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COUPLED COMMON FIXED POINT THEOREMS FOR

ϕ-CONTRACTIONS IN PROBABILISTIC METRIC

SPACES AND APPLICATIONS

S. H. WANG, A. A. N. ABDOU AND Y. J. CHO

Abstract. In this paper, we give some new coupled common fixed point theo-
rems for probabilistic ϕ-contractions in Menger probabilistic metric spaces. As

applications of the main results, we obtain some coupled common fixed point

theorems in usual metric spaces and fuzzy metric spaces. The main results of
this paper improve the corresponding results given by some authors. Finally,

we give one example to illustrate the main results of this paper.

1. Introduction and Preliminaries

In 2006, Bhaskar and Lakshmikantham [1] initially introduced the concept of
coupled fixed points and proved the coupled fixed point theorem with application
in boundary value problem in metric spaces. Later, Lakshmikantham and Ćirić [16]
considered the concept of commuting mappings with the mixed monotone property
and proved some coupled fixed point theorems which extends and improves the
results of Bhaskar and Lakshmikantham [1]. After the work of Bhaskar and Lak-

shmikantham [1] and Lakshmikantham and Ćirić [16], many authors study the
existence and uniqueness of coupled fixed points for various classes of mappings in
metric spaces, cone metric spaces and fuzzy metric spaces (see [21, 4, 14, 23, 17, 12]).

In 1942, Menger [18] introduced the concept of probabilistic metric spaces, which
is a generalization of metric spaces. Since then, fixed point theory in probabilistic
metric spaces can be considered as a field of probabilistic analysis. Many fixed point
theorems for probabilistic contractions are obtained (see [24, 8, 19, 9, 3, 5, 13]).

Recently, some authors also study coupled fixed point theorems for probabilistic
contractions (see [7, 6, 25, 20]).

In [25], the authors considered the gauge function ϕ satisfying the condition
that ϕ(t) < t and (or) limn→∞ ϕn(t) = 0 for all t > 0 and proved some fixed point
theorems by using the gauge function ϕ. In this paper, we prove some coupled
fixed point theorems for probabilistic contractions with the gauge function ϕ in
Menger probabilistic metric spaces. Especially, it is worth mentioning that the
gauge function ϕ in our result has the simpler restriction than ones of [25]. Our
result improves the corresponding ones given in [25].
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Now, we recall some definitions and results in the theory of probabilistic metric
spaces. For more details, the readers refer to [22, 2, 11].

Definition 1.1. A mapping F : (0,∞)→ [0, 1] is called a distribution function if it
is non-decreasing and left-continuous with infx∈R F (x) = 0. If in addition F (0) = 0,
then F is called a distance distribution function.

Definition 1.2. A distance distribution function F satisfying limt→∞ F (t) = 1 is
called a Menger distance distribution function.

The set of all Menger distance distribution functions is denoted by D+. This
space D+ is partially ordered by the usual pointwise ordering of functions, that is,
F ≤ G if and only if F (t) ≤ G(t) for all t ∈ [0,∞). The maximal element for D+

in this order is the distance distribution function ε0 given by

ε0(t) =

{
0 if t = 0,

1 if t > 0.

Definition 1.3. A triangular norm (shortly, t-norm) is a binary operation ∆ on
[0,1] satisfying the following conditions:

(1) ∆ is associative and commutative;
(2) ∆ is continuous;
(3) ∆(a, 1) = a for all a ∈ [0, 1];
(4) ∆(a, b) ≤ ∆(c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Two typical examples of the continuous t-norm are ∆P (a, b) = ab, ∆M (a, b) =
min{a, b} for all a, b ∈ [0, 1].

Now, the t-norm is recursively defined by ∆1 = ∆ and

∆n(x1, · · · , xn+1) = ∆(∆n−1(x1, · · · , xn), xn+1)

for all n ≥ 2 and xi ∈ [0, 1], i = 1, 2, · · · , n+ 1.
A t-norm ∆ is said to be of Hadžić-type if the family {∆n} is equicontinuous at

x = 1, that is, for any ε ∈ (0, 1), there exists δ ∈ (0, 1) such that

a > 1− δ =⇒ ∆n(a) > 1− ε
for all n ≥ 1.

∆M is a trivial example of a t-norm of Hadžić-type [11].

Definition 1.4. A Menger probabilistic metric space (briefly, a Menger PM-space)
is a triple (X,F,∆), where X is a nonempty set, ∆ is a continuous t-norm and F
is a mapping from X × X → D+ (Fx,y denotes the value of F at the pair (x, y))
satisfying the following conditions:

(PM-1) Fx,y(t) = 1 for all x, y ∈ X and t > 0 if and only if x = y;
(PM-2) Fx,y(t) = Fy,x(t) for all x, y ∈ X and t > 0;
(PM-3) Fx,z(t+ s) ≥ ∆(Fx,y(t), Fy,z(s)) for all x, y, z ∈ X and t, s ≥ 0.

Definition 1.5. Let (X,F,∆) be a Menger PM-space.
(1) A sequence {xn} in X is said to be convergent to a point x ∈ X (write

xn → x) if, for any t > 0 and 0 < ε < 1, there exists a positive integer N such that

Fxn,x(t) > 1− ε
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whenever n ≥ N ;
(2) A sequence {xn} in X is called a Cauchy sequence if, for any t > 0 and

0 < ε < 1, there exists a positive integer N such that

Fxn,xm
(t) > 1− ε

whenever m,n ≥ N .
(3) A Menger PM-space (X,F,∆) is said to be complete if every Cauchy sequence

in X is convergent to a point in X.

Definition 1.6. [1] Let X be a nonempty set and T : X ×X → X be a mapping.
An element (x, y) ∈ X ×X is said to be a coupled fixed point of T if

T (x, y) = x, T (y, x) = y.

Definition 1.7. [16] Let X be a nonempty set and T : X ×X → X, h : X → X
be two mappings.

(1) An element (x, y) ∈ X ×X is said to be a coupled coincidence point of h and
T if

T (x, y) = h(x), T (y, x) = h(y);

(2) An element (x, y) ∈ X ×X is said to be a coupled common fixed point of h
and T if

T (x, y) = h(x) = x, T (y, x) = h(y) = y.

Definition 1.8. Let (X,F,∆) be a Menger PM-space and T : X × X → X,
h : X → X be two mappings. The mappings T and h are said to be weakly
compatible (or w-compatible) if they commute at their coupled coincidence points,
i.e., if (x, y) is a coupled coincidence point of T and h, then

g(F (x, y)) = F (gx, gy).

2. Main Results

In this section, let R+ = [0,+∞) and N denote, the set of all positive integers.
Let Φw∗ denote, the set of all functions ϕ : R+ → R+ satisfying the condition: for
each t1, t2 > 0 there exists r ≥ max{t1, t2} and N ∈ N such that

ϕn(r) < min{t1, t2} (1)

for all n > N . It is easy to see that (1) implies that, for each t > 0, there exists
r ≥ t and N ∈ N such that

ϕn(r) < t (2)

for all n > N .

Example 2.1. Let ϕ : R+ → R+ by ϕ(t) = t/2 for all t > 0. Then ϕ ∈ Φw∗ .

Let Φ denote the set of all functions ϕ : R+ → R+ satisfying the condition:

lim
n→∞

ϕn(t) = 0 (3)

for each t > 0. It is easy to see that, if the function ϕ ∈ Φ, then ϕ ∈ Φw∗ . But the
inverse is not true. See the following example:
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Example 2.2. Let ϕ : R+ → R+ be a function defined by ϕ(t) = t/2 for all
t ∈ [0, 1) and ϕ(t) = 1

t for all t ∈ [1,∞). For each t1, t2 > 0, there exists r >

max{1, t1, t2} such that 1
r < min{1, t1, t2} and hence ϕ(r) = 1

2r . Further, we have

ϕn(r) = 1
2nr for each n ∈ N, which implies that ϕ ∈ Φw∗ . However, ϕ /∈ Φ since

ϕ(1) = 1.

In [10], Fang introduced a class of functions denoted by Φw. More precisely, let
Φw denote the set of all functions ϕ : R+ → R+ satisfying the condition: for each
t > 0, there exists r ≥ t such that

lim
n→∞

ϕn(r) = 0.

For the property of Φw, the readers can refer to [10]. It is easy to see that, if
ϕ ∈ Φw, then ϕ ∈ Φw∗ . But the inverse is not true. See the following example:

Example 2.3. Let ϕ : R+ → R+ be a function defined by ϕ(t) = t for all t ∈ [0, 1],
ϕ(t) = 1

t for all t ∈ (1,∞). Then ϕ ∈ Φw∗ . In fact, for each t1, t2 > 0, there exists

r > max{1, t1, t2} such that 1
r < min{1, t1, t2}. Then we have

ϕn(r) =
1

r
< min{t1, t2}

for all n ∈ N and so ϕ ∈ Φw∗ . However, for each t > 0, it is easy to see that
limn→∞ ϕn(t) exists and limn→∞ ϕn(t) > 0 and so ϕ /∈ Φw.

For Φ, Φw and Φw∗ , we have Φ ⊂ Φw ⊂ Φw∗ .

Lemma 2.4. Let ϕ ∈ Φw∗ . Then, for each t > 0, there exists r ≥ t such that
ϕ(r) < t.

Proof. Suppose that there is t0 > 0 such that ϕ(r) ≥ t0 for all r ≥ t0. By induction,
we obtain that ϕn(r) ≥ t0 for all n ∈ N. From (2), it follows that there exists r ≥ t0
and N ∈ N such that ϕn(r) < t0 for all n > N , which contradicts ϕn(r) ≥ t0 for all
n ∈ N. Thus, for each t > 0, there exists r ≥ t such that ϕ(r) ≤ t. This completes
the proof. �

Lemma 2.5. Let ϕ ∈ Φw∗ and Fn, Gn : R→ [0, 1]. Assume that, for each n ∈ N ,
supt>0Gn(t) = 1 and

Fn(ϕn(t)) ≥ Gn(t)

for all t > 0. If each Fn is non-decreasing, then limn→∞ Fn(t) = 1 for each t > 0.

Proof. Since each supt>0Gn(t) = 1, for any ε > 0, there exists tn,0 > 0 such that
G(tn,0) > 1 − ε. Let t0 = supn≥1 tn,0. Then Gn(t0) > 1 − ε for each n ∈ N.
For any t > 0, since ϕ ∈ Φw∗ , there exist r ≥ max{t, t0} and N ∈ N such that
ϕn(r) < min{t, t0} for all n > N . Since each Fn is non-decreasing, we have

Fn(t) ≥ Fn(ϕn(r)) ≥ Gn(r) ≥ Gn(t0) > 1− ε
for all n > N . Thus it follows that limn→∞ Fn(t) = 1 for each t > 0. This completes
the proof. �

Now, we give the main result of this paper.
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Theorem 2.6. Let (X,F,∆) be a Menger PM-space under a t-norm ∆ of Hadžić-
type. Let T : X ×X → X and h : X → X be two mappings satisfying that

FT (x,y),T (u,v)(ϕ(t)) ≥ ∆(Fh(x),h(u)(t), Fh(y),h(v)(t)) (4)

for all x, y, u, v ∈ X and t > 0, where ϕ ∈ Φw∗ . Suppose that T (X ×X) ⊆ h(X)
and T (X × X) is complete. Then there exists a unique point (x∗, y∗) ∈ X × X
such that h(x∗) = h(y∗) = T (x∗, y∗) = T (y∗, x∗). Further, if h and T are weakly
compatible, then there exists unique x̂ ∈ X such that x̂ = h(x̂) = T (x̂, x̂).

Proof. Take x0, y0 ∈ X arbitrarily. Since T (X × X) ⊆ h(X), there exist two
sequences {xn}, {yn} ⊆ X such that

h(xn+1) = T (xn, yn), h(yn+1) = T (yn, xn) (5)

for all n ∈ N ∪ {0}.
Now we prove, by induction, that, for each n ∈ N,

min{Fh(xn+1),h(xn)(ϕ
n(t)), Fh(yn+1),h(yn)(ϕ

n(t))}
≥ ∆2n(Fh(x1),h(x0)(t), Fh(y1),h(y0)(t)). (6)

By (4) and (5), for n = 1, we have

Fh(x2),h(x1)(ϕ(t)) = FT (x1,y1),T (x0,y0)(ϕ(t))

≥ ∆(Fh(x1),h(x0)(t), Fh(y1),h(y0)(t))

and
Fh(y2),h(y1)(ϕ(t)) = FT (y1,x1),T (y0,x0)(ϕ(t))

≥ ∆(Fh(x1),h(x0)(t), Fh(y1),h(y0)(t)).

Hence (6) holds for n = 1. Now, assume that (6) holds for some n ∈ N. Then, by
(4)-(6) we have

Fh(xn+2),h(xn+1)(ϕ
n+1(t))

= FT (xn+1,yn+1),T (xn,yn)(ϕ
n+1(t))

≥ ∆(Fh(xn+1),h(xn)(ϕ
n(t)), Fh(yn+1),h(yn)(ϕ

n(t)))

≥ ∆(∆2n(Fh(x1),h(x0)(t), Fh(y1),h(y0)(t)),∆
2n(Fh(x1),h(x0)(t), Fh(y1),h(y0)(t)))

= ∆2n+1(Fh(x1),h(x0)(t), Fh(y1),h(y0)(t)).

Similarly, we have

Fh(yn+2),h(yn+1)(ϕ
n+1(t)) ≥ ∆2n+1(Fh(x1),h(x0)(t), Fh(y1),h(y0)(t))

and so
min{Fh(xn+2),h(xn+1)(ϕ

n+1(t)), Fh(yn+2),h(yn+1)(ϕ
n+1(t))}

≥ ∆2n+1(Fh(x1),h(x0)(t), Fh(y1),h(y0)(t)),

which implies that (6) holds for n+ 1. Therefore, (6) holds for all n ∈ N.
On the other hand, for each n ∈ N, put

Fn(ϕn(t)) = min{Fh(xn+1),h(xn)(ϕ
n(t)), Fh(yn+1),h(yn)(ϕ

n(t))}
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and

Gn(t) = ∆2n(Fh(x1),h(x0)(t), Fh(y1),h(y0)(t)).

Then, for each n ∈ N, since ∆ is of H-type, we have

sup
t>0

Gn(t) = 1, Fn(ϕn(t)) ≥ Gn(t).

By Lemma 2.5, we have limn→∞ Fn(t) = 1, which implies that

lim
n→∞

Fh(xn+1),h(xn)(t) = 1 (7)

for all t > 0 and

lim
n→∞

Fh(yn+1),h(yn)(t) = 1 (8)

for all t > 0.
Now, let n ∈ N and t > 0. From Lemma 2.4, it follows that there exists r ≥ t

such that ϕ(r) < t. We show, by induction, that, for each k ∈ N, there exists
nk ∈ N such that

min{Fh(xn),h(xn+k)(t), Fh(yn),h(yn+k)(t)}
≥ ∆nk(min{Fh(xn),h(xn+1)(t− ϕ(r)), Fh(yn),h(yn+1)(t− ϕ(r))}). (9)

For k = 1, let n1 = 1 such that (9) holds since

min{Fh(xn),h(xn+1)(t), Fh(yn),h(yn+1)(t)}
≥ ∆(min{Fh(xn),h(xn+1)(t− ϕ(r)), Fh(yn),h(yn+1)(t− ϕ(r))}).

Assume that (9) holds for some k ∈ N. Then, by (4), (9) and the monotonicity of
∆, we have

Fh(xn),h(xn+k+1)(t) ≥ ∆(Fh(xn),h(xn+1)(t− ϕ(r)), Fh(xn+1),h(xn+k+1
(ϕ(r)))

≥ ∆(Fh(xn),h(xn+1)(t− ϕ(r)),∆(Fh(xn),h(xn+k)(r), Fh(yn),h(yn+k)(r)))

≥ ∆(Fh(xn),h(xn+1)(t− ϕ(r)),∆(Fh(xn),h(xn+k)(t), Fh(yn),h(yn+k)(t)))

≥ ∆(Fh(xn),h(xn+1)(t− ϕ(r)),∆nk(Fh(xn),h(xn+1)(t− ϕ(r)),

Fh(yn),h(yn+1)(t− ϕ(r))))

= ∆(1,∆(Fh(xn),h(xn+1)(t− ϕ(r)),∆nk(Fh(xn),h(xn+1)(t− ϕ(r)),

Fh(yn),h(yn+1)(t− ϕ(r)))))

≥ ∆(Fh(yn),h(yn+1)(t− ϕ(r)),∆(Fh(xn),h(xn+1)(t− ϕ(r)),

∆nk(Fh(xn),h(xn+1)(t− ϕ(r)), Fh(yn),h(yn+1)(t− ϕ(r)))))

= ∆(∆(Fh(yn),h(yn+1)(t− ϕ(r)), Fh(xn),h(xn+1)(t− ϕ(r))),

∆nk(Fh(xn),h(xn+1)(t− ϕ(r)), Fh(yn),h(yn+1)(t− ϕ(r))))

= ∆nk+1(Fh(xn),h(xn+1)(t− ϕ(r)), Fh(yn),h(yn+1)(t− ϕ(r))).

Similarly, we have

Fh(yn),h(yn+k+1)(t) ≥ ∆bk+1(Fh(xn),h(xn+1)(t− ϕ(r)), Fh(yn),h(yn+1)(t− ϕ(r))).
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Thus one has

min{Fh(xn),h(xn+k+1)(t), Fh(yn),h(yn+k+1)(t)}
≥ ∆nk+1(Fh(xn),h(xn+1)(t− ϕ(r)), Fh(yn),h(yn+1)(t− ϕ(r))),

where nk+1 = 2nk + 2, which implies that (9) holds for k + 1. Therefore, (9) holds
for all k ∈ N.

Next, we show that {h(xn)} and {h(yn)} are Cauchy sequences, i.e.,

lim
m,n→∞

Fh(xn),h(xm)(t) = 1, lim
m,n→∞

Fh(yn),h(ym)(t) = 1

for any t > 0. Let t > 0 and ε > 0. By hypothesis, {∆n : n ∈ N} is equicontinuous
at 1 and so there exists δ > 0 such that, if s ∈ (1− δ, 1], then

∆n(s) > 1− ε (10)

for all n ∈ N. Notice that (7) and (8) imply that

lim
n→∞

Fh(xn),h(xn+1)(t− ϕ(r)) = 1, lim
n→∞

Fh(yn),h(yn+1)(t− ϕ(r)) = 1.

Hence there exists n0 ∈ N such that, for any n ≥ n0,

min{Fh(xn),h(xn+1)(t− ϕ(r)), Fh(yn),h(yn+1)(t− ϕ(r))} ∈ (1− δ, 1].

Thus, by (9) and (10), we have

min{Fh(xn),h(xn+k)(t), Fh(yn),h(yn+k)(t)} ≥ ∆(Fh(xn),h(xn+k)(t), Fh(yn),h(yn+k)(t)) > 1− ε

for any k ∈ N. This shows that

Fh(xn),h(xn+k)(t) > 1− ε, Fh(yn),h(yn+k)(t) > 1− ε
for all k ∈ N. This proves that {h(xn)} and {h(yn)} are Cauchy sequences. Since
T (X ×X) is complete and T (X ×X) ⊆ h(X), there exist x∗, y∗ ∈ X such that

lim
n→∞

FT (xn−1,yn−1),h(x∗)(t) = lim
n→∞

Fh(xn),h(x∗)(t) = 1 (11)

for all t > 0 and

lim
n→∞

FT (yn−1,xn−1),h(y∗)(t) = lim
n→∞

Fh(yn),h(y∗)(t) = 1 (12)

for all t > 0.
Next, we prove that h(x∗) = T (x∗, y∗) and h(y∗) = T (y∗, x∗). Let t > 0. By

Lemma 2.4, there exists r ≥ t such that ϕ(r) < t and so

FT (x∗,y∗),h(x∗)(t)

≥ ∆(FT (x∗,y∗),T (xn,yn)(ϕ(r)), FT (xn,yn),h(x∗)(t− ϕ(r)))

≥ ∆(∆(Fh(x∗),h(xn)(r), Fh(y∗),h(yn)(r)), FT (xn,yn),h(x∗)(t− ϕ(r))). (13)

Letting n→∞ in (13), by (11) and (12), we have

FT (x∗,y∗),h(x∗)(t) ≥ ∆(∆(1, 1), 1) = 1

for all t > 0 and so T (x∗, y∗) = h(x∗). Similarly, we can prove that T (y∗, x∗) =
h(y∗).

Now, we prove that, if (x′, y′) ∈ X ×X is another coupled coincidence point of
h and T , then h(x∗) = h(x′) and h(y∗) = h(y′).
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For each t > 0, by (4), we have

Fh(x′),h(x∗)(ϕ(t)) = FT (x′,y′),T (x∗,y∗)(ϕ(t)) ≥ ∆(Fh(x′),h(x∗)(t), Fh(y′),h(y∗)(t))

and

Fh(y′),h(y∗)(ϕ(t)) = FT (y′,x′),T (y∗,x∗)(ϕ(t)) ≥ ∆(Fh(y′),h(y∗)(t), Fh(x′),h(x∗)(t)),

which follow that

∆(Fh(x′),h(x∗)(ϕ(t)), Fh(y′),h(y∗)(ϕ(t))) ≥ ∆2
(
Fh(x′),h(x∗)(t), Fh(y′),h(y∗)(t)

)
.

By induction, we have

min{Fh(x′),h(x∗)(ϕ
n(t)), Fh(y′),h(y∗)(ϕ

n(t))}
≥ ∆(Fh(x′),h(x∗)(ϕ

n(t)), Fh(y′),h(y∗)(ϕ
n(t)))

≥ ∆2n
(
Fh(x′),h(x∗)(t), Fh(y′),h(y∗)(t)

)
.

From Lemma 2.5, it follows that h(x′) = h(x∗) and h(y′) = h(y∗). This shows that
(x∗, y∗) is the unique coupled coincidence point of h and T .

Now, we show that h(x∗) = h(y∗). In fact, from (4), we have

Fh(x∗),h(yn)(ϕ(t)) = FT (x∗,y∗),T (yn−1,xn−1)(ϕ(t))

≥ ∆(Fh(x∗),h(yn−1)(t), Fh(y∗),h(xn−1)(t)) (14)

and
Fh(y∗),h(xn)(ϕ(t)) = FT (y∗,x∗),T (xn−1,yn−1)(ϕ(t))

≥ ∆(Fh(y∗),h(xn−1)(t), Fh(x∗),h(yn−1)(t)) (15)

for all t > 0. Let Mn(t) = ∆(Fh(y∗),h(xn)(t), Fh(x∗),h(yn)(t)) for all t > 0. From (14)
and (15), it follows that

Mn(ϕn(t)) ≥ ∆2
(
Mn−1(ϕn−1(t))

)
≥ · · · ≥ ∆2n

(
M0(t)

)
for all t > 0. By Lemma 2.5, we have limn→∞Mn(t) = 1, which implies that

lim
n→∞

Fh(y∗),h(xn)(t) = lim
n→∞

Fh(x∗),h(yn)(t) = 1

for all t > 0. Hence h(xn) → h(y∗) as n → ∞. Since the limit point of {h(xn)} is
unique, h(x∗) = h(y∗).

Suppose that h and T are, in addition, weakly compatible. Let x̂ = h(x∗). Then
x̂ = h(y∗) since h(x∗) = h(y∗). Further, we have

h(x̂) = h(h(x∗)) = h(T (x∗, y∗)) = T (h(x∗), h(y∗)) = T (x̂, x̂),

which implies that (x̂, x̂) is a coupled coincidence point of h and T . Since g and
F have a unique coupled point of coincidence, we can conclude that h(x̂) = h(x∗),
i.e., h(x̂) = x̂. Therefore, we have x̂ = h(x̂) = T (x̂, x̂), that is, x̂ is a common fixed
point of h and T .

Finally, we prove the uniqueness of common fixed point of h and T . Let v ∈ X
such that v = h(v) = T (v, v). By (4), we have

Fx̂,v(ϕ(t)) = FT (x̂,x̂),T (v,v)(ϕ(t)) ≥ ∆(Fh(x̂),h(v)(t), Fh(x̂),h(v)(t)) = ∆2
(
Fx̂,v(t)

)
,
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which implies that

Fx̂,v(ϕn(t)) ≥ ∆2n
(
Fx̂,v(t)

)
.

By Lemma 2.5, it follows that Fx̂,v(t) = 1 for all t > 0. Hence x̂ = v. This
completes the proof. �

Let Ψ denote the set of functions ψ : [0, 1] → [0, 1] satisfying the conditions
ψ−1(0) = {0}, ψ−1(1) = {1} and ψ(t) > t for all t ∈ (0, 1). Then, by Theorem 2.6,
we get the following:

Corollary 2.7. Let (X,F,∆) be a Menger PM-space under a t-norm ∆ of Hadžić-
type. Let T : X ×X → X and h : X → X be two mappings satisfying that

FT (x,y),T (u,v)(ϕ(t)) ≥ ψ(∆(Fh(x),h(u)(t), Fh(y),h(v)(t))) (16)

for all x, y, u, v ∈ X and t > 0, where ϕ ∈ Φw∗ and ψ ∈ Ψ. Suppose that T (X ×
X) ⊆ h(X) and T (X ×X) is complete. Then there exists a unique point (x∗, y∗) ∈
X ×X such that h(x∗) = h(y∗) = T (x∗, y∗) = T (y∗, x∗). Further, if h and T are
weakly compatible, then there exists a unique point x̂ ∈ X such that x̂ = h(x̂) =
T (x̂, x̂).

Proof. Since ψ ∈ Ψ, ψ(t) ≥ t for all t ∈ [0, 1], by (16),

FT (x,y),T (u,v)(ϕ(t)) ≥ ψ(∆(Fh(x),h(u)(t), Fh(y),h(v)(t)))

≥ ∆(Fh(x),h(u)(t), Fh(y),h(v)(t))

for all x, y, u, v ∈ X and t > 0. From Theorem 2.6, it follows that the conclusion
holds. This completes the proof. �

In Corollary 2.7, if ψ(t) =
√
t for all t ∈ [0, 1], then we have the following:

Corollary 2.8. Let (X,F,∆) be a Menger PM-space under the t-norm ∆ of Hadžić-
type. Let T : X ×X → X and h : X → X be two mappings satisfying that

FT (x,y),T (u,v)(ϕ(t)) ≥
√

∆(Fh(x),h(u)(t), Fh(y),h(v)(t))

, for all x, y, u, v ∈ X and t > 0, where ϕ ∈ Φw∗ . Suppose that T (X ×X) ⊆ h(X)
and T (X × X) is complete. Then there exists a unique point (x∗, y∗) ∈ X × X
such that h(x∗) = h(y∗) = T (x∗, y∗) = T (y∗, x∗). Further, if h and T are weakly
compatible, then there exists a unique point x̂ ∈ X such that x̂ = h(x̂) = T (x̂, x̂).

Remark 2.9. In [25, Theorem 2.1], the t-norm ∆ is required to satisfy that ∆ ≥
∆P . However, Corollary 2.8 has no this restriction. Also, the function ϕ in [25,
Theorem 2.1] needs to satisfy the condition that

∑∞
n=1 ϕ

n(t) < +∞ for all t > 0.
Obviously, this condition is stronger than the one on ϕ in Corollary 2.8. Thus
Corollary 2.8 improves Theorem 2.1 in [25].
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3. Applications

As applications of Theorem 2.6, we first give a coupled fixed point theorem in
usual metric spaces.

Lemma 3.1. [10] Let (X, d) be a metric space. Define a mapping F : X×X → D+

by

Fx,y(t) =

{
0, t ≤ 0 or d(x, y) > t > 0,

1, d(x, y) ≤ t (t > 0)
(17)

for all x, y ∈ X. Then (X,F,∆M ) is a Menger PM-space. It is called the induced
Menger PM-space by (X, d) and it is complete if and only if (X, d) is complete.

Theorem 3.2. Let (X, d) be a complete metric space and ϕ ∈ Φw∗ be a non-
decreasing function. Let T : X × X → X and h : X → X be two mappings
satisfying

d(T (x, y), T (u, v)) ≤ ϕ(min{d(x, u), d(y, v)}) (18)

for all x, y, u, v ∈ X. Suppose that T (X ×X) ⊆ h(X) and T (X ×X) is complete.
Then there exists a unique point (x∗, y∗) ∈ X ×X such that h(x∗) = T (x∗, y∗) and
h(y∗) = T (y∗, x∗). Further, if h and T are weakly compatible, then there exists
unique x̂ ∈ X such that x̂ = h(x̂) = T (x̂, x̂).

Proof. For any t > 0, if t < d(h(x), h(u)) or t < d(h(y), h(v)), then we have

min{Fh(x),h(u)(t), Fh(y),h(v)(t)} = 0

and hence (4) holds. If t ≥ d(h(x), h(u)) and t ≥ d(h(y), h(v)), then we have

min{Fh(x),h(u)(t), Fh(y),h(v)(t)} = 1.

Since ϕ is non-decreasing, from (18), it follows that

d(T (x, y), T (u, v)) ≤ ϕ(min{d(h(x), h(u)), d(h(y), h(v))}) ≤ ϕ(t).

From (17), we have FT (x,y),T (u,v)(ϕ(t)) = 1 and so (4) holds. Therefore, T and
h satisfy the condition (4) for all x, y, u, v ∈ X. Therefore, from Theorem 2.6, it
follows that Theorem 3.2 holds. This completes the proof. �

Before giving applications in fuzzy metric spaces, we first recall the concept of
fuzzy metric spaces in the sense of Kramosil and Michálek as follows:

Definition 3.3. [15] A fuzzy metric space in the sense of Kramosil and Michálek
is a triple (X,M,∆), where X is a nonempty set, ∆ is a continuous t-norm and M
is a fuzzy set on X2 × [0,∞) satisfying the following conditions: for all x, y, z ∈ X
and s, t > 0,

(KM-1) M(x, y, 0) = 0;

(KM-2) M(x, y, t) = 1 for all t > 0 if and only if x = y;

(KM-3) M(x, y, t) = M(y, x, t);

(KM-4) M(x, z, t+ s) ≥ ∆(M(x, y, t),M(y, z, s));

(KM-5) M(x, y, ·) : R+ → [0, 1] is left continuous.
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Let (X,M,∆) be aKM -fuzzy metric space. It is known that, if limt→∞M(x, y, t) =

1 for all x, y ∈ X, then (X,F,∆) is a Menger PM-space (see [10, Lemma 2.2]), where

Fx,y(t) =

{
M(x, y, t), t ≥ 0,

0, t < 0.

Thus the conclusion of Theorem 2.6 holds in a KM -fuzzy metric space and so we
can state the conclusion as follows:

Theorem 3.4. Let (X,M,∆) be a KM-fuzzy space under the t-norm ∆ of Hadžić-
type. Let T : X ×X → X and h : X → X be two mappings satisfying

M(T (x, y), T (u, v), ϕ(t)) ≥ ∆(M(h(x), h(u), t),M(h(y), h(v), t))

for all x, y, u, v ∈ X and t > 0, where ϕ ∈ Φw∗ . Suppose that T (X ×X) ⊆ h(X),
T (X × X) is complete, h and T are weakly compatible. Then there exists unique
u ∈ X such that u = h(u) = T (u, u).

Remark 3.5. In [12], the function ϕ is required to be non-decreasing, upper semi-
continuous from the right and satisfy

∞∑
n=0

ϕn(t) < +∞

for all t > 0. Obviously, if ϕ satisfies the condition
∞∑

n=0

ϕn(t) < +∞

for all t > 0, then ϕ ∈ Φw∗ . The converse is not true (see Example 2.2). Thus
the condition on ϕ is simpler than one in [12]. Thus Theorem 3.4 improves the
corresponding ones in [12].

Finally, we give an example to illustrate Theorem 2.6.

Example 3.6. LetX = {2n : n ∈ N}∪{0} and define the mapping F : X×X → D+

by Fx,y(0) = 0 for all x, y ∈ X, Fx,x(t) = 1 for all x ∈ X and t > 0,

Fx,y(t) = Fy,x(t) =


3

5
, 0 < t ≤ |x− y|,

1, t > |x− y|

for all x, y ∈ X with x 6= y. It is easy to see that (X,F,∆M ) is a complete Menger
PM-space.

Let T : X ×X → X and h : X → X be two mappings defined by

T (x, y) = 0

for all x, y ∈ X with xy = 0,

T (2, y) = 0

for all y ∈ X,

T (x, y) = x
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for all x, y ∈ X with xy 6= 0 and x 6= 2 and

h(0) = 0, h(2n) = 2n+1

for each n ∈ N, respectively. It is easy to see that T (X ×X) = h(X) = {2n+1 : n ∈
N}∪{0} and so h(X) is complete. We also see that T and h are weakly compatible.

Let ϕ : R+ → R+ be a function defined by

ϕ(t) =

{
t, 0 ≤ t ≤ 1,

t− 1, t > 1.

Then ϕ ∈ Φw∗ . In fact, for each t1, t2 ∈ (0,∞), there exists r = N+ε, where N ∈ N
with N > max{t1, t2} and ε < min{t1, t2} such that ϕn(r) = ε < min{t1, t2} for all
n ∈ N with n ≥ N . Thus ϕ ∈ Φw∗ . However, ϕ /∈ Φw since limn→∞ ϕn(t) ∈ (0, 1)
for all t > 0.

Now, we show that T and h satisfy the condition (4). For all x, y, u, v ∈ X, if
xy = 0 and uv = 0, then T and h satisfy (4) since T (x, y) = T (u, v) = 0. For all
x, y, u, v ∈ X with xy 6= 0 or uv 6= 0 and t > 0, if ϕ(t) > |T (x, y) − T (u, v)|, then
we have

FT (x,y),T (u,v)(ϕ(t)) = 1 ≥ min{Fh(x),h(u)(t), Fh(y),h(v)(t)}.
Next, assume that ϕ(t) ≤ |T (x, y)− T (u, v)|. We show the condition (4) by the

following cases:

(A) xy = 0, u = 2n, v = 2m: For all t > 0, ϕ(t) < |T (x, y) − T (u, v)| = 2n

implies that t < 2n + 1 < 2n+1 = h(u) and so

FT (x,y),T (u,v)(ϕ(t)) =
3

5
= min{Fh(x),h(u)(t), Fh(y),h(v)(t)} =

3

5
.

(B) xy 6= 0 and uv 6= 0: Let x = 2s, y = 2l, u = 2m and v = 2n for each
l, s,m, n ∈ N. For all t > 0, ϕ(t) < |T (x, y) − T (u, v)| = |2l − 2m| implies that
t < |2l − 2m|+ 1 < |2l+1 − 2m+1| = 2|2l − 2n| = |h(x)− h(u)| and so

FT (x,y),T (u,v)(ϕ(t)) =
3

5
= min{Fh(x),h(u)(t), Fh(y),h(v)(t)}.

By the cases above, (4) holds for all x, y, u, v ∈ X and t > 0. Therefore, by
Theorem 2.6, there exists x∗ ∈ X such that x∗ = T (x∗, y∗) = h(x∗). In fact,
x∗ = 0.

4. Conclusion

In this paper, we have proved some new coupled fixed point theorems for
ϕ-contractions in Menger PM-spaces and fuzzy metric spaces with the t-norm of
H-type. In the results, the gauge function ϕ only needs to satisfy the condition
(1), i.e., for each t1, t2 > 0, there exists r ≥ max{t1, t2} and N ∈ N such that

ϕn(r) < min{t1, t2}
for all n > N . In fact, it is the weakest condition in the similar results given in
some papers. Therefore, the results in this paper improve some theorems in the
papers [12, 25]. Can The condition (1) be weakened further? This question is an
interesting and worthy question for further investigation.
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[16] V. Lakahmikantham and L. B. Ćirić, Coupled fixed point theorems for nonlinear contractions

in partially ordered metric spaces, Nonlinear Anal., 70 (2009), 4341–4349.

[17] N. V. Luong and N. X. Thuan, Coupled fixed points in partially ordered metric spaces and
application, Nonlinear Anal., 74 (2011), 983–992.

[18] K. Menger, Statistical metric, Proc Natl. Acad. USA., 28 (1942), 535–537.

[19] D. O’Regan and R. Saadati, Nonlinear contraction theorems in probabilistic spaces, Appl.
Math. Comput., 195 (2008), 86–93.

[20] R. Saadati, Generalized distance and fixed point theorems in partially ordered probabilistic
metric spaces, Mate. Vesnik, 65 (2013), 82–93.

[21] B. Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially

ordered metric spaces, Nonlinear Anal., 71 (2010), 4508–4517.

[22] B. Schweizer and A. Sklar, Probabilisitc Metric Spaces, Elsevier/North-Holland, New York,
1983.

[23] S. Sedghi, I. Altun and N. Shobec, Coupled fixed point theorems for contractions in fuzzy
metric spaces, Nonlinear Anal., 72 (2010), 1298–1304.



108 S. H. Wang, A. A. N. Abdou and Y. J. Cho

[24] V. M. Sehgal and A. T. Bharucha-Reid, Fixed points of contraction mappings on probabilistic

metric space, Math Syst. Theory, 6 (1972), 87–102.

[25] J. Z. Xiao, X. H. Zhu and Y. F. Cao, Common coupled fixed point results for probabilistic
ϕ-contractions in Menger spaces, Nonlinear Anal., 74 (2011), 4589–4600.

S. H. Wang, Department of Mathematics and Physics, North China Electric Power

University, Baoding, China

E-mail address: sheng-huawang@hotmail.com

A. A. N. Abdou, Department of Mathematics, King Abdulaziz University, Jeddah,

Saudi Arabia
E-mail address: aabdou@kau.edu.cn

Y. J. Cho∗, Department of Education Mathematics and RINS, Gyeongsang National
University, Jinju, Korean

E-mail address: yjcho@gnu.ac.kr

*Corresponding author


