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LINEAR MATRIX INEQUALITY APPROACH FOR

SYNCHRONIZATION OF CHAOTIC FUZZY CELLULAR

NEURAL NETWORKS WITH DISCRETE AND UNBOUNDED

DISTRIBUTED DELAYS BASED ON

SAMPLED-DATA CONTROL

P. BALASUBRAMANIAM, K. RATNAVELU AND M. KALPANA

Abstract. In this paper, linear matrix inequality (LMI) approach for syn-
chronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete

and unbounded distributed delays based on sampled-data control is investi-
gated. Lyapunov-Krasovskii functional combining with the input delay ap-
proach as well as the free-weighting matrix approach are employed to derive
several sufficient criteria in terms of LMIs ensuring the delayed FCNNs to be

asymptotically synchronous. The restriction such as the time-varying delay
required to be differentiable or even its time-derivative assumed to be smaller
than one, are removed. Instead, the time-varying delay is only assumed to
be bounded. Finally, numerical examples and its simulations are provided to

demonstrate the effectiveness of the derived results.

1. Introduction

Cellular neural networks (CNNs) are locally connected nonlinear networks. They
originally stemmed from cellular automata and artificial neural networks (ANNs).
Local connectedness is the most significant property of CNN. Continuous dynamics
distinguish CNN from cellular automata. The local connectedness restricts the
ability of CNN to solve many global problems that cannot be decomposed into
local components. However, the local property has its advantages, such as easy
implementation using VLSI technology and efficiency for solving local problems.
CNNs were first introduced in twin papers by Chua and Yang (1988) [6, 7].

Fuzzy set theory provides an inference methodology that approximates human
reasoning capabilities and can be applied to knowledge-based systems [36]. It pro-
vides mathematical support to the capture of uncertainties associated with human
cognitive processes, for example, thinking and reasoning. Also, it provides a math-
ematical methodology to model linguistic statements and knowledge. FCNN is a
generalized case of the CNN structure. FCNNs introduced by Yang et al. [32, 33],
is proved to be a useful tool in image processing and pattern recognition [9, 31].
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Consider the linear system
ẋ(t) = Ax(t), (1)

where A ∈ Rn×n and x(t) ∈ Rn. Assume that (1) has equilibrium x∗ = 0.

Definition 1.1. Let V : Rn → R is a Lyapunov function for (1) if

(i) V (x(t)) ≥ 0 with equality if and only if x∗ = 0, and

(ii) V̇ (x(t)) ≤ 0.

This leads to the celebrated theorem of Lyapunov of (1).

Theorem 1.2. (Lyapunov’s Second Theorem on R) Given system (1) with equi-
librium x∗ = 0, if there exists an associated Lyapunov function V , then x∗ = 0 is
Lyapunov stable. Furthermore, if V̇ (x(t)) < 0, then x∗ = 0 is asymptotically stable.

The power of Theorem 1.2 is that one can make conclusions about trajectories
of a system (1) without actually solving the differential equation. For the system
(1), a common choice of Lyapunov function candidate is the quadratic form,

V (x(t)) = xT (t)Px(t).

Investigating the stability of (1) is considering the time derivative of V (x(t))

V̇ (x(t)) = xT (t)Pẋ(t) + ẋT (t)Px(t)

= xT (t)PAx(t) + xT (t)ATPx(t)

= xT (t)
[
PA+ATP

]
x(t).

The quadratic form of this derivative proves, if the central quantity satisfies

PA+ATP < 0,

then
V̇ (x(t)) < 0.

Example 1.3. Consider the linear system

ẋ(t) =

[
−1 0
0 −2

]
x(t).

Using Matlab LMI control toolbox and solving the above LMI PA+ATP < 0, one

can get the following positive definite matrix P =

[
1.1956 0

0 0.5861

]
. For this P ,

PA+ATP =

[
−2.3912 0

0 −2.3443

]
, which is negative definite. This implies that

the given system is asymptotically stable in the sense of Lyapunov.

It is well known that time-delay is usually a cause of instability and oscillations
of recurrent neural networks (RNNs). Therefore, the problem of stability of RNNs
with time-delay is of importance in both theory and practical applications. With
the help of the LMI approach, a number of research works have been devoted
to analysis and synthesis of RNNs with various types of delays, such as stability
analysis [2, 20, 25], and state estimation [1, 21].

Chaos has long-term unpredictable behavior. This is usually couched mathe-
matically as sensitivity to initial conditions-where the system’s dynamics takes it is
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hard to predict from the starting point. Although a chaotic system can have a pat-
tern (an attractor) in state space, determining where on the attractor the system
is at a distant, future time given its position in the past is a problem that becomes
exponentially harder as time passes [23]. One way to demonstrate this is to run,
two identical chaotic systems side by side, starting both at close, but not exactly
equal initial conditions. The systems soon diverge from each other, but both retain
the same attractor pattern. That is, each has its own attractor without having
any relation to the other system. It is possible to force the two chaotic systems to
follow the same path on the attractor, namely synchronization. Carroll and Pecora
[5, 22] have introduced the drive-response concept, and used the output of the drive
system to control the response system to achieve the state synchronization.

Many results on synchronization of FCNNs with time-delays can be found in the
literature [3, 12, 13, 24, 34, 35]. The controllers used for controlling and synchro-
nizing chaos in continuous-time systems can be implemented by analog circuits.
However, in order to take advantage of the modern high-speed computers, mi-
croelectronics, and communication networks, it is more preferable to use digital
controllers instead of analog circuits, particularly in aerospace systems and indus-
tries [10, 11, 15, 17, 19, 37]. It allows synchronization of chaotic systems using the
samples of the state variables of the master and the slave chaotic system at discrete
time instants. These samples are used by sampled-data controllers to control the
slave chaotic system and result in synchronization between the master and the slave
chaotic systems [19]. This drastically reduces the amount of synchronization infor-
mation transmitted from the master chaotic system to the slave chaotic system and
increase the efficiency of bandwidth usage, which makes this method more efficient.

Figure 1. Block Diagram of Master-slave FCNNs with a
Sampled-data Controller

In many real-world applications, it is difficult to guarantee that the state vari-
ables transmitted to controllers are continuous. In addition, in order to make full
use of modern computer technique, the sampled-data feedback control is applied
to synchronize delayed FCNNs. The block diagram of master-slave FCNNs with a
sampling controller is shown in Figure 1. Referring to this Figure 1, the operation
of this closed-system can be described as follows: Firstly, the system states of both
the master and slave systems form error signal, which is fed to the sampler with a
sampling interval, ∆k. Then, the sampled system states information is processed by
the sampled-data controller to produce an appropriate control signal. Finally, the
control signal is kept constant during the sampling interval by the zero-order holder
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and fed to the slave system to realize the synchronization. Moreover, the contribu-
tion of this paper is that we have compared our proposed results with the existing
literature [3] and shown in Example 4.3 along with numerical simulations (Figures
13-14) and Table 1. However, to the best of authors’ knowledge, the results on
LMI approach for synchronization of chaotic FCNNs with discrete and unbounded
distributed delays based on sampled-data control has never been investigated yet.

Motivated by the aforementioned discussions, in this paper, we derive new cri-
teria for the synchronization of chaotic FCNNs based on sampled-data control,
Lyapunov-Krasovskii functional, free-weighting matrix approach and LMI tech-
nique. Finally, two numerical examples and its simulations are given to show the
effectiveness of proposed method.

Notations: Rn denotes the n-dimensional Euclidean Space; for any matrix A =
[aij ]n×n, let A

T and A−1 denote the transpose and the inverse of A, respectively;
|A| = [|aij |]n×n; let A > 0 (A < 0) denotes the positive-definite (negative-definite)
symmetric matrix, respectively; the notation C2,1(R+×Rn;R+) denotes the family
of all nonnegative functions V (t, x(t)) on R+ × Rn which are continuously twice
differentiable in x and once differentiable in t; I denotes the identity matrix of
appropriate dimension and Λ = {1, 2, ..., n}; ⋆ denotes the symmetric terms in a
symmetric matrix.

2. Model Formulation and Preliminaries

Consider the following general drive-response type chaotic FCNNs with discrete
and unbounded distributed delays

ẋi(t) = −dixi(t) +
∑n

j=1 aijfj(xj(t)) +
∑n

j=1 bijfj(xj(t− τ1(t))) + Ii

+
∧n

j=1 αij

∫ t

−∞ kj(t− s)fj(xj(s))ds

+
∨n

j=1 βij
∫ t

−∞ kj(t− s)fj(xj(s))ds, i ∈ Λ,

xi(s) = ϕi(s), s ∈ (−∞, 0], (2)

and
ẏi(t) = −diyi(t) +

∑n
j=1 aijfj(yj(t)) +

∑n
j=1 bijfj(yj(t− τ1(t))) + Ii

+
∧n

j=1 αij

∫ t

−∞ kj(t− s)fj(yj(s))ds

+
∨n

j=1 βij
∫ t

−∞ kj(t− s)fj(yj(s))ds+ ui(t), i ∈ Λ,

yi(s) = φi(s), s ∈ (−∞, 0], (3)

where ϕi(·) ∈ C((−∞, 0],R) and φi(·) ∈ C((−∞, 0],R) are the initial conditions in
drive system (2) and response system (3), respectively; αij and βij are the elements
of fuzzy feedback MIN template and fuzzy feedback MAX template, respectively;
aij and bij are the elements of feedback template;

∧
and

∨
denote the fuzzy AND

and fuzzy OR operation, respectively; xi and yi denote the state vectors in drive
system (2) and response system (3) of the ith neuron, respectively; Ii denotes the
external input of the ith neuron; di is a diagonal matrix, di represents the rates
with which the ith neuron will reset their potential to the resting state in isolation
when disconnected from the networks and external inputs; fj represents the neuron
activation function; u(t) = (u1(t), u2(t), ..., un(t))

T is a control input to be designed.
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kj(s) ≥ 0 is the feedback kernel and satisfies∫ ∞

0

ki(s)ds = 1, i ∈ Λ. (4)

Let e(t) =
(
e1(t), e2(t), ..., en(t)

)
:= x(t) − y(t) be the error state. Then, the error

dynamical system between (2) and (3) is given by

ėi(t) = −diei(t) +
∑n

j=1 aijgj(ej(t)) +
∑n

j=1 bijgj(ej(t− τ1(t)))

+
∧n

j=1 αij

∫ t

−∞ kj(t− s)fj(xj(s))ds−
∧n

j=1 αij

∫ t

−∞ kj(t− s)fj(yj(s))ds

+
∨n

j=1 βij
∫ t

−∞ kj(t− s)fj(xj(s))ds−
∨n

j=1 βij
∫ t

−∞ kj(t− s)fj(yj(s))ds

−ui(t), i ∈ Λ,

ei(s) = ϕi(s)− φi(s) = ψi(s), s ∈ (−∞, 0],
(5)

where gj(ej(·)) = fj(xj(·))− fj(yj(·)), j ∈ Λ.
The sampled-data control law can be adopted as follows:

ui(t) := hijei(tk), tk ≤ t < tk+1, i, j ∈ Λ, (6)

where hij is the element of sampled-data feedback controller gain matrix to be
determined, e(tk) is discrete measurement of e(t) at the sampling instant tk; and
tk satisfies the following conditions:

0 = t0 < t1 < t2 < ... < tk < ... < lim
k→+∞

tk = +∞.

Moreover, the sampling period under consideration is assumed to be bounded by
a known constant τ2, that is, ∆k = tk+1 − tk ≤ τ2 for k ≥ 0.

Substituting control law (6) into the error system (5) yields,

ėi(t) = −diei(t) +
∑n

j=1 aijgj(ej(t)) +
∑n

j=1 bijgj(ej(t− τ1(t)))

+
∧n

j=1 αij

∫ t

−∞ kj(t− s)fj(xj(s))ds−
∧n

j=1 αij

∫ t

−∞ kj(t− s)fj(yj(s))ds

+
∨n

j=1 βij
∫ t

−∞ kj(t− s)fj(xj(s))ds−
∨n

j=1 βij
∫ t

−∞ kj(t− s)fj(yj(s))ds

−hijei(tk), i ∈ Λ,

ei(s) = ψi(s), s ∈ (−∞, 0].
(7)

Clearly, it is difficult to analyze the synchronization of chaotic FCNNs based
on error system (7) because of the discrete term, e(tk). Therefore, the input delay
approach [10] is applied, by defining

τ2(t) = t− tk, tk ≤ t < tk+1. (8)
It is easily seen that

0 ≤ τ2(t) < τ2. (9)

Therefore, the state-feedback controller takes the following form

ui(t) = hijei(t− τ2(t)), tk ≤ t < tk+1, i, j ∈ Λ. (10)

Consequently, connecting (10) to system (7) yields

ėi(t) = −diei(t) +
∑n

j=1 aijgj(ej(t)) +
∑n

j=1 bijgj(ej(t− τ1(t)))

+
∧n

j=1 αij

∫ t
−∞ kj(t− s)fj(xj(s))ds−

∧n
j=1 αij

∫ t
−∞ kj(t− s)fj(yj(s))ds

+
∨n

j=1 βij
∫ t
−∞ kj(t− s)fj(xj(s))ds−

∨n
j=1 βij

∫ t
−∞ kj(t− s)fj(yj(s))ds

−hijei(t− τ2(t)), i ∈ Λ,

ei(s) = ψi(s), s ∈ (−∞, 0].
(11)
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We list two assumptions as follows:
(A1) The neuron activation function fj(·), j ∈ Λ, are continuously bounded

and satisfies
l−j ≤ fj(u) − fj(v)

u − v ≤ l+j , for any u, v ∈ R, u ̸= v, j ∈ Λ,

where l−j and l+j are some real constants and they may be positive, zero or negative.

(A2) The transmission delay τ1(t) is a time varying delay, and it satisfies
0 ≤ τ1(t) ≤ τ1, where τ1 is a positive constant.

We state the following lemmas which will be used in the sequel to prove the main
result.

Lemma 2.1. (Schur Complement [4]) The LMI

[
Q(x) S(x)
ST (x) R(x)

]
> 0, where

Q(x) = QT (x), R(x) = RT (x), is equivalent to

R(x) > 0 and Q(x)− S(x)R−1(x)ST (x) > 0.

Lemma 2.2. [26] For any x, y ∈ Rn, ϵ > 0 and positive definite matrix Q ∈ Rn×n,
the following matrix inequality holds

2xT y ≤ ϵxTQx+ ϵ−1yTQ−1y.

Lemma 2.3. [31] Let z, z
′
be two states of system (2), then we have∣∣ n∧

j=1

αijfj(z)−
n∧

j=1

αijfj(z
′
)
∣∣ ≤ n∑

j=1

|αij ||fj(z)− fj(z
′
)|,

∣∣ n∨
j=1

βijfj(z)−
n∨

j=1

βijfj(z
′
)
∣∣ ≤ n∑

j=1

|βij ||fj(z)− fj(z
′
)|.

Lemma 2.4. [18] For any x ∈ Rn, any constant matrix A = [aij ]n×n with aij ≥ 0,
the following matrix inequality holds

xTATAx ≤ nxTAT
s Asx,

where As = diag
{∑n

i=1 ai1,
∑n

i=1 ai2, ...,
∑n

i=1 ain

}
.

Lemma 2.5. [14] Given any real matrix M = MT > 0 of appropriate dimension,
and a vector function ω(·) : [a, b] → Rn, such that the integrations concerned are
well defined, then[ ∫ b

a

ω(s)ds
]T
M

[ ∫ b

a

ω(s)ds
]
≤ (b− a)

∫ b

a

ωT (s)Mω(s)ds.

The main purpose of this paper is to design controller with the form (10) to
ensure the master system (2) synchronize with slave system (3). In other words,
we are interested in finding a feedback gain matrix H such that the error system
(11) is asymptotically stable.

3. Main Results

Theorem 3.1. Assume that assumptions (A1) − (A2) hold. The error dynamical
system (11) is globally asymptotically stable, if there exist n × n positive diago-
nal matrices P, R, U1, U2, U3, some n × n positive definite symmetric matrices
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Q0, Q1, Q2, W1, W2, M1, M2, M3, M4, some positive scalars µ1, µ2 and the

2n × 2n matrices

(
T11 T12
⋆ T22

)
> 0,

(
V11 V12
⋆ V22

)
> 0, such that the following

LMI has feasible solution:

Ω =

 Ωi,j ΓT
1 ΓT

2

⋆ −µ1n
−1I 0

⋆ ⋆ −µ2n
−1I

 < 0,
(12)

where i, j = 1, 2, ..., 16 with

Ω1,1 = −2PD +Q1 +Q2 −
1

τ1
M1 −

1

τ2
M2 − 2M3 − 2M4 − U1Σ1,

Ω1,2 =
1

τ1
M1,Ω1,3 = TT

12,Ω1,4 =
1

τ2
M2,Ω1,5 = −Q0 + V T

12,Ω1,6 = −DTP,

Ω1,9 =
2

τ1
M3,Ω1,10 =

2

τ1
M3,Ω1,11 =

2

τ2
M4,Ω1,12 =

2

τ2
M4,Ω1,13 = PA+ U1Σ2,

Ω1,14 = PB,Ω2,2 = −Q1 −
1

τ1
M1,Ω3,3 = τ1T11 − 2TT

12 − U2Σ1,Ω3,14 = U2Σ2,

Ω4,4 = −Q2 −
1

τ2
M2,Ω5,5 = τ2V11 − 2V T

12 − U3Σ1,Ω5,6 = −QT
0 ,Ω5,15 = U3Σ2,

Ω6,6 = −2P +W1 +W2 + τ1M1 + τ2M2 +
τ21
2
M3 +

τ22
2
M4 + τ1T22 + τ2V22,

Ω6,13 = PA, Ω6,14 = PB, Ω7,7 = −W1, Ω8,8 = −W2, Ω9,9 = − 2

τ21
M3,

Ω9,10 = − 2

τ21
M3, Ω10,10 = − 2

τ21
M3, Ω11,11 = − 2

τ22
M4, Ω11,12 = − 2

τ22
M4,

Ω12,12 = − 2

τ22
M4, Ω13,13 = R− U1, Ω14,14 = −U2, Ω15,15 = −U3,

Ω16,16 = µ1I + µ2I −R, |α|s = diag
{ n∑

i=1

|αi1|,
n∑

i=1

|αi2|, ...,
n∑

i=1

|αin|
}
,

|β|s = diag
{ n∑

i=1

|βi1|,
n∑

i=1

|βi2|, ...,
n∑

i=1

|βin|
}
, S = |α|s + |β|s,

Σ1 = diag
{
l−1 l

+
1 , ..., l

−
n l

+
n

}
, Σ2 = diag

{ l−1 + l+1
2

, ...,
l−n + l+n

2

}
,

ΓT
1 =

[
PS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]T
,

ΓT
2 =

[
0 0 0 0 0 PS 0 0 0 0 0 0 0 0 0 0

]T
.

Moreover, the controller gain matrix H = P−1Q0.

Proof. Consider the following Lyapunov-Krasovskii functional

V (t) =
7∑

i=1

Vi(t), (13)

where
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V1(t) = eT (t)Pe(t) =
n∑

i=1

pie
2
i (t),

V2(t) =

∫ t

t−τ1

eT (s)Q1e(s)ds+

∫ t

t−τ2

eT (s)Q2e(s)ds

+

∫ t

t−τ1

ėT (s)W1ė(s)ds+

∫ t

t−τ2

ėT (s)W2ė(s)ds,

V3(t) =
n∑

j=1

rj

∫ ∞

0

kj(θ)

∫ t

t−θ

g2j (ej(s))dsdθ,

V4(t) =

∫ 0

−τ1

∫ t

t+θ

ėT (s)M1ė(s)dsdθ +

∫ 0

−τ2

∫ t

t+θ

ėT (s)M2ė(s)dsdθ,

V5(t) =

∫ 0

−τ1

∫ 0

θ

∫ t

t+λ

ėT (s)M3ė(s)dsdλdθ +

∫ 0

−τ2

∫ 0

θ

∫ t

t+λ

ėT (s)M4ė(s)dsdλdθ,

V6(t) =

∫ t

0

∫ θ

θ−τ1(θ)

[
e(θ − τ1(θ))

ė(s)

]T [
T11 T12
⋆ T22

] [
e(θ − τ1(θ))

ė(s)

]
dsdθ

+

∫ t

0

∫ θ

θ−τ2(θ)

[
e(θ − τ2(θ))

ė(s)

]T [
V11 V12
⋆ V22

] [
e(θ − τ2(θ))

ė(s)

]
dsdθ,

V7(t) =

∫ 0

−τ1

∫ t

t+θ

ėT (s)T22ė(s)dsdθ +

∫ 0

−τ2

∫ t

t+θ

ėT (s)V22ė(s)dsdθ.

From Lemma 2.3, we obtain∣∣∣ n∧
j=1

αij

∫ t

−∞
kj(t− s)fj(xj)ds−

n∧
j=1

αij

∫ t

−∞
kj(t− s)fj(yj)ds

∣∣∣
≤

n∑
j=1

|αij |
∣∣∣ ∫ t

−∞
kj(t− s)gj(ej(s))ds

∣∣∣.
By calculating the time derivation of Vi(t) along the trajectory of system (11), we
obtain

V̇1(t) ≤ −2eT (t)PDe(t)− 2eT (t)Q0e(t− τ2(t)) + 2eT (t)PAg(e(t)) + 2eT (t)PB

×g(e(t− τ1(t))) + µ−1
1 neT (t)P (|α|s + |β|s)(|α|s + |β|s)TPe(t)

+µ1

(∫ t

−∞
K(t− s)g(e(s))ds

)T(∫ t

−∞
K(t− s)g(e(s))ds

)
−2ėT (t)P ė(t)− 2ėT (t)PDe(t) + 2ėT (t)PAg(e(t)) + 2ėT (t)PB

×g(e(t− τ1(t))) + µ−1
2 nėT (t)P (|α|s + |β|s)(|α|s + |β|s)TP ė(t)

+µ2

(∫ t

−∞
K(t− s)g(e(s))ds

)T(∫ t

−∞
K(t− s)g(e(s))ds

)
−2ėT (t)Q0e(t− τ2(t)),

(14)
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V̇2(t) = eT (t)Q1e(t)− eT (t− τ1)Q1e(t− τ1) + eT (t)Q2e(t)

−eT (t− τ2)Q2e(t− τ2) + ėT (t)W1ė(t)− ėT (t− τ1)W1ė(t− τ1)

+ėT (t)W2ė(t)− ėT (t− τ2)W2ė(t− τ2), (15)

V̇3(t) = gT (e(t))Rg(e(t))−
n∑

j=1

rj

(∫ ∞

0

kj(θ)gj(ej(t− θ))dθ
)2

= gT (e(t))Rg(e(t))−
(∫ t

−∞
K(t− s)g(e(s))ds

)T

R
(∫ t

−∞
K(t− s)

×g(e(s))ds
)
, (16)

V̇4(t) ≤ τ1ė
T (t)M1ė(t)−

1

τ1
eT (t)M1e(t) +

2

τ1
eT (t)M1e(t− τ1)

− 1

τ1
eT (t− τ1)M1e(t− τ1) + τ2ė

T (t)M2ė(t)−
1

τ2
eT (t)M2e(t) +

2

τ2

×eT (t)M2e(t− τ2)−
1

τ2
eT (t− τ2)M2e(t− τ2), (17)

V̇5(t) ≤ τ21
2
ėT (t)M3ė(t)− 2eT (t)M3e(t) +

2

τ1
eT (t)M3

∫ t

t−τ1(t)

e(s)ds

+
2

τ1
eT (t)M3

∫ t−τ1(t)

t−τ1

e(s)ds+
2

τ1

∫ t

t−τ1(t)

eT (s)dsM3e(t)

− 2

τ21

∫ t

t−τ1(t)

eT (s)ds M3

∫ t

t−τ1(t)

e(s)ds− 2

τ21

∫ t

t−τ1(t)

eT (s)dsM3

×
∫ t−τ1(t)

t−τ1

e(s)ds+
2

τ1

∫ t−τ1(t)

t−τ1

eT (s)dsM3e(t)−
2

τ21

∫ t−τ1(t)

t−τ1

eT (s)ds

× M3

∫ t

t−τ1(t)

e(s)ds− 2

τ21

∫ t−τ1(t)

t−τ1

eT (s)ds M3

∫ t−τ1(t)

t−τ1

e(s)ds

+
τ22
2
ėT (t)M4ė(t)− 2eT (t)M4e(t) +

2

τ2
eT (t)M4

∫ t

t−τ2(t)

e(s)ds

+
2

τ2
eT (t)M4

∫ t−τ2(t)

t−τ2

e(s)ds+
2

τ2

∫ t

t−τ2(t)

eT (s)dsM4e(t)

− 2

τ22

∫ t

t−τ2(t)

eT (s)ds M4

∫ t

t−τ2(t)

e(s)ds− 2

τ22

∫ t

t−τ2(t)

eT (s)dsM4

×
∫ t−τ2(t)

t−τ2

e(s)ds+
2

τ2

∫ t−τ2(t)

t−τ2

eT (s)ds M4e(t)−
2

τ22

∫ t−τ2(t)

t−τ2

eT (s)ds

×M4

∫ t

t−τ2(t)

e(s)ds− 2

τ22

∫ t−τ2(t)

t−τ2

eT (s)ds M4

∫ t−τ2(t)

t−τ2

e(s)ds, (18)
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V̇6(t) ≤ eT (t− τ1(t))
[
τ1T11 − 2TT

12

]
e(t− τ1(t)) + 2eT (t)TT

12e(t− τ1(t))

+

∫ t

t−τ1

ėT (s)T22ė(s)ds+ eT (t− τ2(t))
[
τ2V11 − 2V T

12

]
e(t− τ2(t))

+2eT (t)V T
12e(t− τ2(t)) +

∫ t

t−τ2

ėT (s)V22ė(s)ds,
(19)

V̇7(t) = τ1ė
T (t)T22ė(t)−

∫ 0

−τ1

ėT (t+ θ)T22ė(t+ θ)dθ + τ2ė
T (t)V22ė(t)

−
∫ 0

−τ2

ėT (t+ θ)V22ė(t+ θ)dθ

= τ1ė
T (t)T22ė(t)−

∫ t

t−τ1

ėT (s)T22ė(s)ds

+τ2ė
T (t)V22ė(t)−

∫ t

t−τ2

ėT (s)V22ė(s)ds.
(20)

In addition, for any n×n diagonal matrices U1 > 0, U2 > 0, U3 > 0, the following
inequality holds by the methods proposed in [16]:{[

e(t)
g(e(t))

]T [
−U1Σ1 U1Σ2

⋆ −U1

] [
e(t)
g(e(t))

]
+

[
e(t− τ1(t))
g(e(t− τ1(t)))

]T [
−U2Σ1 U2Σ2

⋆ −U2

] [
e(t− τ1(t))
g(e(t− τ1(t)))

]
+

[
e(t− τ2(t))
g(e(t− τ2(t)))

]T [
−U3Σ1 U3Σ2

⋆ −U3

] [
e(t− τ2(t))
g(e(t− τ2(t)))

]}
≥ 0.

(21)

Hence, from (13)-(21) we have

V̇ (t) ≤ ξT (t)
[
Ωi,j + ΓT

1 µ
−1
1 nΓ1 + ΓT

2 µ
−1
2 nΓ2

]
ξ(t)

= ξT (t) Ω ξ(t), (22)

where

ξ(t) =
[
eT (t), eT (t− τ1), e

T (t− τ1(t)), e
T (t− τ2), e

T (t− τ2(t)), ė
T (t),

ėT (t− τ1), ė
T (t− τ2),

∫ t

t−τ1(t)

eT (s)ds,

∫ t−τ1(t)

t−τ1

eT (s)ds,∫ t

t−τ2(t)

eT (s)ds,

∫ t−τ2(t)

t−τ2

eT (s)ds, gT (e(t)), gT (e(t− τ1(t))),

gT (e(t− τ2(t))),

∫ t

−∞
K(t− s)gT (e(s))ds

]T
,

Ω = Ωi,j + ΓT
1 µ

−1
1 nΓ1 + ΓT

2 µ
−1
2 nΓ2.

By (12), it yields
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V̇ (t) ≤ −ξT (t) Ω⋆ ξ(t), t > 0,

where Ω⋆ = −Ω > 0. Therefore, we can conclude that the error dynamical system
(11) is globally asymptotically stable. As a result, the slave chaotic FCNNs with
discrete and unbounded distributed delays (3) is globally synchronized with the
master FCNNs (2). This completes the proof. �

Remark 3.2. The motivation for the use of null terms with the introduction of
free-weighting matrices, when considering the stability analysis of neural networks
has been investigated [27, 28, 29]. In Theorem 3.1, we have introduced the diagonal
matrix P as free-weighting matrix by using the artifice: −ė(t)+ ė(t) = 0. It is worth
pointing out that the less free-weighting matrices method is regarded as an effective
way to reduce the conservatism of the derived theoretical stability results. Note
that the assumptions (A1), (A2) on activation function and time-varying delay in
this paper are weaker than those generally used in the literature [8, 30]; namely,
the boundedness of the activation function fj . Further the differentiability of the
time varying delay τ1(t) is not required in this paper.

Remark 3.3. In the absence of unbounded distributed delay, the master FCNNs
system (2) becomes as follows

ẋi(t) = −dixi(t) +
∑n

j=1 aijfj(xj(t)) +
∑n

j=1 bijfj(xj(t− τ1(t))) + Ii

+
∧n

j=1 αijfj(xj(t− τ1(t))) +
∨n

j=1 βijfj(xj(t− τ1(t))), i ∈ Λ,

xi(s) = ϕi(s), s ∈ (−∞, 0]. (23)

and the corresponding response system of (23) is given by
ẏi(t) = −diyi(t) +

∑n
j=1 aijfj(yj(t)) +

∑n
j=1 bijfj(yj(t− τ1(t))) + Ii

+
∧n

j=1 αijfj(yj(t− τ1(t))) +
∨n

j=1 βijfj(yj(t− τ1(t))) + ui(t), i ∈ Λ,

yi(s) = φi(s), s ∈ (−∞, 0], (24)

where ϕi(·), φi(·), di, aij , bij , αij , βij , Ii, fj and ui(t) described in (23) and (24)
are the same as (2) and (3), respectively.

Let e(t) =
(
e1(t), e2(t), ..., en(t)

)
:= x(t) − y(t) be the error state. Then, the

error dynamical system between (23) and (24) is given by
ėi(t) = −diei(t) +

∑n
j=1 aijgj(ej(t)) +

∑n
j=1 bijgj(ej(t− τ1(t)))

+
∧n

j=1 αijfj(xj(t− τ1(t)))−
∧n

j=1 αijfj(yj(t− τ1(t))) +
∨n

j=1 βij

×fj(xj(t− τ1(t)))−
∨n

j=1 βijfj(yj(t− τ1(t)))− hijei(t− τ2(t)), i ∈ Λ,

ei(s) = ϕi(s)− φi(s) = ψi(s), s ∈ (−∞, 0], (25)

where gj(ej(·)) = fj(xj(·))− fj(yj(·)), j ∈ Λ.

Moreover, the following Corollary 3.4 is a special case of Theorem 3.1.

Corollary 3.4. Assume that assumptions (A1) − (A2) hold. The error dynam-
ical system (25) is globally asymptotically stable, if there exist n × n positive di-
agonal matrices P, U1, U2, U3, some n × n positive definite symmetric matrices
Q0, Q1, Q2, W1, W2, M1, M2, M3, M4, a positive scalar µ, and the 2n × 2n



88 P. Balasubramaniam, K. Ratnavelu and M. Kalpana

matrices

(
T11 T12
⋆ T22

)
> 0,

(
V11 V12
⋆ V22

)
> 0, such that the following LMI has

feasible solution:

Ω =

[
Ωi,j ΓT

⋆ −µn−1I

]
< 0, (26)

where i, j = 1, 2, ..., 15 with

Ω1,1 = −2PD + P +Q1 +Q2 −
1

τ1
M1 −

1

τ2
M2 − 2M3 − 2M4 − U1Σ1,

Ω1,2 =
1

τ1
M1,Ω1,3 = TT

12,Ω1,4 =
1

τ2
M2,Ω1,5 = −Q0 + V T

12,Ω1,6 = −DTP,

Ω1,9 =
2

τ1
M3, Ω1,10 =

2

τ1
M3, Ω1,11 =

2

τ2
M4, Ω1,12 =

2

τ2
M4,

Ω1,13 = PA+ U1Σ2, Ω1,14 = PB, Ω2,2 = −Q1 −
1

τ1
M1,

Ω3,3 = τ1T11 − 2TT
12 − U2Σ1, Ω3,14 = U2Σ2, Ω4,4 = −Q2 −

1

τ2
M2,

Ω5,5 = τ2V11 − 2V T
12 − U3Σ1, Ω5,6 = −QT

0 , Ω5,15 = U3Σ2,

Ω6,6 = −2P +W1 +W2 + τ1M1 + τ2M2 +
τ21
2
M3 +

τ22
2
M4 + τ1T22 + τ2V22,

Ω6,13 = PA, Ω6,14 = PB, Ω7,7 = −W1, Ω8,8 = −W2, Ω9,9 = − 2

τ21
M3,

Ω9,10 = − 2

τ21
M3, Ω10,10 = − 2

τ21
M3, Ω11,11 = − 2

τ22
M4, Ω11,12 = − 2

τ22
M4,

Ω12,12 = − 2

τ22
M4, Ω13,13 = −U1, Ω14,14 = nSTPS + µI − U2, Ω15,15 = −U3,

|α|s = diag
{ n∑

i=1

|αi1|,
n∑

i=1

|αi2|, ...,
n∑

i=1

|αin|
}
,

|β|s = diag
{ n∑

i=1

|βi1|,
n∑

i=1

|βi2|, ...,
n∑

i=1

|βin|
}
,

S = |α|s + |β|s,Σ1 = diag
{
l−1 l

+
1 , ..., l

−
n l

+
n

}
,Σ2 = diag

{ l−1 + l+1
2

, ...,
l−n + l+n

2

}
,

ΓT =
[
0 0 0 0 0 (PS)T 0 0 0 0 0 0 0 0 0

]T
.

Moreover, the controller gain matrix H = P−1Q0.

Proof. Consider the following Lyapunov-Krasovskii functional

V (t) =

6∑
i=1

Vi(t), (27)
where

V1(t) = eT (t)Pe(t)

V2(t) =

∫ t

t−τ1

eT (s)Q1e(s)ds+

∫ t

t−τ2

eT (s)Q2e(s)ds

+

∫ t

t−τ1

ėT (s)W1ė(s)ds+

∫ t

t−τ2

ėT (s)W2ė(s)ds,
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V3(t) =

∫ 0

−τ1

∫ t

t+θ

ėT (s)M1ė(s)dsdθ +

∫ 0

−τ2

∫ t

t+θ

ėT (s)M2ė(s)dsdθ,

V4(t) =

∫ 0

−τ1

∫ 0

θ

∫ t

t+λ

ėT (s)M3ė(s)dsdλdθ +

∫ 0

−τ2

∫ 0

θ

∫ t

t+λ

ėT (s)M4ė(s)dsdλdθ,

V5(t) =

∫ t

0

∫ θ

θ−τ1(θ)

[
e(θ − τ1(θ))

ė(s)

]T [
T11 T12

⋆ T22

] [
e(θ − τ1(θ))

ė(s)

]
dsdθ

+

∫ t

0

∫ θ

θ−τ2(θ)

[
e(θ − τ2(θ))

ė(s)

]T [
V11 V12

⋆ V22

] [
e(θ − τ2(θ))

ė(s)

]
dsdθ,

V6(t) =

∫ 0

−τ1

∫ t

t+θ

ėT (s)T22ė(s)dsdθ +

∫ 0

−τ2

∫ t

t+θ

ėT (s)V22ė(s)dsdθ.

By calculating the time derivation of Vi(t) along the trajectory of system (25), we
obtain

V̇1(t) ≤ 2eT (t)P
[
−De(t)−He(t− τ2(t)) +Ag(e(t)) +Bg(e(t− τ1(t)))

]
+2

∣∣∣e(t)∣∣∣TP (|α|+ |β|)
∣∣∣g(e(t− τ1(t)))

∣∣∣
≤ −2eT (t)PDe(t)− 2eT (t)Q0e(t− τ2(t)) + 2eT (t)PAg(e(t)) + 2eT (t)PB

×g(e(t− τ1(t))) + eT (t)Pe(t) + gT (e(t− τ1(t))) (|α|+ |β|)T P

×(|α|+ |β|) g(e(t− τ1(t))) + 2ėT (t)P
[
− ė(t) + ė(t)

]
≤ −2eT (t)PDe(t)− 2eT (t)Q0e(t− τ2(t)) + 2eT (t)PAg(e(t))

+2eT (t)PBg(e(t− τ1(t))) + eT (t)Pe(t) + ngT (e(t− τ1(t))) (|α|s + |β|s)T

×P (|α|s + |β|s) g(e(t− τ1(t)))− 2ėT (t)P ė(t)− 2ėT (t)PDe(t)

−2ėT (t)Q0e(t− τ2(t)) + 2ėT (t)PAg(e(t)) + 2ėT (t)PBg(e(t− τ1(t)))

+µ−1nėT (t)P (|α|s + |β|s)(|α|s + |β|s)TP ė(t)

+µ
(
g(e(t− τ1(t)))

)T(
g(e(t− τ1(t)))

)
.

(28)

The proof of this remaining Corollary 3.4 is immediately follows from Theorem
3.1. �

Remark 3.5. LMI approach is used in Theorem 3.1 and Corollary 3.4. When the
size of LMI is increased, the feasible solution of the LMI can be easily obtained by
using the effective interior point algorithms in convex optimization technique and
the LMI toolbox in MATLAB, however the computational time get increased.

4. Illustrative Examples

Example 4.1. Consider the drive chaotic FCNNs system
ẋi(t) = −dixi(t) +

∑n
j=1 aijfj(xj(t)) +

∑n
j=1 bijfj(xj(t− τ1(t))) + Ii +

∧n
j=1 αij

×
∫ t

−∞ kj(t− s)fj(xj(s))ds+
∨n

j=1 βij
∫ t

−∞ kj(t− s)fj(xj(s))ds, i ∈ Λ,

xi(s) = ϕi(s), s ∈ (−∞, 0], (29)
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with parameters defined as

ϕ(s) = (1,−1,−0.5)T , s ∈ (−∞, 0], fj(xj) =
1

2

(
|xj + 1| − |xj − 1|

)
, j = 1, 2, 3,

Ii = 0.02, i = 1, 2, 3, τ1(t) = 0.07 | sin(t)|,

A =

 4.3 −7.5 −1.5
−3 1.2 −4.7
−3.2 4.6 −2.1

 , B =

 2.23 −3.2 −3.21
−3.1 1.3 −4.37
−3.2 4.3 0.9

 ,
D =

 3 0 0
0 2 0
0 0 2

 , α =

 0.9 −0.9 0.9
0.9 0.9 −0.9
−0.9 0.9 0.9

 ,
β =

 0.9 0.9 −0.9
0.9 −0.9 0.9
−0.9 0.9 0.9

 .
The corresponding response system is designed as

ẏi(t) = −diyi(t) +
∑n

j=1 aijfj(yj(t)) +
∑n

j=1 bijfj(yj(t− τ1(t))) + Ii

+
∧n

j=1 αij

∫ t

−∞ kj(t− s)fj(yj(s))ds

+
∨n

j=1 βij
∫ t

−∞ kj(t− s)fj(yj(s))ds+ ui(t), i ∈ Λ,

yi(s) = φi(s), s ∈ (−∞, 0], (30)

where u is given by (10) and the initial condition is

φ(s) = (0.5,−0.7,−1)T , s ∈ (−∞, 0].

Moreover, the sampling period is taken as τ2 = 0.03. By using the Matlab LMI
toolbox to solve the LMI (12) in Theorem 3.1, it can be found that the LMI is
feasible. Consequently, the controller gain matrix H is designed as follows:

H = P−1Q0 =

 0.1996 −0.0567 0.1983
−0.0502 0.1075 −0.1013
0.2500 −0.1443 0.3667

 .
(31)

By Theorem 3.1, systems (29) and (30) are asymptotically synchronized. The
simulation results are illustrated in the Figures 4-7, in which the controller designed
in (31) is applied.

Remark 4.2. The simulation results can be described as follows. Figures 2-3
describe the chaotic behavior in phase space of the drive system (29) and the
response system (30) with control input (31), respectively. Figures 4-7 show that
the state trajectories and error trajectories of the drive system (29) and the response
system (30) with control input (31) to be asymptotically synchronized. Figures 8-11
provide the state trajectories and the error trajectories between the drive system
(29) and the response system (30) without control input. One may observe that
the drive system (29) and the response system (30) without control input cannot
be synchronized. Figure 12 exhibits the response curve of control input u(t). The
numerical simulations clearly verify the effectiveness of the developed sampled-
data control approach to the synchronization of chaotic FCNNs with discrete and
unbounded distributed delays.
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Figure 2. Chaotic Attractor of Drive System (29)
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Figure 3. Chaotic Attractor of Response System (30)
with Control Input (31)
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Figure 4. State Trajectories of Drive System (29) with State x1(t) and
Response System (30) with State y1(t) Through Control Input (31),

when τ2 = 0.03

Example 4.3. [3] Consider the drive chaotic FCNNs system
ẋi(t) = −dixi(t) +

∑n
j=1 aijfj(xj(t)) +

∑n
j=1 bijfj(xj(t− τ1(t))) + Ii +

∧n
j=1 αij

×
∫ t

−∞ kj(t− s)fj(xj(s))ds+
∨n

j=1 βij
∫ t

−∞ kj(t− s)fj(xj(s))ds, i ∈ Λ,

xi(s) = ϕi(s), s ∈ (−∞, 0],
(32)
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Figure 5. State Trajectories of Drive System (29) with State x2(t) and
Response System (30) with State y2(t) Through Control Input (31),

when τ2 = 0.03
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Figure 6. State Trajectories of Drive System (29) with State x3(t) and
Response System (30) with State y3(t) Through Control Input (31),

when τ2 = 0.03
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Figure 7. Convergence Dynamics of Errors Between Drive System
(29) and Response System (30) with Control Input (31), when τ2 = 0.03
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Figure 8. State Trajectories of Drive System (29) with State x1(t) and
Response System (30) with State y1(t) without Control Input,

when τ2 = 0.03
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Figure 9. State Trajectories of Drive System (29) with State x2(t) and
Response System (30) with State y2(t) without Control Input,

when τ2 = 0.03
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Figure 10. State Trajectories of Drive System (29) with State x3(t)
and Response System (30) with State y3(t) without Control Input,

when τ2 = 0.03
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Figure 11. Convergence Dynamics of Errors Between Drive System
(29) and Response System (30) without Control Input, when τ2 = 0.03
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Figure 12. The Response Curve of Control Input u(t), when τ2 = 0.03

with parameters defined as

ϕ(s) = (1,−1,−0.5)T , s ∈ (−∞, 0], fj(xj) =
1

2

(
|xj + 1| − |xj − 1|

)
, j = 1, 2, 3,

Ii = 0, i = 1, 2, 3, τ1(t) = 0.04 | sin(t)|,

A =

 1.25 −3.21 −3.2
−3.2 1.1 −4.4
−3.2 4.4 1

 , B =

 4.3 −7.5 −3
−3 1.2 −5
−3.2 4.5 −2.3

 ,
D =

 1 0 0
0 1 0
0 0 1

 , α = β =

 −1/32 −1/32 1/32
−1/32 −1/32 1/32
−1/32 −1/32 1/32

 .
The corresponding response system is designed as

ẏi(t) = −diyi(t) +
∑n

j=1 aijfj(yj(t)) +
∑n

j=1 bijfj(yj(t− τ1(t))) + Ii

+
∧n

j=1 αij

∫ t

−∞ kj(t− s)fj(yj(s))ds

+
∨n

j=1 βij
∫ t

−∞ kj(t− s)fj(yj(s))ds+ ui(t), i ∈ Λ,

yi(s) = φi(s), s ∈ (−∞, 0],
(33)

where u is given by (10) and the initial condition is

φ(s) = (0.5,−0.7,−1)T , s ∈ (−∞, 0].

Moreover, the sampling period is taken as τ2 = 0.03. By using the Matlab LMI
toolbox to solve the LMI (12) in Theorem 3.1, it can be found that the LMI is
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feasible. Consequently, the controller gain matrix H is designed as follows:

H = P−1Q0 =

 0.4592 −0.0205 0.1853
−0.0145 0.4107 −0.1235
0.1805 −0.1701 0.6363

 .
(34)

By Theorem 3.1, systems (32) and (33) are asymptotically synchronized. The
simulation results are illustrated in the Figure 13, in which the controller designed
in (34) is applied.

Maximum allowable upper bound (MAUB)
Theorem 1 [3] τ = 0.0534
Theorem 3.1 τ1 = 0.0772

Table 1. The MAUB τ1 of Example 4.3
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Figure 13. [3] State Trajectories and Error Trajectories of Drive
System (32) and Response System (33) with Control Input (34),

when τ2 = 0.03

Remark 4.4. The simulation results for comparison of [3] can be described as fol-
lows. Figure 13 shows that the state trajectories and error trajectories of the drive
system (32) and the response system (33) with control input (34) to be asymptot-
ically synchronized. Figure 14 provides the state trajectories and the error trajec-
tories between the drive system (32) and the response system (33) without control
input. One may observe that the drive system (32) and the response system (33)
without control input cannot be synchronized.
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Figure 14. [3] State Trajectories and Error Trajectories of Drive
System (32) and Response System (33) without Control Input,

when τ2 = 0.03

5. Conclusions

In this paper, synchronization of chaotic FCNNs with discrete and unbounded
distributed delays have been considered. Based on the sampled-data control tech-
niques, Lyapunov stability theory and LMI approach, sufficient conditions have
been developed to guarantee synchronization of coupled FCNNs. Moreover, the
result is novel for synchronization of chaotic FCNNs with discrete and unbounded
distributed delays based on the sampled-data control rather than existing litera-
tures [3, 12, 13, 24, 34, 35]. Further, in the absence of unbounded distributed delay
the results have been derived by employing a Lyapunov-Krasovskii functional and
using the LMI approach based on the sampled-data control. The effectiveness of the
proposed results and comparison have been demonstrated through two numerical
examples and simulations well.

Moreover, impulsive effects may be unavoidable while implementing electronic
networks in the cases of switching phenomenon, frequency change or other sudden
noise etc. In future, the above results may be extended further with impulsive
effects by using delay partitioning and convex combination technique to obtain less
conservative results.
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