optimization problems, including transportation problem, location and
allocation problem, data envelopment analysis, emergency supplies prepositioning
problem and so on.
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