Coupled common fixed point theorems for $varphi$-contractions in probabilistic metric\ spaces and applications

Document Type: Research Paper

Authors

1 Department of Mathematics and Physics, North China Electric Power University, Baoding, China

2 Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia

3 Department of Education Mathematics and RINS, Gyeongsang National University, Jinju, Korean

Abstract

In this paper, we give some new coupled common  fixed point theorems for probabilistic $varphi$-contractions  in Menger probabilistic metric spaces.  As applications of the main results, we obtain some coupled common fixed point theorems in usual metric spaces and fuzzy metric spaces. The main results of this paper improve
the corresponding results given by some authors. Finally, we give one example  to illustrate the main results of this paper.

Keywords


[1] T. G. Bhashkar and V. Lakshmikantham, Fixed point theorems in partially ordered metric
spaces and applications, Nonlinear Anal., 65 (2006), 1379{1393.
[2] S. S. Chang, Y. J. Cho and S. M. Kang, Nonlinear Operator Theory in Probabilistic Metric
Spaces, Nova Science Publishers, Inc., New York, 2001.
[3] B. S. Choudhury, K. Das and P. N. Dutta, A xed point result in Menger spaces using a real
function, Acta Math. Hungar., 122 (2009), 203{216.
[4] B. S. Choudhury and A. Kundu, A coupled coincidence point result in partially ordered metric
spaces for compatible mappings, Nonlinear Anal., 73 (2010), 2524{2531.
[5] L. B. Ciric, Solving the Banach xed point principle for nonlinear contractions in probabilistic
metric spaces, Nonlinear Anal., 72 (2010), 2009{2018.
[6] L. B. Ciric, R. P. Agarwal and B. Samet, Mixed monotone-generalized contractions in par-
tially ordered probabilistic metric spaces, Fixed Point Theory Appl., (2011) 2011:56.
[7] L. B. Ciric, D. Mihet and R. Saadati, Monotone generzliaed contractions in partially ordered
probabilistic metric spaces, Topology Appl., 156 (2009), 2838{2844.
[8] J. X. Fang, Fixed point theorems of local contraction mappings on Menger spaces, Appl.
Math. Mech., 12 (1991), 363{372.
[9] J. X. Fang, Common xed point theorems of compatible and weakly compatible maps in
Menger spaces, Nonlinear Anal., 71 (2009), 1833{1843.
[10] J. X. Fang, On '-contractions in probabilistic and fuzzy metric spaces, Fuzzy Sets Syst., 267
(2014), 86{99.
[11] O. Hadzic and E. Pap, Fixed Point Theory in PM-Spaces, Kluwer Academic Publ., 2001.
[12] X. Q. Hu, Common coupled xed point theorems for contractive mappings in fuzzy metric
spaces, Fixed Point Theory Appl., Article ID 363716 (2011), 2011.
[13] J. Jachymski, On probabilistic '-contractions on Menger spaces, Nonlinear Anal., 73 (2010),
2199{2203.
[14] K. Karapinar, Coupled xed point theorems for nonlinear contractions in cone metric spaces,
Comput. Math. Appl., 59 (2010), 3656{3668.
[15] I. Kramosi and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11
(1975), 336{344.
[16] V. Lakahmikantham and L. B. Ciric, Coupled xed point theorems for nonlinear contractions
in partially ordered metric spaces, Nonlinear Anal., 70 (2009), 4341{4349.
[17] N. V. Luong and N. X. Thuan, Coupled xed points in partially ordered metric spaces and
application, Nonlinear Anal., 74 (2011), 983{992.
[18] K. Menger, Statistical metric, Proc Natl. Acad. USA., 28 (1942), 535{537.
[19] D. O'Regan and R. Saadati, Nonlinear contraction theorems in probabilistic spaces, Appl.
Math. Comput., 195 (2008), 86{93.
[20] R. Saadati, Generalized distance and xed point theorems in partially ordered probabilistic
metric spaces, Mate. Vesnik, 65 (2013), 82{93.
[21] B. Samet, Coupled xed point theorems for a generalized Meir-Keeler contraction in partially
ordered metric spaces, Nonlinear Anal., 71 (2010), 4508{4517.
[22] B. Schweizer and A. Sklar, Probabilisitc Metric Spaces, Elsevier/North-Holland, New York,
1983.
[23] S. Sedghi, I. Altun and N. Shobec, Coupled xed point theorems for contractions in fuzzy
metric spaces, Nonlinear Anal., 72 (2010), 1298{1304.

[24] V. M. Sehgal and A. T. Bharucha-Reid, Fixed points of contraction mappings on probabilistic
metric space, Math Syst. Theory, 6 (1972), 87{102.
[25] J. Z. Xiao, X. H. Zhu and Y. F. Cao, Common coupled xed point results for probabilistic
'-contractions in Menger spaces, Nonlinear Anal., 74 (2011), 4589{4600.