A Comparative Study of Fuzzy Inner Product Spaces

Document Type: Research Paper

Author

Department of Mathematics, Vali-e-Asr University of Rafsanjan, Raf- sanjan, Iran

Abstract

In the present paper, we investigate a connection between two fuzzy inner product one of which arises from Felbin's fuzzy norm and the other is based on Bag and Samanta's fuzzy norm. Also we show that, considering a fuzzy inner product space, how one can construct another kind of fuzzy inner product on this space.

Keywords


[1] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math.,
11(3) (2003), 687-705.
[2] T. Bag and S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems, 151
(2005), 513-547.
[3] S. C. Cheng and J. N. Mordeson, Fuzzy linear operators and fuzzy normed linear spaces,
Bull. Cal. Math. Soc., 86 (1994), 429-436.
[4] C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets and Systems, 48 (1992),
239-248.

[5] M. Goudarzi and S. M. Vaezpour, On the de nition of fuzzy Hilbert spaces and its application,
J. Nonlinear Sci. Appl., 2(1) (2009), 46-59.
[6] M. Goudarzia and S. M. Vaezpour, R. Saadati, On the intuitionistic fuzzy inner product
spaces, Chaos, Solitons and Fractals, 41 (2009), 1105-1112.
[7] A. Hasankhani, A. Nazari and M. Saheli, Some properties of fuzzy Hilbert spaces and norm
of operators, Iranian Journal of Fuzzy Systems, 7(3) (2010), 129-157.
[8] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984),
215-229.
[9] I. Karmosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11
(1975), 326334.
[10] A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems, 12 (1984), 143-
154.
[11] P. Mazumdar and S. K. Samanta,On fuzzy inner product spaces, The Journal of Fuzzy Math-
ematics 16(2) (2008), 377-392.
[12] S. Mukherjee and T. Bag,Fuzzy real inner product space and its properties, Annals of Fuzzy
Mathematics and Informatics 6(2) (2013), 377-389.
[13] S. Vijayabalaji,Fuzzy strong n-inner product space, International Journal of Applied Mathe-
matics., 1(2) (2010), 176-185.
[14] S. Vijayabalaji,Equivalent fuzzy strong n-inner product space, International Journal of Open
Problems in Computer Science and Mathematics, 4(4) (2011), 26-32.
[15] J. Xiao and X. Zhu, Fuzzy normed space of operators and its completeness, Fuzzy Sets and
Systems, 133 (2003), 389-399.