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A GENERALIZATION OF THE CHEN-WU DUALITY INTO

QUANTALE-VALUED SETTING

C. SHEN, S. S. ZHANG, W. YAO AND C. C. ZHANG

Abstract. With the unit interval [0,1] as the truth value table, Chen and Wu
presented the concept of possibility computation over dcpos. Indeed, every

possibility computation can be considered as a [0,1]-valued Scott open set on a

dcpo. The aim of this paper is to study Chen-Wu’s duality on quantale-valued
setting. For clarity, with a commutative unital quantale L as the truth value

table, we introduce a concept of fuzzy possibility computations over fuzzy

dcpos and then establish an equivalence between their denotational semantics
and their logical semantics.

1. Introduction

As has been documented in [22], the semantics of programming languages has
been intensively studied by both mathematicians and computer scientists. By
proposing domain theory, in the late 1960s Dana S. Scott invented appropriate
semantic domains in [18, 19]. In domain theory, computation in general involves
two classes: determinism and non-derterminism. Deterministic computation means
that the computed results are deterministic for a given input. However, if a non-
deterministic program runs several times with a same input, it may produce differ-
ent outputs. As we know, an important problem in domain theory is the modelling
of non-deterministic features of programming languages and of parallel features
treated in a non-deterministic way. In order to describe this non-determinism, the
concept of powerdomain [8, 12, 13, 20] is introduced. Another method for descrip-
tion of non-determinism consists in quantifying this non-determinism by means of
probability or possibility. Probabilistic non-determinism has also been studied and
has led to the probabilistic powerdomain as a model [9, 10, 14, 21]. Different runs
of a probabilistic program with the same input may again result in different out-
puts. In this situation, we need to know how likely these outputs are. Thus, a
probability distribution or a continuous valuation on the domain of final states is
chosen to describe such a behaviour. Based on this idea, Chen and Wu [3] proposed
the concept of possibility valuations.

In computer science, standard or classic predicates are subsets of states, or can
equivalently be regarded as {0, 1}-valued functions defined on states. Chen and
Jung [4] generalized classic predicates to the fuzzy case in such a way that fuzzy
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predicates on a dcpo D are Scott-continuous functions from D to the unit inter-
val [0, 1]. Also, Chen and Wu [3] introduced the notion of healthy fuzzy predicate
transformers and gave the logical semantics of possibility computations. They suc-
cessfully established the equivalence between denotational and logical semantics of
possibility computations.

In this paper, we will consider a new kind of non-deterministic computations,
called L-fuzzy possibility computations. The L-fuzzy possibility computations, in
contrast with the possibility computations, consider the L-fuzzy possibility degree
(i.e., the results of possibility value replaced by a general ordered structure L)
as a state that the fuzzy domain of states lies in a fuzzy Scott open set on that
fuzzy domain, which are more extensive than the possibility computation in [3]. In
other words, we will define an L-fuzzy possibility distribution of states on the fuzzy
Scott open topology of fuzzy dcpos by giving the L-fuzzy possibility that a state
belongs to a certain fuzzy Scott open set. The goal of this kind of non-deterministic
computations is to give, for a given input, the L-fuzzy possibility distributions of
final states on fuzzy Scott topology of the fuzzy domain. Precisely, for a given fuzzy
dcpo, we will establish a one-to-one correspondence between an L-fuzzy possibility
computation and its L-fuzzy logical semantics.

Let L be a complete lattice. The greatest element of L is denoted by 1 and the
least element of L is denoted by 0. For S ⊆ L, write

∨
S for the least upper bound

of S and
∧
S for the greatest lower bound of S. In particular,

∨
∅ = 0 and

∧
∅ = 1.

A commutative quantale is a pair (L, ∗), where L is a complete lattice and
∗ : L × L → L is a commutative, associative, and monotone operation such that
a ∗ ( ) has a right adjoint for each a ∈ L. The operation ∗ is called a tensor, or a
tensor product, on L. The right adjoint of a ∗ ( ) is denoted a→ ( ). The resulting
binary operation →: L× L→ L, given by → (a, b) = a→ b, is called the cotensor
corresponding to ∗. A commutative quantale is called unital if the tensor has a
unit I , i.e., a ∗ I = a for each a ∈ L. It should be noted that the unit I need not
be the greatest element 1 of L.

Some basic properties of the tensor ∗ and the implication operation → are col-
lected in the following proposition.

Proposition 1.1. [15, 23] Suppose that (L, ∗, I) is a commutative unital quantale
and → is the cotensor corresponding to ∗. Then for all a, b, c, r ∈ L and {aj}j∈J ⊆
L, the following conditions hold:

(I1) a ∗ b ≤ c⇐⇒ a ≤ b→ c,
(I2) a→ b =

∨
{r| a ∗ r ≤ b},

(I3) I → a = a,
(I4) (a→ b) ∗ (b→ c) ≤ (a→ c),
(I5) a ∗

∨
j∈J aj =

∨
j∈J a ∗ aj,

(I6) (
∨
j∈J aj)→ b =

∧
j∈J(aj → b),

(I7) a→ (
∧
j∈J aj) =

∧
j∈J(a→ aj),

(I8) (a→ b)→ (a→ c) ≥ b→ c,
(I9) (a→ c)→ (b→ c) ≥ b→ a,
(I10) a→ (b→ c) = (a ∗ b)→ c.



A Generalization of the Chen-Wu Duality Into Quantale-valued Setting 131

Throughout this paper, the triple (L, ∗, I), simply L when there is no confusion,
always denotes a commutative unital quantale.

Let X be a set. Each A ∈ LX is called an L-subset of X. For an element a in L,
we use the symbol aX to stand for the constant map from X to L with the value
a. For A,B ∈ LX , A ∗ B ∈ LX denotes the L-subset of X sending each x ∈ X to
A(x) ∗B(x). For a ∈ L, we write aX ∗B as a ∗B for short.

Definition 1.2. [11] Let X be a nonempty set. An L-order (or, a fuzzy order)
on X is a map e : X ×X −→ L such that

(E1) Self-reflexivity: e(x, x) ≥ I for each x ∈ X,
(E2) Transitivity: e(x, y) ∗ e(y, z) ≤ e(x, z) for all x, y, z ∈ X,
(E3) Antisymmetric: if e(x, y) ≥ I and e(y, x) ≥ I, then x = y.
The pair (X, e) is called an L-ordered set (or, a fuzzy poset).

Example 1.3. (1) Define eL : L × L → L by eL(x, y) = x → y for all x, y ∈ L.
Then eL is an L-order on L [1].

(2) For a given set X, the fuzzy inclusion order of fuzzy subsets or subsethood
degree [7] of A in B is defined by subX(A,B) =

∧
x∈X A(x)→ B(x) (∀A,B ∈ LX).

Then subX : LX × LX → L is an L-order on LX [1].
(3) For a given L-ordered set (X, e), define ≤e⊆ X ×X as x ≤e y ⇔ e(x, y) ≥ I

for all x, y ∈ X. It is trivial to check that ≤e is an ordinary partial order on X.
Conversely, for each ordinary partially ordered set (X,≤), define e≤ : X ×X → L
as e≤(x, y) = I if x ≤ y, and e≤(x, y) = 0 otherwise. It is easy to see that e≤ is an
L-order on X.

Definition 1.4. [30, 31] For x ∈ X, ↓x ∈ LX (resp., ↑x ∈ LX) is defined as

∀y ∈ X, ↓x(y) = e(y, x) (resp., ∀y ∈ X, ↑x(y) = e(x, y)).

Definition 1.5. [6] Let (X, e) be an L-ordered set. A ∈ LX is called a fuzzy
upper set (resp., fuzzy lower set) if A = ↑A (resp., A = ↓A), where ↑A(x) =∨
y∈X e(y, x) ∗A(y) (resp., ↓A(x) =

∨
y∈X e(x, y) ∗A(y)).

It is easy to verify that A is a fuzzy upper set (resp., a fuzzy lower set) if and
only if A(x) ∗ e(x, y) ≤ A(y) (resp., A(x) ∗ e(y, x) ≤ A(y)) for all x, y ∈ X.

Definition 1.6. [30, 31] Let (X, e) be an L-ordered set with x0 ∈ X and A ∈ LX .
The element x0 is called a join (resp., meet) of A (w.r.t. the L-order e), in symbols
x0 =

⊔
A (resp., x0 =

d
A), if

(1) ∀x ∈ X,A(x) ≤ e(x, x0) (resp., A(x) ≤ e(x0, x));
(2) ∀y ∈ X,

∧
x∈X

A(x) → e(x, y) ≤ e(x0, y) (resp.,
∧
x∈X

A(x) → e(y, x) ≤

e(y, x0)).

It is easy to verify by (E3) that if x1 and x2 are two joins (or meets) of A, then
x1 = x2. That is, each A ∈ LX has at most one join (or meet).

Proposition 1.7. [24, 30, 31] Let (X, e) be an L-ordered set and S ∈ LX . Then
(1) x0 =

⊔
S if and only if e(x0, x) =

∧
y∈X(S(y)→e(y, x)).

(2) x0 =
d
S if and only if e(x, x0) =

∧
y∈X(S(y)→e(x, y)).
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(3) ∀x ∈ X, x =
⊔
↓x.

(4) ∀x ∈ X, x =
d
↑x.

Definition 1.8. [1, 2] An L-ordered set (X, e) is called a fuzzy complete lattice
if for each A ∈ LX ,

d
A and

⊔
A exist.

Example 1.9. For the L-ordered set (LX , subX), where subX is the subsethood
degree function on LX , it follows from [1] that both

⊔
R and

d
R exist for each

R : LX → L, and they can be determined by the following formulas:
l

R =
∧

A∈LX

R(A)→ A and
⊔

R =
∨

A∈LX

R(A) ∗A.

Hence, (LX , subX) is a fuzzy complete lattice.

Theorem 1.10. [24] Let (X, e) be an L-ordered set. The following are equivalent:
(1) (X, e) is fuzzy complete;
(2) For each A ∈ LX ,

d
A exists;

(3) For each A ∈ LX ,
⊔
A exists.

Definition 1.11. [30, 31] Let (X, eX) and (Y, eY ) be two L-ordered sets. A map
f : (X, eX) −→ (Y, eY ) is called order-preserving or isotone (resp., antitone) if for
all x, y ∈ X, eX(x, y) ≤ eY (f(x), f(y)) (resp., eX(x, y) ≤ eY (f(y), f(x)).

Two L-ordered sets (X, eX) and (Y, eY ) are order-isomorphic if and only if there
exist order-preserving maps ϕ : X −→ Y and ψ : Y −→ X such that ϕ ◦ ψ = idY
and ψ ◦ ϕ = idX . Such maps are called order-isomorphisms.

Definition 1.12. [11, 25] Let (X, e) be an L-ordered set. D ∈ LX is called a fuzzy
directed subset if

(1)
∨
x∈X D(x) ≥ I, and

(2) for all x, y ∈ X, D(x) ∗D(y) ≤
∨
z∈X D(z) ∗ e(x, z) ∗ e(y, z).

A fuzzy directed subset is a fuzzy ideal if it is a fuzzy lower set additionally.
The sets of all fuzzy directed subsets and all fuzzy ideals on X are denoted by
DL(X) and IL(X), respectively. An L-ordered set is called a fuzzy dcpo if each
fuzzy directed subset has a join.

For each map f : X −→ Y, we have a map f→L : LX −→ LY (called the L-forward
powerset operator, cf. [16, 17]) defined by

f→L (A)(y) =
∨

f(x)=y

A(x) (∀y ∈ Y,∀A ∈ LX).

The right adjoint of f→L is denoted by f←L (called the L-backward powerset
operator, cf. [16, 17]) and given by

∀B ∈ LY , f←L (B) = B ◦ f.

Definition 1.13. [26] Given two fuzzy dcpos (X, eX) and (Y, eY ), a fuzzy order-
preserving map f : (X, eX) −→ (Y, eY ) is said to be fuzzy Scott continuous if for
each D ∈ DL(X), f(

⊔
D) =

⊔
f→L (D).
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Definition 1.14. [26] Let (X, e) be a fuzzy dcpo. A ∈ LX is said to be a
fuzzy Scott open set if A is a fuzzy upper set and A(

⊔
J) ≤

∨
x∈X A(x) ∗ J(x) for

each J ∈ IL(X). The set of all fuzzy Scott open sets on X is denoted by σL(X),
called the fuzzy Scot topology on (X, e).

2. Fuzzy Scott Topology on Fuzzy Dcpos Revisited

With a complete Heyting algebra as the truth value table, fuzzy Scott topology
on fuzzy dcpos are defined and studied in [26]. Fuzzy Scott topology on fuzzy dcpos
seems a reasonable fuzzy version of the classic one since the Scott convergence of
stratified L-filters is closely related to continuity of the underlying fuzzy dcpos [26]
and the fuzzy Scott topology on a continuous fuzzy dcpo is modified L-sober [27].

There is always a question of great concern that, can we generalize the fuzzy
Scott topology for some more general lattices? In this section, we would like to
answer this question and give some preliminary results.

Definition 2.1. [5] An L-topology on a set X is a subset τ ⊆ LX such that
(O1) 0X ∈ τ , 1X ∈ τ,
(O2) U ∧ V ∈ τ for all U, V ∈ τ,
(O3)

∨
i∈I Ui ∈ τ for each subfamily {Ui| i ∈ I} of τ .

An L-topology τ is stratified if
(O4) a ∗ U ∈ τ for all a ∈ L and U ∈ τ.

An L-topology τ is co-stratified if
(O5) a→ U ∈ τ for all a ∈ L and U ∈ τ.

An L-topology τ is strong if it is both stratified and co-stratified.

Remark 2.2. Let L be a commutative unital quantale. For a fuzzy dcpo (X, e),
although we call σL(X) the fuzzy Scott topology on X, it indeed is not an L-
topology since (O2) is not satisfied necessarily [29]. But it is straightforward to
show that σL(X) is stratified. Specifically, let U ∈ σL(X) and J ∈ IL(X). On one
hand, it is easy to verify that a ∗U is an upper set; on another hand, we have that

a ∗ U(
⊔
J) ≤ a ∗ (

∨
x∈X

U(x) ∗ J(x)) =
∨
x∈X

(a ∗ U)(x) ∗ J(x).

Hence, a ∗ U ∈ σL(X). The reason for the name of fuzzy Scott topology is that it
really acts as a fuzzy counterpart of the classic Scott topology in domain theory.

Example 2.3. [5] Let (L, ∗) = ([0, 1],∧), X = [0, 1], and id : [0, 1] −→ [0, 1] be the
identity function.

(1) The family τ = {a ∧ (b ∨ id)| a, b ∈ [0, 1]} is a stratified but not co-stratified
L-topology on X since a→ id /∈ τ for all 0 < a < 1.

(2) For each a ∈ [0, 1], let

µa(x) =

{
x, 0 ≤ x ≤ a;
1, a < x < 1.

Then δ = {a → id| a ∈ [0, 1]} ∪ {µa| a ∈ [0, 1]} ∪ {0X} is a co-stratified but not
stratified L-topology on X.
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A complete lattice L is called a frame if L satisfies the infinite distributive law
of finite meets over arbitrary joins, i.e.,

a ∧
∨
B =

∨
b∈B

a ∧ b

for any a ∈ L, B ⊆ L. Clearly, a frame is a commutative unital quantale by
regarding ∧ as ∗.

Lemma 2.4. [28] Considering a frame L as a fuzzy dcpo on itself, we have

σL(L) = {aL ∨ (bL ∧ idL)| a ≤ b}.

Remark 2.5. The fuzzy Scott topology σL(X) on a fuzzy dcpo X need not be
co-stratified even if L is a frame. Here we have an example. Let L = {0, a, 1} be a
lattice with the order 0 ≤ a ≤ 1. Clearly, (L,∧) is a frame. By Lemma 2.3, we get
the fuzzy Scott topology σL(L) = {0L, A1, idL, A2, aL, 1L} as follows:

0L A1 idL A2 aL 1L
0 0 0 0 a a 1
a 0 a a a a 1
1 0 a 1 1 a 1

Then we have that

(a→ idL)(0) = a→ 0 = 0; (a→ idL)(a) = a→ a = 1; (a→ idL)(1) = a→ 1 = 1.

It follows that a→ idL /∈ σL(L). Hence, σL(L) is not co-stratified.

Theorem 2.6. The fuzzy poset (σL(E), subE) is a fuzzy complete lattice, where for
each A ∈ LσL(E),

⊔
A =

∨
U∈σL(E)A(U) ∗ U .

Proof. We first show that
∨
U∈σL(E)A(U)∗U is a fuzzy upper set. For all x, y ∈ E,

we have that

(
∨
U∈σL(E)A(U) ∗ U)(x) ∗ eE(x, y) = (

∨
U∈σL(E)A(U) ∗ U(x)) ∗ eE(x, y)

=
∨
U∈σL(E)A(U) ∗ (U(x) ∗ eE(x, y))

≤
∨
U∈σL(E)A(U) ∗ U(y)

= (
∨
U∈σL(E)A(U) ∗ U)(y).

Secondly for each J ∈ IL(E), we have

(
∨
U∈σL(E)A(U) ∗ U)(

⊔
J) =

∨
U∈σL(E)A(U) ∗ U(

⊔
J)

≤
∨
U∈σL(E)A(U) ∗

∨
x∈E U(x) ∗ J(x)

=
∨
x∈E(

∨
U∈σL(E)A(U) ∗ U(x)) ∗ J(x)

=
∨
x∈E(

∨
U∈σL(E)A(U) ∗ U)(x) ∗ J(x).

Then
∨
U∈σL(E)A(U) ∗ U ∈ σL(E). Furthermore,

∀A ∈ σL(E), subE(
∧

U∈σL(E)

A(U) ∗ U,A) =
∧

U∈σL(E)

A(U)→ subE(U,A).

Hence,
⊔
A =

∨
U∈σL(E)A(U) ∗ U . �
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3. A Duality Between L-fuzzy Possibility Computation and Its L-fuzzy
Logical Semantics

In domain theory, non-determinism is one class of computations which means
that the computed results are more than one possibility for a given input. An
important problem is how to describe non-determinism. In general, there are two
methods: the powerdomains [8, 12, 13, 20] and a possibilistic (or probabilistic)
model [10, 14]. Chen and Wu [3] considered the model of possibility computation,
in which the possibility measures/valuations are defined as maps from the family
of Scott open sets to the unit interval [0, 1], satisfying the axiom of possibility
measures. In a pure mathematical aspect, we wish to extend the results by replacing
the unit interval with certain general lattices. As we assumed, L is a commutative
unital quantale. Clearly, the unit interval is such a lattice. In this section, we will
generalize the contents in [3] for L a commutative unital quantale.

Definition 3.1. Let (E, eE) be a fuzzy dcpo. A map Π : σL(E) −→ L is called
an L-fuzzy possibility valuation of E if it preserves arbitrary fuzzy unions, i.e.,
Π(
⊔
A) =

⊔
Π→L (A) for each A ∈ LσL(E). Denote by πL(E) the set of all L-fuzzy

possibility valuations of E.

Remark 3.2. In Definition 3.1, we regard L as a {0, 1}-ordered set (i.e., a fuzzy
poset with the valuation {0, 1} referring to a special case of Example 1.3(3)). For
L a complete lattice, L can be seen as a {0, 1}-fuzzy complete lattice, where

⊔
B =∨

a∈LB(a) ∗ a =
∨
{a ∈ L| B(a) = 1} for each B : L −→ {0, 1}. Let Π ∈ πL(E).

Since for each A ∈ LσL(E), we have that⊔
Π→L (A) =

∨
a∈L

Π→L (A)(a)∗a =
∨
a∈L

∨
U∈σL(E),Π(U)=a

A(U)∗a =
∨

U∈σL(E)

A(U)∗Π(U).

Theorem 3.3. For each fuzzy dcpo (E, e), (πL(E), sub) is a fuzzy complete lattice,
where ⊔

B =
∨

Π∈πL(E)

B(Π) ∗Π

for each B ∈ LπL(E).

Proof. It suffices to prove that
∨

Π∈πL(E) B(Π) ∗Π ∈ πL(E). For each A ∈ LσL(E),

we have

(
⊔

B)(
⊔
A) =

∨
Π∈πL(E) B(Π) ∗Π(

⊔
A)

=
∨

Π∈πL(E) B(Π) ∗ (
⊔

Π→L (A))

=
∨

Π∈πL(E) B(Π) ∗ (
∨
U∈σL(E)A(U) ∗Π(U))

=
∨
U∈σL(E)(

∨
Π∈πL(E) B(Π) ∗Π(U)) ∗ A(U)

=
∨
U∈σL(E)(

⊔
B)(U) ∗ A(U)

=
⊔

(
⊔

B)→L (A).

It follows that
⊔

B ∈ πL(E). �

Definition 3.4. Let (D, eD) and (E, eE) be two fuzzy dcpos. The denotational
semantics assigns to an L-fuzzy possibility computation F from D to E a fuzzy
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Scott continuous function [F ] : D −→ πL(E). Denote by [D −→ πL(E)]S the set
of all L-fuzzy possibility computation of F from D to E.

From this definition, we can see the result of a possibility computation at one
input state. For example, d ∈ D is an L-fuzzy possibility valuation on the fuzzy
Scott topology σL(E), which gives the possibility that one element, for example
e ∈ E, belongs to a fuzzy Scott open set U ∈ σL(E).

Definition 3.5. An L-fuzzy predicate transformer from D to E is a map t :
σL(E) −→ σL(D). An L-fuzzy predicate transformer is called healthy, if it satisfies
the following healthy conditions:

(H) Fuzzy sups-preserving: for A ∈ LσL(E), t(
⊔
A) =

⊔
t→L (A).

Denote by [σL(E) −→ σL(D)] the set of all healthy L-fuzzy predicate transform-
ers from D to E with the subsethood order.

Remark 3.6. If t ∈ [σL(E) −→ σL(D)], by the condition (H) and Theorem 2.6,
we have that

t(
⊔
A) =

⊔
t→L (A)

=
∨
V ∈σL(D) t

→
L (A)(V ) ∗ V

=
∨
V ∈σL(D)

∨
U∈σL(E), t(U)=V A(U) ∗ V

=
∨
U∈σL(E)A(U) ∗ t(U).

Proposition 3.7. Let t : σL(E) −→ σL(D) be a healthy L-fuzzy predicate trans-
former. Then it satisfies

(H′) Level-preserving: for r ∈ L and U ∈ σL(E), t(r ∗ U) = r ∗ t(U).

Proof. For each r ∈ L and each U ∈ σL(E), we have that

sub(
⊔
r ∗ χU , V ) =

∧
W∈σL(E)(r ∗ χU (W ))→ sub(W,V )

= r → sub(U, V )
= r → (

∧
x∈E U(x)→ V (x))

=
∧
x∈E r → (U(x)→ V (x))

=
∧
x∈E(r ∗ U(x))→ V (x)

= sub(r ∗ U, V )

for each V ∈ σL(E). Hence,
⊔
r ∗ χU = r ∗ U. By the condition (H), we have that

t(r ∗ U) = t(
⊔
r ∗ χU ) =

⊔
t→L (r ∗ χU ) =

∨
W∈σL(E)

r ∗ χU (W ) ∗ t(W ) = r ∗ t(U).

�

Definition 3.8. Let (D, eD) and (E, eE) be two fuzzy dcpos. The L-fuzzy logical
semantics assigns to an L-fuzzy possibility computation F from D to E a healthy
L-fuzzy predicate transformer [F ]from D to E.

Proposition 3.9. Let (X, e) be a fuzzy dcpo. Then σL(X) = [X −→ L]S (see in
[26] for L a frame).

Proof. (1) Let U ∈ σL(X) and D ∈ DL(X). In fact, on one hand, we have

U(
⊔

D) = U(
⊔
↓D)

=
∨
x∈X U(x) ∗ (↓D)(x)

=
∨
x∈X U(x) ∗ (

∨
y∈X D(y) ∗ e(x, y))

=
∨
y∈X(

∨
x∈X U(x) ∗ e(x, y)) ∗D(y)

=
∨
y∈X U(y) ∗D(y).
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On the other hand, we have⊔
U→L (D) =

∨
a∈L

U→L (D)(a) ∗ a =
∨
a∈L

∨
y∈X, U(y)=a

D(y) ∗ a =
∨
y∈X

D(y) ∗ U(y).

Then we have U(
⊔
D) =

⊔
U→L (D), which follows that U ∈ [X −→ L]S .

(2) Let f ∈ [X −→ L]S . For each x ∈ X, we have

f(x) = f(
⊔
↓x) =

⊔
f→L (↓ x) =

∨
y∈X

f(y) ∗ ↓x(y) =
∨
y∈X

f(y) ∗ e(y, x) = ↑f(x).

It follows that f is a fuzzy upper set. Further, for each J ∈ IL(X), we have

f(
⊔
J) =

⊔
f→L (J) =

∨
x∈X

f(x) ∗ J(x).

Hence, f ∈ σL(X). �

Next, we will show how to establish a relationship between an L-fuzzy possibility
computation and its L-fuzzy logical semantics.

Proposition 3.10. Let t ∈ [σL(E) −→ σL(D)], x ∈ D and U ∈ σL(E). The
transformation

α : [σL(E) −→ σL(D)] −→ [D −→ πL(E)]S

by α(t)(x)(U) = t(U)(x) defines a map.

Proof. (1) For each x ∈ D, we have α(t)(x) ∈ πL(E). In fact, we have

α(t)(x)(
⊔
A) = t(

⊔
A)(x)

= (
⊔
t→L (A))(x)

= (
∨

U∈σL(E)

t(U) ∗ A(U))(x)

=
∨

U∈σL(E)

t(U)(x) ∗ A(U)

=
∨

U∈σL(E)

α(t)(x)(U) ∗ A(U)

=
⊔

(α(t)(x))→L (A)

for each A ∈ LσL(E).
(2) α(t) ∈ [D −→ πL(E)]S , that is, α(t) : D −→ πL(E) is a fuzzy Scott continu-

ous function. In fact, for each B ∈ DL(D) and each U ∈ σL(E), we have

α(t)(
⊔
B)(U) = t(U)(

⊔
B)

=
⊔

(t(U))→L (B)
=

∨
x∈D

t(U)(x) ∗ B(x)

=
∨
x∈D

α(t)(x)(U) ∗ B(x)

= (
∨
x∈D

α(t)(x) ∗ B(x))(U)

= (
⊔

(α(t))→L (B))(U).

�
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Proposition 3.11. Let h ∈ [D −→ πL(E)]S , x ∈ D and U ∈ σL(E). The
transformation

β : [D −→ πL(E)]S −→ [σL(E) −→ σL(D)]

by β(h)(U)(x) = h(x)(U) defines a map.

Proof. (1) On one hand, for each U ∈ σL(E) and each β(h)(U) ∈ σL(D), we have

β(h)(U)(x) ∗ eD(x, y) = h(x)(U) ∗ eD(x, y) = (h(x) ∗ eD(x, y))(U) ≤ β(h)(U)(y).

It follows that β(h)(U) is a fuzzy upper set.
On the other hand, for each B ∈ IL(D), we have

β(h)(U)(
⊔
B) = h(

⊔
B)(U)

= (
⊔
h→L (B))(U)

= (
∨
x∈D B(x) ∗ h(x))(U)

=
∨
x∈D B(x) ∗ β(h)(U)(x).

(2) β(h) ∈ [σL(E) −→ σL(D)], that is, β(h) : σL(E) −→ σL(D) preserves
arbitrary fuzzy unions. In fact, for each A ∈ LσL(E), we have

β(h)(
⊔
A)(x) = h(x)(

⊔
A)(x)

=
⊔
h(x)→L (A)

=
∨
U∈σL(E)A(U) ∗ h(x)(U)

=
∨
U∈σL(E)A(U) ∗ β(h)(U)(x)

= (
⊔
β(h)→L (A))(x)

�

With the help of Propositions 3.10 and 3.11, we now arrive at the main result of
this paper.

Theorem 3.12. Let (D, eD) and (E, eE) be two fuzzy dcpos. Then [σL(E) −→
σL(D)] ∼= [D −→ πL(E)]S via the pair of functions (α, β).

Proof. (1) For each h ∈ [D −→ πL(E)]S , x ∈ D and U ∈ σL(E), we have

(α ◦ β)(h)(x)(U) = β(h)(U)(x) = h(x)(U).

Hence, α ◦ β = id[D−→πL(E)]S .
(2) For each t ∈ [σL(E) −→ σL(D)], U ∈ σL(E) and x ∈ D, we have

(β ◦ α)(t)(U)(x) = α(t)(x)(U) = t(U)(x).

Hence, β ◦ α = id[σL(E)−→σL(D)]. �
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